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ABSTRACT

Multi-channel linear prediction (MCLP) has been shown to be a
suitable framework for tackling the problem of blind speech dere-
verberation. In recent years, a number of adaptive MCLP algo-
rithms have been proposed, whereby the majority operates in the
short-time Fourier transform (STFT) domain. In this paper, we fo-
cus on the STFT-based Kalman filter solution to the adaptive MCLP
task. Similarly to all other available adaptive STFT-based MCLP al-
gorithms, the Kalman filter exhibits a quadratic computational cost
in the number of filter coefficients per frequency bin. Aiming at
a reduced complexity, we propose to simplify to the Kalman fil-
ter solution by enforcing the state error correlation matrix to be
block-diagonal, leading to a linear cost instead. Further, we apply
a Wiener-gain spectral post-processor subsequent to MCLP, which
is designed from readily available power spectral density (PSD) es-
timates. The convergence behavior of the standard and the sim-
plified algorithm is evaluated by means of two objective measures,
i.e. perceptual evaluation of speech quality (PESQ) and short-time
objective intelligibility (STOI), showing only a minor performance
degradation for the simplified algorithm.

Index Terms— Speech dereverberation, Kalman filter, multi-
channel linear prediction, low complexity

1. INTRODUCTION

It is well known that acoustic reverberation, caused by a multitude
of reflections from room boundaries and objects, may have a de-
teriorating effect on the quality and intelligibility of speech sig-
nals recorded by a microphone. In recent years, a microphone-
array-based framework known as multi-channel linear prediction
(MCLP) [1–12] has gained increased popularity for blind speech
dereverberation, since no prior knowledge on the room impulse re-
sponses (RIRs) between the speech source and the microphones
is required. According to the multiple input/output inverse theo-
rem (MINT) [13], multi-channel methods like MCLP are theoreti-
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cally able to perfectly equalize the (presumed time-invariant) trans-
fer functions between the speech source and the microphone array,
provided that the individual transfer functions do not share com-
mon zeros. The majority of the recently proposed MCLP algorithms
work in the short-time Fourier transform (STFT) domain [3–10,12],
where each frequency bin is treated independently.

In a practical scenario, adaptive filter estimation is required in
order to equalize potentially time-varying RIRs. While most MCLP
algorithms are based on either batch processing or iterative pro-
cessing of individual, independent frames, a number of adaptive
algorithms can be found [8–12]. In [8], the weighted recursive
least squares (RLS) algorithm has been applied in the STFT do-
main. In [9], an RLS implementation of the STFT-based gener-
alized weighted prediction error (GWPE) method [6] has been in-
troduced. In order to prevent excessive cancellation of the speech
signal, a constraint has been applied to the adaptive GWPE op-
timization problem in [10]. In our previous work, we have pro-
posed a Kalman filter based on a partitioned-block frequency do-
main (PBFD) representation [11], while an STFT-based Kalman fil-
ter implementation has been proposed in [12].

In terms of complexity, all available STFT-based adaptive
MCLP algorithms exhibit a quadratic computational cost in the
number of filter coefficients per frequency bin. In this paper, we
propose a simplification to the STFT-based Kalman filter leading
to a linear computational cost in the number of filter coefficients
instead. This simplification is conceptually equivalent to an as-
sumption often made in PBFD-based Kalman filtering [11, 14, 15],
namely that the variations in different filter partitions are mutually
uncorrelated and have zero mean.

Further, in order to suppress residual reverberation, we utilize
a Wiener-gain spectral post-processor subsequent to MCLP-based
dereverberation. The MCLP Kalman filter requires an estimate of
the target signal power spectral density (PSD), which we obtain us-
ing [16], and provides an estimate of the output signal PSD. We can
therefore easily derive the Wiener gain from readily available PSD
estimates.

2. PROBLEM FORMULATION

In MCLP, it is assumed that the reverberation component to be can-
celled may be modeled as a linearly filtered version of the delayed
microphone signals. The task at this point is to blindly estimate the
filter coefficients by means of an adaptive filter. In the following, we
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briefly introduce the MCLP signal model in the STFT domain, pre-
suming that background noise is absent (please note however that
a low amount of background noise is added in the simulations in
Section 6).

Let xm(l, k) withm = 0, . . . , M−1 denote the STFT domain
representation of the mth microphone signal at frame l in frequency
bin k, comprising a target component xt|m(l, k) typically including
early reflections, and a reverberation component xr|m(l, k) to be
cancelled,

xm(l, k) = xt|m(l, k) + xr|m(l, k). (1)

For the sake of simplicity, we will focus on the dereverberation
of x0(l, k) only. Since we treat the frequency bins independently,
the frequency bin index will be dropped for brevity. Further, let
ŵp,m(l) with p = 0, . . . , P − 1 denote the pth STFT domain fil-
ter coefficient for microphone m at frame l in frequency bin k. We
define the stacked representation,

x(l) =
(
x0(l) · · · xM−1(l)

)T ∈ CM , (2)

x(l) =
(
xT (l) · · · xT (l−P +1)

)T ∈ CPM , (3)

ŵp(l) =
(
ŵp,0(l) · · · ŵp,M−1(l)

)T ∈ CM , (4)

ŵ(l) =
(
ŵT

0 (l) · · · ŵT
P−1(l)

)T ∈ CPM , (5)

wherein the superscript (·)T denotes the transpose. With these def-
initions, we express the enhanced signal e(l) as

e(l) = x0(l)−
P−1∑
p=0

M−1∑
m=0

xm(l−D−p)ŵp,m(l)

= x0(l)− xT (l−D)ŵ(l). (6)

In (6), the prediction term xT (l−D)ŵ(l) is the estimate of the
reverberation component xr|0(l) to be cancelled. The prediction de-
layD is a design parameter affecting the amount of early reflections
maintained in the MCLP output e(l), i.e. in the estimate of the tar-
get component xt|0(l). A corresponding block diagram is depicted
in Fig. 1.

The per-frequency-bin filter operation in (6) may be considered
an approximation of the time domain convolution [17], whereby
each output frame is composed of P circular convolution terms,
involving the P latest input signal frames. This is in contrast to
PBFD processing, where one would add P linear convolution terms
in an analogous formulation. In the STFT formulation, undesired
circular convolution effects are alleviated by the use of appropriate
weighted-overlap-add (WOLA) windowing.

3. KALMAN-FILTER-BASED MCLP

In the following, we define the state-space representation and derive
the Kalman-filter-based update algorithm that produces the estimate
ŵ(l) of the presumed underlying state w(l). The algorithm is then
modified in order to reduce the computational complexity.

3.1. State-Space Model

We define the state w(l) to be the filter that leads to perfect cancella-
tion of the reverberation component xr|0(l), i.e. xT (l−D)w(l) =
xr|0(l), resulting in the so-called observation equation,

x0(l) = xT (l−D)w(l) + xt|0(l). (7)

z−D

+

−
ŵ(l)

xT (l)

xT (l −D)

x0(l) e(l)

Figure 1: MCLP in the STFT domain.

In Kalman filter terminology, we refer to x0(l) as the observable
and to xt|0(l) as the observation noise. Of the latter, an estimate of
its correlation ψxt|0(l) corresponding to its PSD is required. The
estimation of ψxt|0(l) will be discussed in Section 4.

In order to derive the Kalman filter update equations, we further
need to formulate the so-called process equation, which makes as-
sumptions on the evolution of the underlying state w(l) in the form
of a first-order difference equation, i.e.

w(l) = AT (l)w(l−1) + ∆w(l). (8)

The matrix AT (l) ∈ CPM×PM models the state transition from
one frame to the next, and the process noise ∆w(l) ∈ C

PM mod-
els a random variation component of the state over time. As for
the observation noise, an estimate of its correlation matrix Ψ∆w

(l)

is required. Both AT (l) and Ψ∆w
(l) may be considered design

parameters and are commonly chosen to be diagonal matrices.

3.2. Update Equations

From the observation and the process equation in (7)–(8), the
Kalman filter update equations [18] can be derived as,

ŵ(l) = AT (l)ŵ+(l−1), (9)

Ψw(l) = AT (l)Ψ+
w(l−1)A∗(l) + Ψ∆w

(l), (10)

e(l) = x0(l)− xT (l−D)ŵ(l), (11)

ψe(l) = xT (l−D)Ψw(l)x
∗(l−D) + ψxt|0(l), (12)

k(l) = Ψw(l)x
∗(l−D)ψ−1

e (l), (13)

ŵ+(l) = ŵ(l) + k(l)e(l), (14)

Ψ+
w(l) = Ψw(l)− k(l)xT (l−D)Ψw(l), (15)

wherein the superscript (·)∗ denotes the complex conjugate. Eq.
(9)–(10) are referred to as the time update of the state estimate ŵ(l)
and the state error correlation matrix Ψw(l) ∈ C

PM×PM . In (11)–
(13), the enhanced signal e(l), its correlation ψe(l), and the Kalman
gain k(l) are computed, which are then used in the so-called mea-
surement update of the state estimate ŵ+(l) and the state error cor-
relation matrix Ψ+

w(l) in (14)–(15). Both ŵ+(l) and Ψ+
w(l) need

to be initialized at l = 0.
Within these update equations, the enhanced signal e(l) in

(11) represents the Kalman filter estimate of the target component
xt|0(l). Note that its correlation ψe(l) in (12) depends on the target
component correlation ψxt|0(l). During convergence, the norm of
the state error correlation matrix Ψw(l) decreases, such that ψe(l)
converges to ψxt|0(l) and hence e(l) converges to xt|0(l).

3.3. Complexity Reduction

The multi-channel frequency-domain filter ŵp(l) conceptually cor-
responds to what is referred to as a partition in the PBFD frame-
work, in that it is multiplied with the frequency-domain representa-
tion of the pth to last input signal frame. Subsequently, we therefore

285285



2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

...
. . .

...

· · ·

· · ·

M

(a)

...
. . .

...

· · ·

· · ·(b)

Figure 2: The structure of the state error correlation matrix
Ψw(l) ∈ CPM×PM for (a) preserved and (b) omitted cross-
partition error correlations, exemplarily shown for M = 2 micro-
phones. The filled squares indicate non-zero matrix elements.

refer to ŵp(l) as the filter partition p at frequency bin k, despite the
fact that this terminology is uncommon in literature on (WOLA-
based) STFT processing.

Aiming to reduce the complexity of the Kalman filter, we as-
sume that the cross-partition submatrices of the state error corre-
lation matrix Ψw(l) may be neglected in the estimation. This as-
sumption directly corresponds to an assumption previously intro-
duced in PBFD Kalman filtering [11, 14, 15], namely that the vari-
ations in different filter partitions are mutually uncorrelated and
have zero mean, however has so far not been made in WOLA-based
STFT Kalman filtering. Fig. 2 visualizes the structure of Ψw(l) for
both (a) preserved and (b) omitted cross-partition error correlations,
with the latter resulting in a block-diagonal matrix.

In order to enforce block-diagonality of Ψw(l) throughout the
update equations (9)–(15), it is sufficient to simplify the product
k(l)xT (l−D) in (15) as follows. Noting that k(l) exhibits a verti-
cal blockwise structure of P partitions kp(l) ∈ CM , i.e.

k(l) =
(
kT

0 (l) · · · kT
P−1(l)

)T
, (16)

and that xT (l − D) exhibits an analogous horizontal blockwise
structure as given in (3), we can simplify k(l)xT (l−D) by

k(l)xT (l−D) := bdiag
{
k0(l)x

T (l−D), . . . ,

kP−1(l)x
T (l−D−P +1)

}
. (17)

Herein, the operator bdiag{·} arranges its matrix arguments on the
main diagonal of a block-diagonal matrix. This simplification will
indeed cause Ψw(l) to remain block-diagonal, provided that its ini-
tial value and the process equation parameters A(l) and Ψ∆w

(l)
are chosen to have the same form. The proposed simplified al-
gorithm may then alternatively be implemented as P individual
Kalman filters sharing the same error signal e(l), whereby Kalman
filter p with the underlying state wp(l) processes the input signal
frame x(l−D − p).

Table 1 provides an overview on the complexity per frequency
bin of the update equations in terms of multiplications and divisions
on different domains, assuming A(l) and Ψ∆w

(l) to be diagonal.
We find that the overall computational complexity is reduced from
O(P 2M2) to O(PM2), i.e. from quadratic to linear in P , if the
cross-partition error correlations are omitted. This complexity re-
duction naturally comes at the expense of a performance degrada-
tion, which will be investigated in Section 6.

Note that we may reduce the computational cost even further
from O(PM2) to O(PM) by omitting the cross-microphone er-
ror correlations, enforcing Ψw(l) to be fully diagonal instead of
block-diagonal, leading to further performance degradation. As we
usually find P �M in practical applications however, we limit our
discussion to the O(PM2) case in this paper.

Table 1: Complexity of the Kalman filter update equations for (a)
preserved and (b) omitted cross-partition error correlations. The
simplified version of (15) employing (17) is denoted by (15)′.

Eq.�Domain R× R R× C C× C

(9) (a,b) 0 PM 0

(10) (a)
(b)

2PM
P 2M2

PM2
0

(11) (a,b) 0 0 PM

(12) (a)
(b)

0 PM
P 2M2

PM2

(13) (a)
(b)

0 2PM
P 2M2 − PM

PM2 − PM

(14) (a,b) 0 0 PM

(15)
(15)′

(a)
(b)

0 PM
1.5P 2M2 − 0.5PM

1.5PM2 − 0.5PM∑ (a)
(b)

2PM
P 2M2 + 5PM

PM2 + 5PM

3.5P 2M2 + 0.5PM

3.5PM2 + 0.5PM

4. TARGET COMPONENT PSD ESTIMATION

The Kalman filter requires an estimate of the correlation ψxt|0(l),
which corresponds to the PSD of the target component xt|0(l). We
model the late reverberation as an isotropic sound field [16], i.e.
we assume the reverberation components xr|m(l) share the same
PSD ψxr(l). The target component xt|0(l) and the reverberation
component xr|0(l) are further presumed to be uncorrelated, i.e.

ψx0(l) = ψxt|0(l) + ψxr(l). (18)

An estimate of ψxt|0(l) may then be obtained from an estimate of
ψxr(l). In [16], an estimation procedure for ψxr(l) relying on the
eigenvalue decomposition (EVD) has been proposed. Unlike other
methods such as e.g. [19, 20], the EVD-based procedure does not
require any knowledge on the direction of arrival or early relative
transfer functions and will briefly be reviewed in the following. Let
Ψx(l) = E{x(l)xH(l)} denote the multi-channel correlation ma-
trix of the microphone signals, with (·)H and E{·} denoting the
complex conjugate transpose and the expected value operation, re-
spectively. The matrix Ψx(l) can be estimated from the microphone
signals directly. Let Γ denote the (time-invariant) spatial coherence
matrix of an isotropic sound field, which may be computed analyti-
cally given the geometry of the microphone array. We then perform
the EVD of the pre-whitened correlation matrix Ψx(l)Γ

−1,

Ψx(l)Γ
−1 = V(l)Λx(l)V

−1(l), (19)

with V(l) a matrix of eigenvectors and Λx(l) the corresponding
diagonal matrix of M eigenvalues λx|m(l). As shown in [16], all
eigenvalues except their maximum theoretically correspond to the
reverberation component PSD, while the maximum eigenvalue ad-
ditionally depends on the target component. Hence, the late rever-
beration PSD ψxr (l) can be computed as

ψxr (l) =
1

M − 1

(M−1∑
m=0

λx|m(l)−max
m

λx|m(l)
)
. (20)

From an estimate of ψxr(l) based on (20), we can estimate ψxt|0(l)
by means of an a-priori signal-to-reverberation ratio (SRR) estimate
based on the decision-directed approach [21].
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Figure 3: Averaged PESQ MOS and STOI scores for the micro-
phone signal x0(l) [ ], the MCLP output signal e(l) employing
the quadratic- [ ] and the linear-cost [ ] Kalman filter, and
the respective spectrally post-processed signals [ , , ].
The vertical line indicates the time instant of the RIR change.

5. SPECTRAL POST-PROCESSING

Residual reverberation may be suppressed by applying a spectro-
temporal gain g(l) ∈ R to the MCLP output signal e(l), yielding
the spectrally post-processed output signal ẽ(l) = g(l)e(l). It is
well known that the so-called Wiener gain is given by the ratio of the
target signal PSD to the input signal PSD of the post-processor, i.e.
in our case g(l) = ψxt|0(l)/ψe(l). As noted previously, the Kalman
filter relates ψxt|0(l) and ψe(l) via (12). The Wiener gain can hence
be implemented using these readily available PSD estimates. To
achieve smoother gain transitions from one frame to the next, we
apply exponential smoothing in our implementation, i.e. instead of
using g(l) = ψxt|0(l)/ψe(l) we compute the gain as

g(l) = βg(l − 1) + (1− β)
ψxt|0(l)

ψe(l)
, (21)

wherein β ∈ (0, 1] denotes a smoothing factor.

6. SIMULATIONS

In our simulations, the STFT analysis and synthesis is based on
square-root Hann windows of 512 samples with 50% overlap at
16 kHz. The prediction delay D is set to one. The adaptive fil-
ter has P = 19 partitions. We initialize the filter coefficients as
ŵ+(0) = 0, while the initial state error correlation matrix Ψ+

w(0)
is chosen to be diagonal in all simulations. Expecting lower val-
ues for later coefficients of w(l), we chose the diagonal elements
of Ψ+

w(0) corresponding to partition p+1 to have 3 dB less power
than those of partition p. We set the process noise correlation matrix
to Ψ∆w

(l) = αΨ+
w(0) with α = −25 dB. For the state transition

matrix A(l), we choose an identity matrix scaled by
√
1− α. The

spectral gain smoothing factor is set to β = 0.85.
Measured RIRs [22] ofM = 3 microphones with 8 cm spacing

and 610ms reverberation time are used. In order to investigate the

adaptive behavior, we simulate a transition between two different
source positions. Initially, the speech source is positioned at 2m
distance in the broadside direction of the microphone array, and then
shifted by 15◦ after 16 s of simulation. Male speech [23] is chosen
for the source signal. We simulate 128 realizations, each using two
randomly selected 15.5 s long segments of the speech file. Despite
additive noise not being modelled explicitly in (1), we add a low
amount of incoherent white noise to the synthesized microphone
signals at a signal-to-noise ratio of 50 dB for the sake of realism.

For each of the 128 realizations, MCLP output signals e(l) are
computed employing the standard quadratic-cost and the proposed
linear-cost Kalman filter. A spectral gain according to (21) is ap-
plied to the MCLP output e(l), while the spectral gain for the mi-
crophone signal x0(l) is computed directly from the a-priori SRR in
the decision-directed approach. Objective measures are computed
within windows of 2 s and 75% overlap for the microphone sig-
nal, the MCLP output signals, and the respective spectrally post-
processed signals. The results are averaged over all realizations.

As objective measures, we select the perceptual evaluation of
speech quality (PESQ) measure [24] with mean opinion scores
(MOS) ∈ [−0.5, 4.5] and the short-time objective intelligibility
measure (STOI) [25] ∈ [0, 1]. We choose the direct component
of x0(l) as a clean reference signal, defined from a window of 1 ms
around the maximum peak of the corresponding RIR.

The simulation results are shown in Fig. 3. For both measures,
a significant improvement can be seen for each of the two MCLP
output signals [ , ] over the microphone signal [ ]. At
convergence, quadratic-cost MCLP [ ] reaches an improvement
of roughly 0.3 and 0.06 in terms of PESQ MOS and STOI, respec-
tively. Compared to quadratic-cost MCLP, a small degradation can
be seen for linear-cost MCLP [ ] in both measures. The latter
algorithm further shows a somewhat slower convergence after ini-
tialization, however not after the RIR change. While PESQ MOS
predicts a slight improvement for all spectrally post-processed sig-
nals [ , , ] of about 0.05 with respect to the unpro-
cessed signals, STOI predicts a significant degradation.

Informal listening tests indicate only faint differences between
the two MCLP output signals, but a major advantage over the mi-
crophone signal. The spectral post-processing is considered advan-
tageous for all signals. Audio examples are available online [26].

7. CONCLUSION

In this paper, we have presented a simplification to the Kalman fil-
ter solution for adaptive MCLP-based speech dereverberation for-
mulated in the STFT domain. The simplification leads to a reduced
computational cost that is linear in the number of filter coefficients
instead of quadratic. Residual reverberation is suppressed using a
Wiener-gain spectral post-processor subsequent to MCLP, whereby
the gain computation relies on PSD estimates readily available from
the Kalman filter update equations.

Simulation results indicate overall good speech quality of the
enhanced signal for both the quadratic- and the linear-cost Kalman
filter, with only a minor performance degradation for the latter.
Spectral post-processing further improves the perceptual quality.
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