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Abstract—Variable step-size (VSS) schemes are popular to use
in acoustic echo cancellation (AEC) contexts. However, their
effective implementation in adaptive feedback cancellation (AFC)
for hearing aids is still challenging due to the correlation between
microphone and loudspeaker signals. We propose an improved
practical VSS algorithm (IPVSS) which uses a variable step-size
with upper and lower limits to control the update equation of
an adaptive filter. The proposed algorithm is implemented for
feedback cancellation using the prediction error method. As a
result, the overall system has a fast convergence rate, a high
tracking rate and a low steady-state error. The performance
of the proposed approach has been evaluated for both speech
and music incoming signals. The simulation results show that
the proposed approach outperforms a system which only utilizes
either the lower or the upper fixed step-size used in the IPVSS.

Index Terms—adaptive feedback cancellation, prediction error
method, hearing aids, NLMS, PVSS, IPVSS.

I. INTRODUCTION

Acoustic feedback, which is produced by the acoustic

channel between a loudspeaker signal and a microphone, is

one of the major problems limiting the stable gain in hearing

aids. Furthermore, acoustic feedback degrades the perceived

quality, which often presents itself as ”howling” when the

system is unstable or close to instability. To reduce the adverse

effects of the feedback path, an acoustic feedback cancellation

(AFC) method which employs an adaptive filter to estimate

the true feedback path is commonly used. Unlike an acoustic

echo cancellation (AEC) system, the AFC system is a closed

loop system. Thus the incoming and loudspeaker signals in an

AFC system are correlated, resulting in a biased solution in

the feedback path’s estimate [1]–[3].

In order to reduce the bias the so-called acoustic feedback

cancellation with prediction error method (PEM) has been

proposed [4]–[6]. Assuming that the input signal can be

modelled as an AR-process, the PEM estimates the inverse

filter to pre-whiten the input. It can be shown that the PEM

allows for an unbiased estimation of the acoustic feedback

path.
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funded by the German Research Foundation (DFG) and project 57142981 ”In-
dividualized acoustic feedback cancellation” funded by the German Acadamic
Exchange Service (DAAD).

To improve the convergence speed of the adaptive algorithm,

while maintaining a low steady-state error, several solutions

have been proposed. These include the affine combination of

two adaptive filters with different step-sizes [7]–[9] as well as

variable step-size (VSS) methods [10]–[15]. The applications

of affine combination and VSS methods have been widely

used in AEC [16]–[20], but their applications to AFC are

still limited due to the correlation between the incoming and

the loudspeaker signals. To reduce this correlation, a (white)

background noise [12] or a probe noise signal [21] was

added. In [22] subband filtering in conjunction with frequency

shifting and pre-filtering techniques were used, resulting in a

significant increase in the implementation complexity. Other

VSS approaches employ affine projection algorithm instead

of NLMS, but increase computational complexity [23]–[25].

Most existing acoustic feedback cancellation methods using

VSS (AFC-VSS) have only considered white noise, speech-

shaped noise, and speech as incoming signals, while only the

approach in [22] has been validated with music signals.

In this paper, we propose a new VSS algorithm called im-

proved practical variable step-size (IPVSS) which is developed

based on the practical variable step-size algorithm (PVSS).

The PVSS algorithm has been successfully implemented for

AEC [18], [20], but our simulations show that the PVSS

algorithm is not suitable for AFC applications. The proposed

IPVSS algorithm has been applied to the PEM, forming a

new AFC method called PEM-IPVSS. In this method, pre-

whitening filters are used to reduce the correlation, while the

step-size control is restricted between an upper step-size (μ1)

and a lower step-size (μ2), in order to control the convergence

behaviour. Simulation results, which use measured acoustic

feedback paths from a two-microphone behind-the-ear hearing

aid, show that the proposed system outperforms a system using

either the upper or the lower step-size, as well as the VSS

algorithm in [12] for both speech and music incoming signals.

II. PROPOSED PEM-IPVSS

The proposed AFC system is illustrated in Fig. 1. The

microphone signal x (k) is the sum of the feedback signal

v (k) = fT (k)y (k) and the incoming signal u (k), i.e.,

x (k) = u (k) + v (k) , (1)
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Fig. 1: The proposed AFC system.

where f (k) =
[
f0 (k) , f1 (k) , . . . , fLf−1 (k)

]T
is the Lf -

length impulse response (IR) vector of the true feedback path

and y (k) is the Lf -length vector of the loudspeaker signal,

y (k) = [y (k) , y (k − 1) , . . . , y (k − Lf + 1)]
T

. Subtracting

the estimate of feedback signal from the microphone signal

results in an error signal e (k),

e (k) = x (k)− f̂T (k)y (k) , (2)

where the Lf̂ -length vector f̂ (k) is an estimate of f (k). Then

the error signal is delayed and amplified using the forward

path, resulting in the loudspeaker signal, i.e.,

y (k) = K (q, k) e (k) . (3)

Assuming that the forward path is defined as K (q, k) =
|K| q−dk , where |K| is the broadband gain and dk is the delay.

The delay is selected such that dk � 1.

We assume that the incoming signal can be modeled by

filtering a white Gaussian noise sequence w (k) with an all-

pole filter G−1 (q, k), i.e.,

u (k) = G−1 (q, k)w (k) . (4)

In the proposed AFC system, pre-whitening filters are em-

ployed to whiten the loudspeaker and microphone signals

before the adaptive process, i.e., xp (k) = Ĝ (q, k)x (k)
and yp (k) = Ĝ (q, k) y (k), where Ĝ (q, k) is an estimate

of G (q, k) with G (q, k) the inverse of the incoming signal

model. Thus the whitened error signal is computed as

ep (k) = xp (k)− v̂p (k) , (5)

where v̂p (k) = f̂T (k)yp (k) and yp (k) =[
yp (k) , yp (k − 1) , . . . , yp

(
k − Lf̂ + 1

)]T
. The coefficients

of Ĝ (q, k) are estimated from the error signal e (k) by

using the Levinson-Durbin algorithm [26]. Commonly, the

estimated feedback path is updated using NLMS algorithm

as follows

f̂ (k) = f̂ (k − 1) +
μ

(||yp(k)||22 + δ)
yp (k) ep (k) , (6)

where μ is a fixed step-size and δ is a regularization parameter.

Assuming that (4) is satisfied, the pre-whitened signals yp (k)
and up (k) are uncorrelated [4]. Hence,

E
{
x2
p (k)

}
= E

{
v2p (k)

}
+ E

{
u2
p (k)

}
, (7)

where E {.} represents mathematical expectation, up (k) =
Ĝ (q, k)u (k), and vp (k) = fT (k)yp (k). When the adaptive

filter has converged close to the optimal value, we have

E
{
v̂2p (k)

} ≈ E
{
v2p (k)

}
. (8)

As a result, the incoming signal power can be approximated

as

σ̂2
up

(k) ≈ σ̂2
xp

(k)− σ̂2
v̂p

(k) . (9)

Practically, the powers of the microphone signal, the estimated

feedback signal and the error signal can be recursively esti-

mated, i.e.,

σ̂2
xp

(k) = ασ̂2
xp

(k − 1) + (1− α)x2
p (k) (10)

σ̂2
v̂p

(k) = ασ̂2
v̂p

(k − 1) + (1− α) v̂2p (k) (11)

σ̂2
ep (k) = ασ̂2

ep (k − 1) + (1− α) e2p (k) , (12)

where α is a weighting factor which is chosen such that α is

close to 1.

In [18], [20] the fixed step-size in (6) was replaced by a

practical variable step-size (μPV SS (k)) which was defined as

μPV SS (k) =

∣∣∣∣∣∣1−
√

|σ̂2
xp

(k)− σ̂2
v̂p

(k) |
σ̂ep (k) + ξ

∣∣∣∣∣∣ , (13)

where ξ is a small positive value added to avoid division by

zero. Note that the PVSS algorithm has been only applied in

AEC but not for AFC. Our simulations show that the PVSS

algorithm does not perform well in AFC (see Fig. 3 in section

III). The reason is that the step-size in (13) fluctuates over a

large range, resulting in high variations in misalignment and

ASG.

To reduce those fluctuations in μPV SS (k) an improved

PVSS algorithm is proposed. The IPVSS algorithm employs

a limiter [12] to modify the PVSS algorithm. This limiter

employs upper and lower limits on the step size to control

the step-size range. This constraint of the step-size means that

the algorithm will have properties that are contained in that

set. Thus, if we compare the performance with the upper limit

and lower limit we know that the algorithm falls within that

set. The step-size of the proposed IPVSS algorithm is defined

as

μIPV SS (k) =

⎧⎪⎨
⎪⎩

μ1 if μc (k) > μ1

μ2 if μc (k) < μ2

μc (k) otherwise,

(14)

where

μc (k) = μ1 ∗ γ (k) , (15)

with γ (k) = μPV SS (k). The estimated feedback path is then

computed as

f̂ (k) = f̂ (k − 1) +
μIPV SS (k)

(||yp(k)||22 + δ)
yp (k) ep (k) . (16)

By selecting suitable values for μ1 and μ2, the variation range

of the step-size μPV SS (k) is bounded to a smaller range.



Thus the fluctuations of the step-size are reduced and as

a consequence, less variations in the performance measures

are observed, i.e., misalignment and ASG compared to the

PVSS algorithm. The main difference between our proposed

algorithm and the variable step-size modified decorrelation

NLMS algorithm (VSS-MDNLMS) [12] is in the definition

of the term γ (k). In [12] this term was defined as

γV SS−MDNLMS (k) =

∣∣∣∣1− σ̂xp (k)

σ̂ep (k) + ξ

∣∣∣∣ . (17)

In the following we analyse the effect of this term for the

adaptive algorithm performance in two scenarios of with or

without an added (white) background noise. In each scenario,

two cases, the adaptive feedback canceler has converged close

to the optimal value and the feedback system is (close to)

unstable, have been considered.
Scenario 1: No (white) background noise is added into the

incoming signal.
Case 1: The feedback cancellation filter has converged close

to the optimal value, i.e., f̂ (k) → f (k), hence σ̂2
ep (k) ≈

σ̂2
up

(k):
Eq. (17) can be rewritten as γV SS−MDNLMS (k) ≈∣∣∣∣1−

√
1 +

σ̂2
vp

(k)

σ̂2
up

(k)

∣∣∣∣ = |1− β1 (k)|, where β1 (k) =√
1 +

σ̂2
vp

(k)

σ̂2
up

(k) > 1. It can be seen that γV SS−MDNLMS (k)

(so step-size of the VSS-MDNLMS algorithm,

μV SS−MDNLMS (k)) depends on the feedback to (incoming)

signal ratio (FSR). The larger this ratio is, the larger β1 (k)
and thus the larger value of μV SS−MDNLMS (k) is obtained,

resulting in high steady-state error.
In contrast, in the IPVSS algorithm γ (k) = μPV SS (k) =

|1− β2 (k)|, where β2 (k) =

√
|σ̂2

xp
(k)−σ̂2

v̂p
(k)|

σ̂ep (k)
≈ 1, hence

γ (k) ≈ 0, and μIPV SS (k) = μ2 (the lower bound). As a

result, the proposed algorithm achieves a lower steady-state

error compared to the VSS-MDNLMS algorithm when the

system has converged. Note that the value μ2 can be set such

that the desired misalignment is achieved. Without the lower

limit the step size can be zero and the adaptive filter can lock-

up and be insensitive to learning data.
Case 2: The system is (close to) unstable, e.g in the

initialization phase and when the feedback path changes:
Eq. (8) and (9) are not held. In βi (k), with i = 1, 2, the

nominator increases faster than the denominator, i.e., βi (k) >
1. Therefore, the variable step-sizes of both algorithms tends to

take large values, which drive the the weights of the feedback

canceler to converge faster.
Scenario 2: A (white) background noise is added into the

incoming signal. In this case the incoming signal plus noise

(un (k)) is an addition of the incoming signal (u (k)) with a

white background noise (n (k)), i.e.,

un (k) = u (k) + n (k) . (18)

Then the pre-filtered incoming signal plus noise can be defined

as

un
p (k) = up (k) + np (k) , (19)

where np (k) is the pre-filtered (white) noise. The incoming

signal and the added noise are uncorrelated, so that

σ̂2
un
p
(k) = σ̂2

up
(k) + σ̂2

np
(k) . (20)

Eqs. (1), and (5) can be rewritten as

xn
p (k) = un

p (k) + vnp (k) , (21)

enp (k) = xn
p (k)− v̂np (k) , (22)

where vnp (k) and v̂np (k) are the true and the estimated

feedback signals (with noise) defined in a manner analogous

to vp (k) and v̂p (k), respectedly. The terms β1 (k) and β2 (k)
in the scenario 1 can be redefined as follows

βn
1 (k) =

σ̂xn
p
(k)

σ̂enp
(k)

, (23)

βn
2 (k) =

√∣∣∣σ̂2
xn
p
(k)− σ̂2

vn
p
(k)

∣∣∣
σ̂enp

(k)
. (24)

Case 1:
For the VSS-MDNLMS algorithm, the term βn

1 (k) =√
1 +

σ̂2
vn
p
(k)

σ̂2
up

(k)+σ̂2
np

(k) > 1, which depends on the the feedback

to (incoming) signal plus noise ratio (FSNR). By selecting

a background noise with large power compared to incoming

signals (speech/music) such that βn
1 (k) < β1 (k), the VSS-

MDNLMS algorithm tends to get smalller step-size values,

resulting in a lower steady-state error. However, the simula-

tions in [12] showed that with signal to (background) noise

ratio SNR = 20dB the μV SS−MDNLMS (k) still fluctuates

between the values μ1 and μ2 according to the change of

FSNR.

For the IPVSS algorithm, the term βn
2 (k) behaves in a

similar manner to β2 (k) in the case 1 (scenario 1), i.e., the

(white) background noise have small or no impact on the

result.

Case 2:
In this case, similar conclusions as case 2 (scenario 1) can

be drawn.

Note that the VSS-MDNLMS algorithm needs a noisy input

signal to work well and that is not conducive for a well

working algorithm.

III. SIMULATION RESULTS

In this section, the proposed PEM-IPVSS is evaluated for

both speech and music incoming signals and compared with

the PEM using the VSS-MDNLMS algorithm (PEM-VSS-

MDNLMS). Two measured acoustic feedback paths using

a two-microphone behind-the-ear hearing aid as described

in [27] were used, where the first feedback path (F1(f))
was measured in free-field and the second feedback path

(F2(f)) was measured with a telephone receiver close to

the ear. Fig. 2 shows the magnitude and phase responses of

the measured feedback paths. The length of the measured

feedback paths was Lf = 100 and the sampling frequency

was fs = 16kHz. The speech incoming signal was constructed
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Fig. 2: Characteristics of measured feedback paths: a) Magni-

tude response, b) Phase response.

by concatenating real male and female speech as used in [3],

while the music incoming signal is the John Lennon’s Imagine.

All simulations have 80s lengths with a sudden change from

the free-field to the telephone-near feedback path after 40s. No

background noise has been added into the incoming signals in

all simulations. We used the normalized misalignment (MIS)

and the added stable gain (ASG) to evaluate the performance

of all AFC methods. The normalized misalignment (MIS) is

computed as

MIS = 10 log10(
||f − f̂ ||22
||f ||22

), (25)

while ASG is defined as [6], [28]

ASG = 10 log10
1

maxΩ |F (Ω)− F̂ (Ω)|2
− 10 log10

1

maxΩ |F (Ω)|2 , (26)

where F̂ (Ω) and F (Ω) are the frequency responses of esti-

mated and measured acoustic feedback paths at the normalized
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Fig. 3: a) Misalignment of the PEM-PVSS; b) μPV SS , speech

incoming signal.

frequency Ω, respectively. The following parameters were set

for all simulations. The forward path gain and the delay of the

hearing aid were |K| = 30 dB and dk = 6ms, respectively.

The delay in the feedback canceller path was 1 sample. The

length of the adaptive filter Lf̂ = 64, the step-sizes μ1 = 0.01,

μ2 = 0.001, and α = 0.9999, ξ = 10−6, δ = 10−10 were

chosen. The Levinson-Durbin algorithm was used to update

the prediction-error filter Ĝ(q, k) of order 20 every 10 ms.

Fig. 4 shows the simulation results for the proposed method

with the speech incoming signal. The PEM-IPVSS solution

outperforms the PEM which only employs either the upper

or the lower step-size used in the IPVSS algorithm. It also

provides much better misalignment and added stable gain

than the PEM-VSS-MDNLMS described in Fig. 8. Especially,

when the feedback path changes from the free-field to the

telephone-near feedback path, the proposed method tracks the

change almost as quick as the case of the PEM using the upper

step-size μ1 = 0.01, while remaining similar steady-state error

to the case of the PEM with the lower step-size μ2 = 0.001.

Fig. 5 illustrates the results for the proposed method with the
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Fig. 4: (a) Misalignment, (b) Added Stable Gain of the PEM

using NLMS and IPVSS algorithms with speech incoming

signal.

music incoming signal. The simulations show that the PEM-

IPVSS has significant improvements in convergence rate as

well as tracking rate compared to the PEM with the lower

step-size μ2 = 0.001, while providing much lower steady-state

error than the PEM with the upper step-size μ1 = 0.01. The

proposed method also outperforms the PEM-VSS-MDNLMS

represented in Fig. 9.

Fig. 6-7 show that “howling” occurs in the beginning and

when the feedback path changes. For the PEM with μ2 =
0.001 the howling periods are much longer than the case of

the PEM with μ1 = 0.01. The reason is that the larger step size

makes the system converge faster, i.e., a shorter howling period

is observed, but it also provides a larger steady-state error as

well as larger variations in the performance and vice versa. For

both speech and music incoming signals, the proposed method
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Fig. 5: (a) Misalignment, (b) Added Stable Gain of the PEM

using NLMS and IPVSS algorithms with music incoming

signal.

provides a compromise solution, i.e., it can significantly reduce

the howling periods, improve convergence rate and tracking

rate while lowering steady-state error.

Fig. 6(d) and Fig. 7(d) represent the variable step-sizes for

the PEM-IPVSS with speech and music incoming signals,

respectively. For both cases, the variations of the step-sizes

match with the description in the scenario 1, i.e., they are

larger when the system is unstable, e.g. in the beginning of

simulation and at the change of the feedback path, and smaller

when the system is converged.

Fig. 10 shows the behaviour of μV SS−MDNLMS (k), which

matches with the analysis in Scenario 1. When the incoming

signal is speech, this step-size seems to get the maximum

value almost time, resulting in high convergence rate and

high steady-state error. When the incoming signal is music,
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Time [s]
0 10 20 30 40 50 60 70 80

Am
pli

tud
e

-80

-60

-40

-20

0

20

40

60

80
NLMS, 1=0.01Howling

(a)

Time [s]
0 10 20 30 40 50 60 70 80

Am
pli

tud
e

-80

-60

-40

-20

0

20

40

60

80
NLMS, 2=0.001Howling

(b)

Time [s]
0 10 20 30 40 50 60 70 80

Am
pli

tud
e

-80

-60

-40

-20

0

20

40

60

80
PVSSHowling

(c)

Time [s]
0 10 20 30 40 50 60 70 80

PV
SS

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(d)

Fig. 7: Loudspeaker signals for the case of music incoming

signal: a) and b) PEM with μ1 = 0.01, μ2 = 0.001,

respectively; c) PEM-IPVSS, and d) μIPV SS .



Time [s]
0 10 20 30 40 50 60 70 80

M
IS

 [d
B

]

-30

-25

-20

-15

-10

-5

0
VSS-MDNLMS

(a)

Time [s]
0 10 20 30 40 50 60 70 80

 [d
B

]

0

5

10

15

20

25

30
VSS-MDNLMS

(b)

Fig. 8: (a) Misalignment, (b) Added Stable Gain of the

PEM using VSS-MDNLMS algorithms with speech incoming

signal.

this step-size fluctuates quickly in the first 40s and gets the

maximum value after the feedback path changes, thus high

variations in the performance of the system are observed.

In fact, the PEM-VSS-MDNLMS performance is similar to

that of the PEM with upper step-size, except it has a slower

convergence rate in the initial phase.

IV. CONCLUSION

In this paper, we proposed a new variable step-size algo-

rithm (IPVSS) for NLMS in the context of adaptive feedback

control using PEM. The proposed PEM-IPVSS outperforms

the PEM when employing either the upper or the lower step-

size used as the limits in the IPVSS algorithm, as well as

the PEM-VSS-MDNLMS. Hence, a reduction of the howling

period is achieved, while still providing a low steady-state

error. Moreover, the PEM-IPVSS works well for both speech

Time [s]
0 10 20 30 40 50 60 70 80

M
IS

 [d
B

]

-20

-15

-10

-5

0
VSS-MDNLMS

(a)

Time [s]
0 10 20 30 40 50 60 70 80

A
S

G
 [d

B
]

0

5

10

15

20

25
VSS-MDNLMS

(b)

Fig. 9: (a) Misalignment, (b) Added Stable Gain of the PEM

using VSS-MDNLMS algorithms with music incoming signal.

and music incoming signals, even for the case without an

added (white) background noise.

REFERENCES

[1] M. G. Siqueira and A. Alwan, “Steady-state analysis of continuous
adaptation in acoustic feedback reduction systems for hearing-aids,”
IEEE Trans. Speech, Audio Process., vol. 8, no. 4, pp. 443–453, 2000.

[2] T. van Waterschoot and M. Moonen, “Fifty years of acoustic feedback
control: State of the art and future challenges.” Proc. IEEE, vol. 99,
no. 2, pp. 288–327, 2011.

[3] C. R. C. Nakagawa, S. Nordholm, and W.-Y. Yan, “New insights into
optimal acoustic feedback cancellation,” IEEE Signal Process. Lett.,
vol. 20, no. 9, pp. 869–872, 2013.

[4] A. Spriet, I. Proudler, M. Moonen, and J. Wouters, “Adaptive feedback
cancellation in hearing aids with linear prediction of the desired signal,”
IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3749–3763, 2005.

[5] G. Rombouts, T. Van Waterschoot, and M. Moonen, “Robust and effi-
cient implementation of the pem afrow algorithm for acousic feedback
cancellation,” J. Audio Eng. Soc., vol. 55, no. 11, pp. 955–966, 2007.



Time [s]
0 10 20 30 40 50 60 70 80

VS
S-

MD
NL

MS

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(a)

Time [s]
0 10 20 30 40 50 60 70 80

VS
S-

MD
NL

MS

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(b)

Fig. 10: The variable step-size μV SS−MDNLMS : a) with

speech incoming signal and b) with music incoming signal.

[6] A. Spriet, S. Doclo, M. Moonen, and J. Wouters, “Feedback control in
hearing aids,” in Springer Handbook of Speech Processing. Springer,
2008, pp. 979–1000.

[7] J. Arenas-Garcı́a, A. R. Figueiras-Vidal, and A. H. Sayed, “Mean-square
performance of a convex combination of two adaptive filters,” IEEE
Trans. Signal Process., vol. 54, no. 3, pp. 1078–1090, 2006.

[8] R. Candido, M. T. Silva, and V. H. Nascimento, “Transient and steady-
state analysis of the affine combination of two adaptive filters,” IEEE
Trans. Signal Process., vol. 58, no. 8, pp. 4064–4078, 2010.

[9] H. Schepker, L. T. T. Tran, S. Nordholm, and S. Doclo, “Improving
adaptive feedback cancellation in hearing aids using an affine combi-
nation of filters,” in IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), 2016.

[10] R. H. Kwong and E. W. Johnston, “A variable step size lms algorithm,”
IEEE Trans. Signal Process., vol. 40, no. 7, pp. 1633–1642, 1992.

[11] J. Benesty, H. Rey, L. Rey Vega, and S. Tressens, “A nonparametric
vss nlms algorithm,” IEEE Signal Process. Lett., vol. 13, no. 10, pp.
581–584, 2006.

[12] M. Rotaru, F. Albu, and H. Coanda, “A variable step size modified
decorrelated nlms algorithm for adaptive feedback cancellation in hear-
ing aids,” Proc of ISETC. Timisoara, pp. 263–266, 2012.

[13] H.-C. Shin, A. H. Sayed, and W.-J. Song, “Variable step-size nlms and
affine projection algorithms,” IEEE Signal Process. Lett., vol. 11, no. 2,
pp. 132–135, 2004.

[14] H.-C. Huang and J. Lee, “A new variable step-size nlms algorithm and
its performance analysis,” IEEE Trans. Signal Process., vol. 60, no. 4,
pp. 2055–2060, 2012.

[15] J. M. Gil-Cacho, T. Van Waterschoot, M. Moonen, and S. H. Jensen,
“Wiener variable step size and gradient spectral variance smoothing
for double-talk-robust acoustic echo cancellation and acoustic feedback
cancellation,” Signal Processing, vol. 104, pp. 1–14, 2014.

[16] C. Paleologu, J. Benesty, and S. Ciochina, “A variable step-size affine

projection algorithm designed for acoustic echo cancellation,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 16, no. 8, pp. 1466–1478,
2008.

[17] M. A. Iqbal and S. L. Grant, “Novel variable step size nlms algorithms
for echo cancellation,” in in Proc. 2008 IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP). IEEE, 2008, pp. 241–244.
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