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Abstract—Acoustic multi-channel equalization techniques,
which aim to achieve dereverberation by reshaping the room
impulse responses (RIRs) between the source and the microphone
array, are known to be highly sensitive to RIR perturbations. In
order to increase the robustness against RIR perturbations, several
signal-independent methods have been proposed, which only rely
on the available perturbed RIRs and do not incorporate any
knowledge about the output signal. This paper presents a novel
signal-dependent method to increase the robustness of equalization
techniques by enforcing the output signal to exhibit spectro-
temporal characteristics of a clean speech signal. Motivated by
the sparse nature of clean speech, we propose to extend the cost
function of state-of-the-art least squares equalization techniques,
i.e., the multiple-input/output inverse theorem (MINT), relaxed
multi-channel least squares (RMCLS), and partial multi-channel
equalization based on MINT (PMINT), with a signal-dependent
penalty function promoting sparsity of the output signal in the
short-time Fourier transform domain. Three conventionally used
sparsity-promoting penalty functions are investigated, i.e., the
l0 -norm, the l1 -norm, and the weighted l1 -norm, and the sparsity-
promoting reshaping filters are iteratively computed using the
alternating direction method of multipliers. Simulation results for
several acoustic systems and RIR perturbations demonstrate that
incorporating sparsity-promoting penalty functions significantly
increases the robustness of MINT, RMCLS, and PMINT, with
the weighted l1 -norm typically outperforming the l0 -norm
and the l1 -norm. Furthermore, it is shown that the weighted
l1 -norm sparsity-promoting PMINT technique outperforms
the other sparsity-promoting techniques in terms of perceptual
speech quality. Finally, it is shown that the signal-dependent
weighted l1 -norm sparsity-promoting PMINT technique yields
a similar or better dereverberation performance than the
signal-independent regularized PMINT technique, confirming
the advantage of using signal-dependent penalty functions for
robust dereverberation filter design.

Index Terms—Acoustic multi-channel equalization, ADMM,
sparsity, signal-dependent penalty function.
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I. INTRODUCTION

IN MANY hands-free speech communication applications
such as teleconferencing, voice-controlled systems, or hear-

ing aids, the recorded microphone signals do not only contain
the desired signal, but also attenuated and delayed copies
due to reverberation. Reverberation causes signal degradation,
typically leading to decreased speech intelligibility [1]–[3]
and performance deterioration in automatic speech recognition
systems [4], [5]. Hence, in the last decades several single-
and multi-channel dereverberation techniques have been
proposed [6], with multi-channel techniques being generally
preferred since they enable to exploit both the spectro-temporal
and the spatial characteristics of the microphone signals.
Existing multi-channel dereverberation techniques can be
broadly classified into: i) spectral enhancement techniques
aiming at suppressing the late reverberation in the spectral
domain based on an estimate of the late reverberant power
spectral density [7]–[10], ii) probabilistic modeling-based
techniques aiming at blindly estimating the parameters of
statistical models assumed to represent the clean speech signal
and the room impulse responses (RIRs) [11]–[14], and iii)
acoustic multi-channel equalization techniques aiming at
reshaping the available (measured or estimated) RIRs between
the source and the microphone array [15]–[20]. Unlike spectral
enhancement and probabilistic modeling-based techniques,
acoustic multi-channel equalization techniques can in theory
achieve perfect dereverberation [15], [21], therefore comprising
an attractive approach to speech dereverberation.

A well-known multi-channel equalization technique aiming
at acoustic system inversion is the multiple-input/output inverse
theorem (MINT) technique [15], which however suffers from
drawbacks in practice. Since the available RIRs typically differ
from the true RIRs due to fluctuations (e.g., temperature or
position variations [22]) or due to the sensitivity of blind system
identification (BSI) and supervised system identification (SSI)
methods to near-common zeros or interfering noise [23]–[25],
MINT fails to invert the true RIRs, possibly leading to severe
distortions in the output signal [18], [19], [26].

In order to increase the robustness against RIR perturba-
tions, partial multi-channel equalization techniques such as re-
laxed multi-channel least-squares (RMCLS) [18] and partial
multi-channel equalization based on MINT (PMINT) [19] have
been recently proposed. Since early reflections tend to improve
speech intelligibility [27], [28] and late reflections are the ma-
jor cause of speech intelligibility degradation, the objective of
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these techniques is to suppress only the late reflections. Al-
though partial equalization techniques can be significantly more
robust than MINT, their performance still remains rather sus-
ceptible to RIR perturbations [19]. As a result, several methods
have been proposed to further increase the robustness against
RIR perturbations. In [29], [30] it has been proposed to relax
the constraints on the filter design by constructing approximate
dereverberation filters in the subband domain. In [31] it has been
proposed to use a shorter filter length than conventionally used,
such that a better-conditioned optimization criterion is obtained.
In [19], [26] it has been proposed to incorporate regularization
in the filter design, such that the distortion energy due to RIR
perturbations is decreased. To the best of our knowledge, all pro-
posed methods are signal-independent, i.e., they only rely on the
available perturbed RIRs and do not incorporate any knowledge
about the output signal.

The objective of this paper is to explore the potential of in-
creasing the robustness of acoustic multi-channel equalization
techniques by incorporating a signal-dependent penalty func-
tion in the filter design, enforcing the output signal to exhibit
spectro-temporal characteristics of a clean speech signal. Given
the successful exploitation of the sparse nature of clean speech in
many speech enhancement techniques, e.g., in underdetermined
blind source separation [32], [33], adaptive beamforming [34],
or probabilistic modeling-based dereverberation [14], [35], [36],
we propose to extend the MINT, RMCLS, and PMINT cost
functions with a penalty function which promotes sparsity of
the output signal in the short-time Fourier transform (STFT)
domain. The incorporation of three commonly used sparsity-
promoting penalty functions is investigated, i.e., the l0-norm,
the l1-norm, and the weighted l1-norm. Since no closed-form
expression is available for the filter minimizing these sparsity-
promoting cost functions, we propose to iteratively compute the
sparsity-promoting filters using the alternating direction method
of multipliers (ADMM), which is a well-suited method for solv-
ing large-scale optimization problems with sparsity-promoting
penalty functions [37]. Some preliminary results on incorporat-
ing the l0- and l1-norm penalty functions in PMINT have been
presented in [38].

Simulation results for several acoustic systems and RIR
perturbations show by means of instrumental measures that
incorporating sparsity-promoting penalty functions in MINT,
RMCLS, and PMINT significantly increases the robustness
against RIR perturbations. Furthermore, it is shown that incor-
porating the weighted l1 -norm penalty function is typically more
advantageous than incorporating the l0 - or l1-norm penalty func-
tions, with the weighted l1-norm sparsity-promoting PMINT
technique generally yielding the best dereverberation perfor-
mance. Finally, it is shown that the signal-dependent sparsity-
promoting PMINT technique using the weighted l1-norm yields
a similar or better dereverberation performance than the signal-
independent regularized PMINT technique.

The paper is organized as follows. In Section II the considered
acoustic configuration and the used notation is introduced. In
Section III state-of-the-art least-squares acoustic multi-channel
equalization techniques, i.e., MINT, RMCLS, and PMINT,
are briefly reviewed, and in Section IV the incorporation of

Fig. 1. Acoustic system configuration.

regularization to increase their robustness against RIR pertur-
bations is discussed. In Section V the novel signal-dependent
cost function is formulated based on several sparsity-promoting
penalty functions, and the iterative method optimizing this cost
function is presented. Using instrumental measures, the derever-
beration performance of all considered techniques is compared
in Section VI.

II. CONFIGURATION AND NOTATION

We consider an acoustic system with a single speech source
and M microphones, as depicted in Fig. 1. The m-th microphone
signal, m = 1, 2, . . . , M, at time index n is given by

ym (n) = hm (n) ∗ s(n)
︸ ︷︷ ︸

xm (n)

+vm (n) = xm (n) + vm (n), (1)

where ∗ denotes convolution, s(n) is the clean speech signal,
hm (n) is the RIR between the source and the m-th micro-
phone, xm (n) is the reverberant speech component, and vm (n)
is the noise component. Since acoustic multi-channel equaliza-
tion techniques generally design dereverberation filters disre-
garding the presence of the additive noise, in the following it is
assumed that vm (n) = 0, hence, ym (n) = xm (n).

Using the filter-and-sum structure in Fig. 1, the output signal
z(n) is equal to the sum of the filtered microphone signals, i.e.,

z(n) =
M
∑

m=1

xm (n) ∗ wm (n) (2)

= s(n) ∗
M
∑

m=1

hm (n) ∗ wm (n)

︸ ︷︷ ︸

c(n)

, (3)

where wm (n) is the filter applied to the m-th microphone signal
and c(n) denotes the equalized impulse response (EIR) between
the source and the output of the system. In vector notation, the
RIR hm and the filter wm are given by

hm = [hm (0) hm (1) . . . hm (Lh − 1)]T , (4)

wm = [wm (0) wm (1) . . . wm (Lw − 1)]T , (5)

where Lh and Lw denote the RIR length and the filter length,
respectively. Using the MLw –dimensional stacked filter vec-
tor w = [wT

1 wT
2 . . . wT

M ]T , the EIR vector c of length Lc =
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Lh + Lw − 1, i.e., c = [c(0) c(1) . . . c(Lc − 1)]T , can be ex-
pressed as [15], [19]

c = Hw, (6)

with H the Lc × MLw –dimensional multi-channel convolution
matrix of the RIRs, i.e., H = [H1 H2 . . . HM ], and

Hm =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

hm (0) 0 . . . 0

hm (1) hm (0)
. . .

...
... hm (1)

. . . 0

hm (Lh−1)
...

. . . hm (0)

0 hm (Lh−1)
. . . hm (1)

...
. . .

. . .
...

0 . . . 0 hm (Lh−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (7)

Defining the Lw –dimensional m-th reverberant signal vector
xm (n) and the Lc–dimensional clean speech vector s(n) as

xm (n) = [xm (n) xm (n − 1) . . . xm (n − Lw + 1)]T , (8)

s(n) = [s(n) s(n − 1) . . . s(n − Lc + 1)]T , (9)

with xm (n) = HT
m s(n), the output signal z(n) in (3) can now

be expressed as

z(n) =
M
∑

m=1

wT
mxm (n) =

M
∑

m=1

wT
mHT

m s(n) = wT HT
︸ ︷︷ ︸

cT

s(n).

(10)

Alternatively, (10) can also be expressed as

z(n) =
M
∑

m=1

xT
m (n)wm = xT (n)w, (11)

with x(n) = [xT
1 (n) xT

2 (n) . . . xT
M (n)]T the MLw –

dimensional stacked reverberant signal vector. Based on (11),
the output signal vector z(n) of length Lz , i.e.,

z(n) = [z(n) z(n − 1) . . . z(n − Lz + 1)]T , (12)

can be written as

z(n) = X(n)w, (13)

with X(n) the Lz × MLw –dimensional multi-channel con-
volution matrix of the reverberant signals, i.e., X(n) =
[X1(n) X2(n) . . . XM (n)], and

Xm (n) =

⎡

⎢

⎢

⎢

⎢

⎣

xm (n) · · · xm (n − Lw + 1)
xm (n − 1) · · · xm (n − Lw )

...
. . .

...

xm (n − Lz + 1) · · · xm (n − Lw − Lz + 2)

⎤

⎥

⎥

⎥

⎥

⎦

.

(14)

For conciseness, the time index n will be omitted when possible
in the remainder of this paper.

TABLE I
DEFINITION OF THE WEIGHTING MATRIX W FOR STATE-OF-THE-ART

LEAST-SQUARES EQUALIZATION TECHNIQUES

Technique Weighting matrix W

MINT Ic

RMCLS diag{[1 . . . 1
︸ ︷︷ ︸

τ

1 0 . . . 0
︸ ︷︷ ︸

L d

1 . . . 1]T }

PMINT Ic

TABLE II
DEFINITION OF THE TARGET EIR ct FOR STATE-OF-THE-ART

LEAST-SQUARES EQUALIZATION TECHNIQUES

Technique Target EIR ct

MINT [0 . . . 0
︸ ︷︷ ︸

τ

1 0 . . . 0]T

RMCLS [0 . . . 0
︸ ︷︷ ︸

τ

1 0 . . . 0]T

PMINT [0 . . . 0
︸ ︷︷ ︸

τ

ĥp (0) . . . ĥp (Ld − 1)
︸ ︷︷ ︸

L d

0 . . . 0]T

III. ACOUSTIC MULTI-CHANNEL EQUALIZATION TECHNIQUES

Acoustic multi-channel equalization techniques aim at speech
dereverberation by designing a filter w such that the EIR c in (6)
is equal to a dereverberated target EIR ct . However, it should be
realized that in practice only the perturbed RIRs ĥm are avail-
able, i.e., ĥm = hm + em , where em represents the unknown
RIR perturbations arising due to fluctuations (e.g., temperature
or position fluctuations [22]) or due to the sensitivity of BSI
and SSI methods to near-common zeros or interfering noise
[23]–[25]. Hence, for the filter design, the perturbed convolution
matrix Ĥ = H + E is used, where E represents the convolution
matrix of the RIR perturbations.

In this paper we will focus on state-of-the-art least-squares
acoustic multi-channel equalization techniques, i.e., MINT [15],
RMCLS [18], and PMINT [19], which seek to compute the filter
w as the solution to the system of equations

WĤw = Wct , (15)

with W an Lc × Lc–dimensional diagonal weighting matrix.
For the considered equalization techniques, the definition of the
weighting matrix W and target EIR ct is presented in Tables I
and II, where Ic denotes the Lc × Lc–dimensional identity ma-
trix, τ denotes a delay, Ld denotes the length of the direct path
and early reflections, and p ∈ {1, 2, . . . , M}. The delay τ is
incorporated in all techniques in order to relax the causality con-
straints on the filter design [26]. The length of the direct path and
early reflections Ld in the RMCLS and PMINT techniques is
typically considered to be between 10–50 ms [18], [19]. Based
on these definitions of W and ct it can be said that on the one
hand, the MINT and PMINT techniques constrain all taps of
the EIR (since W = Ic ), which results in a good perceptual
speech quality but high sensitivity to RIR perturbations [19],
[26], while on the other hand, the RMCLS technique does not
constrain all taps of the EIR (since W �= Ic ), which results in a
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lower sensitivity to RIR perturbations but decreased perceptual
speech quality [18], [19].

For all considered equalization techniques, the filter solv-
ing (15) is computed by minimizing the least-squares cost
function

JLS = ‖W(Ĥw − ct)‖2
2 . (16)

Assuming that the RIRs do not share any common zeros [15] and
using Lw ≥ ⌈

Lh −1
M −1

⌉

[39], the least-squares filter solving (15)
and minimizing (16) to 0 is equal to

wLS = (WĤ)+(Wct), (17)

where {·}+ denotes the matrix pseudo-inverse. When the true
RIRs are available, i.e., Ĥ = H, the least-squares filter yields
perfect dereverberation, i.e., WHwLS = Wct [19], [21]. How-
ever, in the presence of RIR perturbations, i.e., Ĥ �= H, the
least-squares filter typically fails to achieve dereverberation,
i.e., WHwLS �= Wct , possibly causing severe distortions in
the output signal [19].

IV. REGULARIZED ACOUSTIC MULTI-CHANNEL

EQUALIZATION TECHNIQUES

In order to increase the robustness of acoustic multi-channel
equalization techniques against RIR perturbations, it has been
proposed to incorporate regularization in the filter design, such
that the energy of distortions due to RIR perturbations is re-
duced [19], [26]. Regularized equalization techniques design
filters by minimizing the regularized least-squares cost function

JRLS = ‖W(Ĥw − ct)‖2
2 + δwT Rew, (18)

where the matrix Re models E{ET E}, with E the expected
value operator, and δ is a regularization parameter providing
a trade-off between the least-squares error and the distortion
energy due to RIR perturbations. When knowledge is avail-
able about the type of RIR perturbations (e.g., arising due to
microphone position fluctuations or arising from BSI or SSI
methods), the matrix Re can be constructed based on an ap-
propriate perturbation model [17], [40]. When such knowledge
is not available, the RIR perturbations are often assumed to be
spatially and temporally white, i.e., Re = Iw , with Iw denot-
ing the MLw × MLw –dimensional identity matrix [19], [26].
This assumption has been used for the regularized techniques in
Section VI-E.

Minimizing (18) yields the regularized least-squares filter

wRLS = [(WĤ)T (WĤ) + δRe ]−1(WĤ)T (Wct). (19)

While the least-squares filter in (17) typically fails to achieve
dereverberation in the presence of RIR perturbations, it has
been experimentally validated in [19] that the regularized least-
squares filter in (19) results in a significantly better performance.
However, as can be seen from (18), the regularization term is
signal-independent, since it only depends on an RIR perturba-
tion model and does not incorporate any knowledge about the
output signal.

V. SPARSITY-PROMOTING ACOUSTIC MULTI-CHANNEL

EQUALIZATION TECHNIQUES

Instead of using a signal-independent regularization term, in
this section we propose to increase the robustness of equal-
ization techniques by incorporating a signal-dependent penalty
function in the filter design, enforcing the output signal z(n)
to exhibit spectro-temporal characteristics of a clean speech
signal. While in principle any penalty function imposing a well-
defined characteristic of clean speech could be used, we propose
to use penalty functions which promote sparsity of the output
signal in the STFT domain. The advantage of promoting spar-
sity of the STFT coefficients of the output signal is expected
to be twofold. First, it is widely accepted that clean speech is
sparse in the STFT domain [32], [41], [42]. Empirical obser-
vations, e.g., in [32], have shown that when clean speech is
corrupted by reverberation, the STFT coefficients of the mix-
ture are less sparse than the STFT coefficients of clean speech
(cf. Figs. 5(a) and (b)). Hence, promoting sparsity of the STFT
coefficients of the output signal can yield a signal which bet-
ter resembles a clean speech signal. Second, in the presence
of RIR perturbations, non-robust equalization techniques intro-
duce distortions (i.e., non-zero STFT coefficients) in the output
signal [19] (cf. Fig. 5(c)). By promoting sparsity of the STFT
coefficients of the output signal, it is expected that these dis-
tortions are suppressed. In the remainder of this section, the
proposed signal-dependent least-squares cost function is for-
mulated, several possible sparsity-promoting penalty functions
are discussed, and the iterative method for optimizing this cost
function is presented.

It should be noted that sparsity-promoting techniques have
also been proposed to increase the robustness of BSI meth-
ods to additive noise [43], [44]. However, unlike the sparsity-
promoting equalization techniques proposed in the following
which aim at enforcing sparsity on the output speech signal,
sparsity-promoting techniques for BSI aim at enforcing sparsity
on the estimated RIRs.

A. Sparsity-promoting Cost Function

In order to incorporate the STFT of the output signal in the
filter design, the STFT coefficients Z(k, l) of the output signal
z(n) are computed as

Z(k, l) =
N −1
∑

n=0

wSTFT(n)z(lR + n)e−
j 2 π k n

N , (20)

where wSTFT(n) denotes the STFT analysis window of length
N , k = 0, 1, . . . , N − 1, denotes the frequency bin index,
l = 0, 1, . . . , L − 1, denotes the frame index with L the total
number of frames, and R denotes the frame shift. Based on (20),
we define the STFT operator Ψ ∈ CN L×Lz similarly as in [33],
[45], transforming the Lz –dimensional time domain vector z
in (12) into the NL–dimensional time-frequency domain vector
z̃, i.e.,

z̃ = Ψz. (21)

In other words, the vector z̃ consists of all STFT coeffi-
cients Z(k, l), k = 0, 1, . . . , N − 1, l = 0, 1, . . . , L − 1.
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Using (13), the time-frequency domain vector z̃ can be
expressed in terms of the filter w as

z̃ = ΨXw. (22)

It should be noted that for a tight analysis window wS T F T (n),
i.e., the same window can be used as a synthesis window such
that the perfect overlap-add constraint is satisfied, the inverse
short-time Fourier transform operator ΨH ∈ CLz ×N L satisfies
ΨH Ψ = Iz , with Iz the Lz × Lz –dimensional identity matrix.

Aiming at promoting sparsity of the STFT coefficients of
the output signal in the filter design, we now propose to add a
signal-dependent term to the least-squares cost function, i.e.,

(23)JSLS = JLS + ηfSP(z̃)

= ‖W(Ĥw − ct)‖2
2 + ηfSP(ΨXw), (24)

with fSP a sparsity-promoting penalty function (cf. Section V-B)
and η a weighting parameter providing a trade-off between the
minimization of the least-squares error and the value of the
penalty function.

B. Sparsity-promoting Penalty Functions

In this paper we will consider three commonly used sparsity-
promoting norms for the penalty function fSP in (24), i.e., the
l0-norm1, the l1-norm, and the weighted l1-norm[46]–[49].

The l0-norm f 0
SP
(z̃) counts the number of non-zero entries in

z̃, i.e.,

f 0
SP
(z̃) = ‖z̃‖0 = |q : z̃(q) �= 0|. (25)

Using f 0
SP
(z̃) in (24) penalizes the non-zero STFT coefficients

of the output signal, which can be advantageous to suppress
the reverberant energy as well as the distortions introduced by
non-robust least-squares equalization techniques. However, the
l0-norm is non-convex, and it is well known that optimization
problems with non-convex penalty functions are typically hard
(if not impossible) to solve, particularly for large scale prob-
lems [46]. In addition, iterative methods proposed to solve such
optimization problems are not guaranteed to converge to the
global minimum, but only to a local minimum [50].

A commonly used alternative to the l0-norm is the l1-norm
penalty function f 1

SP
(z̃), defined as

f 1
SP
(z̃) = ‖z̃‖1 =

N L−1
∑

q=0

|z̃(q)|. (26)

The l1-norm can be viewed as a convex relaxation of the l0 -norm,
and efficient methods have been proposed to solve optimization
problems with l1-norm penalty functions [47], [48]. As can
be seen in (26), the l1-norm is magnitude-dependent, differing
from the l0-norm by penalizing the coefficients of z̃ with larger
magnitude more than the coefficients with smaller magnitude.
This penalization is not necessarily desirable, since it does not
guarantee the preservation of the spectro-temporal structure of
a typical speech signal.

1Note that the l0 -norm is not a norm in the strict mathematical sense, since it
does not satisfy all the norm properties.

To counteract the magnitude dependency of the l1-norm,
the weighted l1-norm penalty function fw,1

SP
(z̃) has been pro-

posed [49], defined as

fw,1
SP

(z̃) = ‖diag{u}z̃‖1 =
N L−1
∑

q=0

|u(q)z̃(q)|, (27)

with u an NL–dimensional vector of positive scalar weights,
i.e., u(q) > 0, q = 0, 1, . . . , NL − 1, selectively penalizing
the coefficients of z̃. To promote the same sparsity structure in
the output signal as in the desired signal, it has been proposed
in [49] to select the weighting vector such that it has small
values when the desired signal has non-zero magnitude and sig-
nificantly larger values otherwise. In the context of speech dere-
verberation, it would hence be desirable to select the weights to
be inversely proportional to the magnitude of the STFT coeffi-
cients of the clean speech signal, i.e.,

u(q) =
1

|s̃(q)| , q = 0, 1, . . . , NL − 1, (28)

with s̃(q) the STFT coefficients of the clean speech signal com-
puted similarly as in (21). Using the weights in (28) results
in a larger penalization - and hence, a larger suppression - of
the STFT coefficients of the output signal corresponding to the
STFT coefficients of the clean speech signal with a small mag-
nitude. However, since the clean speech signal is obviously not
available, we propose to use one of the reverberant microphone
signals and compute the weights as

u(q) =
1

|x̃p(q)| + ζ
, q = 0, 1, . . . , NL − 1, (29)

with x̃p(q) the STFT coefficients of the p-th microphone sig-
nal computed similarly as in (21) and ζ > 0 a small positive
scalar included to avoid division by 0 and to ensure stability
of the weighted l1-norm sparsity-promoting techniques. When
|x̃p(q)| ≈ 0, e.g., during speech absence, using ζ ensures that
u(q) is large but finite, such that the magnitude of the STFT
coefficients of the reconstructed signal is also (nearly) 0. As
will be experimentally shown in Section VI-B, incorporating
the weighted l1-norm penalty function using the weights in (29)
typically yields a better dereverberation performance than incor-
porating the l0- or l1-norm penalty functions. The advantage of
using the weighted l1-norm penalty function lies in the fact that
appropriate weights as in (29) ensure that the spectro-temporal
structure of a typical speech signal is preserved.

C. Iterative Optimization Method

Since no closed-form expression is available for the filter
minimizing the sparsity-promoting cost function in (24), itera-
tive optimization methods are required. We propose to use the
ADMM [37], since it is a well-suited method for solving large
scale optimization problems of the form in (24). Within the
ADMM framework, the minimization of the sparsity-promoting
cost function in (24) is reformulated as

min
w

[

‖W(Ĥw − ct)‖2
2 + ηfSP(ã)

]

subject to ΨXw = ã,

(30)
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where the NL–dimensional auxiliary variable ã is introduced
such that the optimization problem in (24) can be split into
simpler sub-problems. The augmented Lagrangian of (30) is
equal to

L = ‖W(Ĥw − ct)‖2
2 + ηfSP(ã) +

ρ

2
‖ΨXw + λ − ã‖2

2 ,

(31)

with λ the NL–dimensional dual (splitting) variable and ρ > 0
the ADMM penalty parameter. ADMM minimizes (31) alter-
nately with respect to the variables w and ã, followed by a dual
ascent over the variable λ [37]. The ADMM update rules are
given by

w(i+1) = arg min
w

[

‖W(Ĥw − ct)‖2
2

+
ρ

2
‖ΨXw + λ(i) − ã(i)‖2

2

]

, (32)

ã(i+1) = arg min
ã

[

ηfSP(ã) +
ρ

2
‖ΨXw(i+1) + λ(i) − ã‖2

2

]

,

(33)

λ(i+1) = λ(i) +ΨXw(i+1)−ã(i+1) , (34)

where {·}(i) denotes the variable in the i-th iteration. The min-
imization problem in (24) is hence decomposed into simpler
sub-problems, which are solved in an alternating fashion using
the update rules in (32), (33), and (34) until a termination crite-
rion is satisfied (cf. Section VI-A). In the following, the update
rules for the filter in (32) and for the auxiliary variable in (33)
are presented.

Filter update rule: In order to derive the filter update rule, the
gradient of (32) is set to 0, yielding

w(i+1) = [2(WĤ)T (WĤ) + ρXT X
︸ ︷︷ ︸

C

]−1

× [2(WĤ)T (Wct)
︸ ︷︷ ︸

b1

+ρXT ΨH(ã(i) − λ(i))
︸ ︷︷ ︸

b( i )
2

] (35)

= C−1(b1 + ρb(i)
2 ), (36)

where the variables C, b1 , and b2 are introduced to highlight the
fact that only the variable b2 is iteration-dependent, whereas the
variables C and b1 can be pre-computed. Although (36) appears
to require a matrix inversion in each iteration of the ADMM,
the filter update can be efficiently computed by, e.g., storing
the LU-factorization of C and using forward and backward
substitution [51].

Auxiliary variable update rule: The auxiliary variable update
rule in (33) is given by the proximal mapping of the sparsity-
promoting penalty function [48], [52]. The proximal mapping
for the l0-, l1-, and weighted l1-norm penalty functions exists in
closed-form [48], [52], enabling to efficiently compute the auxil-
iary variable update rule in each iteration of the ADMM. Simpli-
fying the notation by defining the operator (T ) + = max(T, 0)
and the variable b as

b(i) = ΨXw(i+1) + λ(i) , (37)

the proximal mapping for the penalty functions f 0
SP

, f 1
SP

, and
fw,1

SP
is given by the following element-wise mappings

ã(i+1)(q) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(
∣

∣b(i)(q)
∣

∣ − η
ρ

)

+

b( i ) (q)
|b( i ) (q)|− η

ρ

if f 0
SP

(
∣

∣b(i)(q)
∣

∣ − η
ρ

)

+

b( i ) (q)
|b( i ) (q)| if f 1

SP

(
∣

∣b(i)(q)
∣

∣ − η
ρ u(q)

)

+

b( i ) (q)
|b( i ) (q)| if fw,1

SP

. (38)

As can be observed in (38), the mapping for the l0-norm penalty
function reduces the l0-norm of the auxiliary variable ã in each
iteration of the ADMM by changing all but the largest elements
(with magnitude larger than η

ρ ) to 0. The mapping for the l1-
norm penalty function reduces the l1-norm of ã in each iteration
by subtracting η

ρ from the magnitude of every element of ã.
Finally, the mapping for the weighted l1-norm penalty function
is similar to the mapping for the l1-norm, with the only differ-
ence consisting in the multiplication of the threshold η

ρ with the
weights u(q).

In summary, using the filter update rule in (35), the auxiliary
variable update rule in (38) depending on the used sparsity-
promoting penalty function, and the dual variable update rule
in (34), the sparsity-promoting least-squares filters can be iter-
atively computed until a termination criterion is satisfied (cf.
Section VI-A).

VI. SIMULATION RESULTS

In this section the performance of the proposed sparsity-
promoting acoustic multi-channel equalization techniques is in-
vestigated by means of instrumental measures. In Section VI-A
the considered acoustic systems, algorithmic settings, and
instrumental measures are introduced. In Section VI-B the
robustness against RIR perturbations for the MINT, RMCLS,
and PMINT techniques when incorporating different sparsity-
promoting penalty functions is investigated. In Section VI-C
the performance of the weighted l1-norm sparsity-promoting
techniques is compared for all considered acoustic systems and
RIR perturbation levels. In Section VI-D the performance of
the weighted l1-norm sparsity-promoting PMINT technique
for different choices of the weighting and penalty parameters η
and ρ is investigated. Finally, in Section VI-E the performance
of the signal-dependent weighted l1-norm sparsity-promoting
PMINT technique is compared to the performance of the
signal-independent regularized PMINT technique. Exem-
plary sound samples from each simulation can be found at
http://bit.ly/2cPDnsN.

A. Acoustic Systems, Algorithmic Settings, and
Instrumental Measures

Acoustic systems: We have considered three different rever-
berant acoustic systems with a single speech source and M = 4
omni-directional microphones. The RIRs between the speech
source and the microphones are measured using the swept-sine
technique [53] and the reverberant signals are generated by
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TABLE III
CHARACTERISTICS OF THE CONSIDERED MEASURED ACOUSTIC SYSTEMS

Acoustic system T6 0 [ms] dsm [m] d im [m] Lh

S1 610 2 0.04 5000
S2 450 3 0.05 3800
S3 360 2 0.04 3000

convolving 10 sentences (approximately 17 s long) from the
HINT database [54] with the measured RIRs. For each acoustic
system, Table III presents the reverberation time T60 of the room,
the source-microphone distance dsm, the inter-microphone dis-
tance dim, and the length of the RIRs Lh at a sampling frequency
fs = 8 kHz.

In order to simulate RIR perturbations, the measured RIRs
are perturbed by proportional Gaussian distributed errors as pro-
posed in [55], such that a desired level of normalized projection
misalignment (NPM), i.e.,

NPM = 20 log10

∥

∥

∥h − hT ĥ
ĥT ĥ

ĥ
∥

∥

∥

2

‖h‖2
, (39)

is generated. Introducing proportional Gaussian distributed er-
rors is a widely used technique to systematically simulate RIR
perturbations. The considered NPMs for each acoustic system
are

NPM ∈ {−33 dB, −27 dB, . . . , −3 dB}, (40)

with −33 dB a moderate perturbation level and −3 dB a rather
large perturbation level. The reported NPM values achieved by
state-of-the-art BSI methods (for relatively short RIRs) range
between −10 dB and −20 dB [25], hence, the values in (40) can
be considered as rather realistic.

Algorithmic settings: For all considered equalization tech-
niques the filter length is set to Lw =

⌈
Lh −1
M −1

⌉

, i.e., Lw = 1667
for S1 , Lw = 1267 for S2 , and Lw = 1000 for S3 . The length
of the direct path and early reflections is set to Ld = 0.01 × fs ,
i.e., 10 ms, and the delay is set to τ = 90 (cf. Tables I and II).
The target EIR ct for the PMINT technique is constructed using
the first RIR, i.e., p = 1 (cf. Table II).

For the sparsity-promoting filters the STFT is computed using
a 32 ms Hamming window (i.e., N = 256) with 50% overlap
between successive frames. In order to reduce the computa-
tional complexity, the sparsity-promoting filters are computed
using only the first two sentences of the reverberant signals (i.e.,
L = 208), but the complete output signal has been used for
the evaluation. For the weighted l1-norm penalty function, the
weights in (29) are computed using the first microphone sig-
nal, i.e., p = 1, and ζ = 10−8 . The termination criterion for
the ADMM is a maximum number of iterations imax = 500.
Since the initialization of the ADMM may influence the result-
ing sparsity-promoting filter for the non-convex l0-norm penalty
function, we have investigated three different initializations of
the filter w:

i) w(0) = [1 0 . . . 0]T , i.e., the filter yielding the first mi-
crophone signal,

ii) w(0) is randomly initialized with normally distributed
coefficients,

iii) w(0) = wLS , i.e., the filter resulting from the least-squares
techniques.

In all simulations we observed that using the filter initial-
ization i), i.e., w(0) = [1 0 . . . 0]T , resulted in the best perfor-
mance, and hence, the following simulation results are generated
using this filter initialization.

Finally, we have considered several regularization parame-
ters δ for the regularized techniques and several weighting and
penalty parameters η and ρ for the sparsity-promoting tech-
niques, i.e.,

δ, η, ρ ∈ {10−7 , 10−6 , . . . , 10−1}. (41)

The method for selecting the parameter values δ, η, and ρ for
the simulation results presented in the following is described at
the beginning of each section.

Performance measures: The performance of the equaliza-
tion techniques is evaluated in terms of the reverberant en-
ergy suppression and perceptual speech quality improvement.
The reverberant energy suppression is evaluated using the
improvement in direct-to-reverberant ratio (ΔDRR) [6], i.e.,
ΔDRR = oDRR − iDRR, with

oDRR = 10 log10

∑nd −1
n=0 c2(n)

∑Lc −1
n=nd

c2(n)
,

(42)

iDRR = 10 log10

∑nd −1
n=0 h2

1(n)
∑Lh −1

n=nd
h2

1(n)
,

where the first nd = 0.008 × fs samples of the EIR c(n) and
of the RIR h1(n) represent the direct path propagation and the
remaining samples represent reflections. Although the ΔDRR
exactly describes the reverberant energy suppression, it cannot
be solely used to evaluate the dereverberation performance of
equalization techniques, since it does not provide any insights on
the reverberant energy decay rate. To evaluate the reverberant
energy decay rate, the energy decay curve (EDC) [56] of the
EIR c(n) is compared to the energy decay curve of the true RIR
h1(n). The EDC of the EIR is computed as

EDCc(n) =
1

‖c‖2
2

Lc −1
∑

j=n

c2(j), n = 0, 1, . . . , Lc − 1,

(43)

and the EDC of the RIR is computed as

EDCh1 (n) =
1

‖h1‖2
2

Lh −1
∑

j=n

h2
1(j), n = 0, 1, . . . , Lh − 1.

(44)

The perceptual speech quality is evaluated using the percep-
tual evaluation of speech quality (PESQ) measure [57] and the
cepstral distance (CD) [58]. These signal-based measures are
intrusive measures, generating a similarity score between a test
signal and a reference signal. The reference signal employed
here is the direct path and early reflections speech signal in
the first microphone, i.e., the signal obtained by convolving
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Fig. 2. Performance of the MINT technique and sparsity-promoting MINT technique using different penalty functions for acoustic system S1 in terms of
(a) ΔDRR, (b) EDC for an exemplary NPM of −33 dB, (c) ΔPESQ, and (d) ΔCD (intrusively selected weighting and penalty parameters η and ρ).

the clean speech signal with the direct path and early reflec-
tions (considered to be 10 ms long) of h1 . The improvement in
PESQ, i.e., ΔPESQ, is computed as the difference between the
PESQ score of the output signal z(n) and the PESQ score of
the first microphone signal x1(n). Similarly, the improvement
in CD, i.e., ΔCD, is computed as the difference between the
CD of the output signal z(n) and the CD of the first microphone
signal x1(n). Note that a positive ΔPESQ and a negative ΔCD
indicate an improvement in perceptual speech quality.

B. Sparsity-promoting Acoustic Multi-channel
Equalization Techniques

In this section the performance of the considered least-squares
equalization techniques, i.e., MINT, RMCLS, and PMINT, is
investigated when incorporating the sparsity-promoting penalty
functions presented in Section V-B. Although similar results are
obtained for all considered acoustic systems, in this section only
results for acoustic system S1 are presented. In order to illustrate
the full potential of incorporating a sparsity-promoting penalty
function, the weighting and penalty parameters η and ρ are se-
lected from the set in (41) as the parameters minimizing the
CD for each equalization technique, each penalty function, and
each NPM (i.e., possibly different parameters are used for each
equalization technique, each penalty function, and each NPM).
It should be noted that selecting the weighting and penalty pa-
rameters based on the CD is an intrusive procedure that cannot be
applied in practice, since knowledge of the true RIRs is required
in order to compute the reference signal and the resulting EIR.

Sparsity-promoting MINT: Fig. 2 depicts the performance
of the MINT technique and sparsity-promoting MINT tech-
nique using different penalty functions in terms of ΔDRR, EDC,
ΔPESQ, and ΔCD. As expected, the ΔDRR values presented
in Fig. 2(a) show that MINT fails to suppress the reverberant
energy, even worsening the DRR by approximately 20 dB for
all NPMs in comparison to h1 . Furthermore, it can be observed
that incorporating sparsity-promoting penalty functions signif-
icantly increases the robustness of MINT for all considered
NPMs. While incorporating the l0- and l1-norm penalty func-
tions improves the DRR in comparison to h1 only for low NPMs,
incorporating the weighted l1-norm penalty function yields an
improvement for all considered NPMs. These results are con-
firmed in Fig. 2(b), which depicts the EDC of h1 and the EDCs
of the EIRs obtained using MINT and the sparsity-promoting

MINT techniques for an exemplary NPM of −33 dB. It can be
observed that the MINT technique completely fails to achieve
dereverberation and even results in a slower reverberant energy
decay rate than h1 . Although the incorporation of the l0- and l1-
norm penalty functions improves the reverberant energy decay
rate in comparison to MINT, these penalty functions still yield a
similar energy decay rate as h1 . On the other hand, incorporat-
ing the weighted l1-norm penalty function is more advantageous
and results in a faster reverberant energy decay rate than h1 . The
larger reverberant energy suppression achieved by the weighted
l1-norm sparsity-promoting MINT technique is also reflected in
the larger perceptual speech quality improvement illustrated by
the ΔPESQ and ΔCD values in Figs. 2(c) and 2(d), where it
can be observed that the weighted l1-norm sparsity-promoting
MINT technique is the only technique yielding an improvement
in perceptual speech quality for all considered NPMs.

Sparsity-promoting RMCLS: Fig. 3 depicts the performance
of the RMCLS technique and sparsity-promoting RMCLS tech-
nique using different penalty functions in terms of ΔDRR, EDC,
ΔPESQ, and ΔCD. The ΔDRR values presented in Fig. 3(a)
show that for low NPMs the RMCLS technique slightly sup-
presses the reverberant energy, whereas for NPMs larger than
−15 dB the RMCLS technique fails to achieve dereverbera-
tion and worsens the DRR in comparison to h1 . Furthermore, it
can be observed that incorporating sparsity-promoting penalty
functions in RMCLS significantly increases the reverberant en-
ergy suppression, with all penalty functions yielding a simi-
lar ΔDRR for low NPMs. As the NPM increases to −3 dB,
the weighted l1-norm sparsity-promoting RMCLS technique is
the only technique achieving an (slight) improvement in DRR
in comparison to h1 . This increase in robustness when incor-
porating sparsity-promoting penalty functions is confirmed in
Fig. 3(b), which depicts the EDC of h1 and the EDCs of the
EIRs obtained using RMCLS and the sparsity-promoting RM-
CLS techniques for an exemplary NPM of −33 dB. It can be
observed that while the RMCLS technique achieves a slightly
faster reverberant energy decay rate than h1 , the incorporation
of all sparsity-promoting penalty functions results in a signifi-
cantly faster energy decay rate. In addition, it can be observed
that for this exemplary NPM, the l0-norm sparsity-promoting
RMCLS technique yields the fastest reverberant energy decay
rate, while the energy decay rate for the l1- and weighted l1-
norm penalty functions is comparable. The larger reverberant
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Fig. 3. Performance of the RMCLS technique and sparsity-promoting RMCLS technique using different penalty functions for acoustic system S1 in terms of
(a) ΔDRR, (b) EDC for an exemplary NPM of −33 dB, (c) ΔPESQ, and (d) ΔCD (intrusively selected weighting and penalty parameters η and ρ).

Fig. 4. Performance of the PMINT technique and sparsity-promoting PMINT technique using different penalty functions for acoustic system S1 in terms of
(a) ΔDRR, (b) EDC for an exemplary NPM of −33 dB, (c) ΔPESQ, and (d) ΔCD (intrusively selected weighting and penalty parameters η and ρ).

energy suppression achieved by the sparsity-promoting RM-
CLS techniques is also reflected in the larger perceptual speech
quality improvement illustrated by the ΔPESQ and ΔCD values
in Figs. 3(c) and 3(d), where it can be observed that the l0-norm
sparsity-promoting RMCLS technique typically yields the high-
est ΔPESQ, whereas the weighted l1-norm sparsity-promoting
RMCLS technique always yields the lowest ΔCD.

Sparsity-promoting PMINT: Fig. 4 depicts the performance
of the PMINT technique and sparsity-promoting PMINT tech-
nique using different penalty functions in terms of ΔDRR, EDC,
ΔPESQ, and ΔCD. As expected, the ΔDRR values presented
in Fig. 4(a) show that the PMINT technique fails to suppress
the reverberant energy, even worsening the DRR in compar-
ison to h1 . Furthermore, it can be observed that incorporat-
ing sparsity-promoting penalty functions significantly increases
the robustness of PMINT for all considered NPMs. While all
penalty functions result in a similarly large ΔDRR for low
NPMs, the weighted l1-norm penalty function yields a slightly
larger ΔDRR than the l0- and l1-norm penalty functions for
high NPMs. These results are confirmed in Fig. 4(b), which de-
picts the EDC of h1 and the EDCs of the EIRs obtained using
PMINT and the sparsity-promoting PMINT techniques for an
exemplary NPM of −33 dB. It can be observed that the PMINT
technique completely fails to achieve dereverberation and even
results in a slower reverberant energy decay rate than h1 . The
incorporation of all sparsity-promoting penalty functions results
in a significantly faster reverberant energy decay rate, with the
weighted l1-norm penalty function yielding the fastest energy
decay rate. Furthermore, the ΔPESQ and ΔCD values depicted

in Figs. 4(c) and 4(d) show that while PMINT worsens the per-
ceptual speech quality in comparison to the reverberant signal
x1(n), the incorporation of all sparsity-promoting penalty func-
tions results in a significant improvement, with the weighted
l1-norm penalty function always yielding the highest ΔPESQ
and the lowest ΔCD.

In summary, these results show that incorporating sparsity-
promoting penalty functions significantly increases the
robustness of all considered equalization techniques against RIR
perturbations. Furthermore, the weighted l1-norm penalty func-
tion typically outperforms the l0- and l1-norm penalty functions
in terms of the considered instrumental measures.

To further illustrate the advantage of promoting sparsity of
the output signal in the STFT domain, Fig. 5 presents the spec-
trograms of the direct path and early reflections speech signal at
the first microphone, the reverberant first microphone signal, the
output signal obtained using the PMINT technique, and the out-
put signals obtained using the sparsity-promoting PMINT tech-
niques using different penalty functions for an exemplary NPM
of −33 dB. Comparing Figs. 5(a) and 5(b), it can be observed
that due to the spectro-temporal smearing effect of reverbera-
tion, the spectrogram of the reverberant signal is significantly
less sparse than the spectrogram of the direct path and early
reflections speech signal. Furthermore, Fig. 5(c) shows that the
non-robust PMINT technique introduces additional distortions,
such that the resulting spectrogram is significantly less sparse
than the spectrogram of the reverberant signal. On the contrary,
Fig. 5(d) shows that incorporating the l0-norm penalty func-
tion leads to a significantly more sparse spectrogram, largely
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Fig. 5. Spectrogram of (a) direct path and early reflections speech signal at the first microphone, (b) reverberant first microphone signal, (c) output signal obtained
using PMINT, (d) output signal obtained using l0 -norm sparsity-promoting PMINT, (e) output signal obtained using l1 -norm sparsity-promoting PMINT, and
(f) output signal obtained using weighted l1 -norm sparsity-promoting PMINT (acoustic system S1 , NPM = −33 dB, intrusively selected weighting and penalty
parameters η and ρ).

suppressing the distortions introduced by the PMINT technique
as well as partly suppressing the reverberant energy (e.g., at
f ≈ 1 kHz). In addition, Fig. 5(e) shows that incorporating the
l1-norm penalty function results in a more sparse spectrogram
than the l0-norm penalty function, further suppressing the re-
verberant energy (e.g., at t ≈ 2.1 s). Finally, Fig. 5(f) shows
that an even more sparse spectrogram is obtained using the
weighted l1-norm penalty function, with the reverberant energy
significantly suppressed (e.g., at t ≈ 0.5 s and t ≈ 2.1 s) and
the spectro-temporal structure of the resulting signal closely re-
sembling the spectro-temporal structure of the direct and early
reflections speech signal in Fig. 5(a).

C. Comparison of the Weighted l1-norm Sparsity-promoting
Acoustic Multi-channel Equalization Techniques

Since it was shown in the previous section that incorporating
the weighted l1-norm penalty function typically yields the best
performance, in this section the performance of the weighted
l1-norm sparsity-promoting MINT, RMCLS, and PMINT tech-
niques is compared for all acoustic systems in Table III and all
NPMs in (40). The weighting and penalty parameters η and ρ
are intrusively determined as in Section VI-B, i.e., as the pa-
rameters minimizing CD for each equalization technique, each
acoustic system, and each NPM. The performance of the dif-
ferent techniques is evaluated in terms of ΔDRR, ΔPESQ, and
ΔCD, and the presented performance measures are averaged
over all considered NPMs.

Table IV presents the obtained ΔDRR, ΔPESQ, and ΔCD
values for all considered acoustic systems and techniques. In
addition, the average performance measures over all acoustic
systems are also presented. First, it can be observed that the

weighted l1-norm sparsity-promoting MINT technique results
in the lowest performance in terms of all performance measures.
Since the MINT technique is very sensitive to RIR perturbations
(cf. Fig. 2), the robustness increase that can be obtained by in-
corporating signal-dependent penalty functions is also limited.
Second, it can be observed that the weighted l1-norm sparsity-
promoting PMINT and RMCLS techniques yield a high rever-
berant energy suppression in terms of ΔDRR, with the weighted
l1-norm sparsity-promoting PMINT technique resulting in a
similar ΔDRR (for S1 and S2) or slightly lower ΔDRR (for S3)
than the weighted l1-norm sparsity-promoting RMCLS tech-
nique. Finally, it can be observed that for all considered acous-
tic systems, the weighted l1-norm sparsity-promoting PMINT
technique yields the largest perceptual speech quality improve-
ment, outperforming the weighted l1-norm sparsity-promoting
RMCLS technique in terms of ΔPESQ and ΔCD. While the
weighted l1-norm sparsity-promoting PMINT technique always
improves the perceptual speech quality in comparison to the re-
verberant signal as indicated by positive ΔPESQ and negative
ΔCD values, the weighted l1-norm sparsity-promoting RMCLS
technique might fail to yield an improvement, as indicated by
ΔCD = 0.0 dB for acoustic system S3 . The advantage of build-
ing upon the PMINT technique lies in its control of the early
reflections in the EIR, hence better preserving the perceptual
speech quality of the output signal.

Summarizing these simulation results, we conclude that the
weighted l1-norm sparsity-promoting PMINT technique is a
robust and perceptually advantageous equalization technique,
yielding a high reverberant energy suppression and outperform-
ing all other considered techniques in terms of the perceptual
speech quality improvement.
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TABLE IV
PERFORMANCE OF THE WEIGHTED l1 -NORM SPARSITY-PROMOTING MINT, RMCLS, AND PMINT TECHNIQUES (INTRUSIVELY SELECTED WEIGHTING AND

PENALTY PARAMETERS η AND ρ)

ΔDRR [dB] ΔPESQ ΔCD [dB]

S1 S2 S3 Average S1 S2 S3 Average S1 S2 S3 Average

weighted l1 -S-MINT 6.7 6.4 2.8 5.3 0.5 0.4 0.0 0.3 −0.7 −0.8 0.1 −0.5
weighted l1 -S-RMCLS 8.5 9.3 8.3 8.7 0.6 0.6 0.3 0.5 −0.9 −1.1 0.0 −0.7
weighted l1 -S-PMINT 8.8 8.7 6.3 7.9 0.7 0.8 0.6 0.7 −1.3 −1.6 −0.8 −1.2

Fig. 6. Performance of the weighted l1 -norm sparsity-promoting PMINT
technique in terms of ΔCD for several weighting and penalty parameters η and
ρ (acoustic system S1 , NPM = −33 dB).

D. Performance of the Weighted l1-norm Sparsity-promoting
PMINT Technique for Different Weighting and Penalty
Parameters

In order to gain more insight on the weighted l1-norm
sparsity-promoting PMINT technique, in this section we an-
alyze its performance for different choices of the weighting and
penalty parameters η and ρ. Fig. 6 depicts the ΔCD values ob-
tained using the weighted l1-norm sparsity-promoting PMINT
technique with different values of η and ρ for the exemplary
acoustic system S1 and an NPM of −33 dB. It should be noted
that similar results are obtained for all considered performance
measures, acoustic systems, and NPMs. It can be observed that
for a fixed weighting parameter η (e.g., η = 10−5) changing the
penalty parameter ρ can yield a significant change in the ob-
tained ΔCD (e.g., up to 3 dB). For a fixed penalty parameter ρ
(e.g., ρ = 10−3) changing the weighting parameter η can also
yield a significant change in the obtained ΔCD (e.g., up to 3 dB).
Hence unfortunately, the performance of the weighted l1-norm
sparsity-promoting PMINT technique is rather dependent on the
choice of the weighting and penalty parameters. However, as it
will be shown in Section VI-E, once a set of optimal weighting
and penalty parameters has been determined, the same param-
eters can be used for different acoustic systems and NPMs to
obtain a near-to-optimal performance.

E. Comparison of the Weighted l1-norm Sparsity-promoting
PMINT and Regularized PMINT Techniques

In this section, we compare the performance between in-
corporating the proposed signal-dependent weighted l1-norm
penalty function and the signal-independent regularization term
in the PMINT technique for all acoustic systems in Table III and
NPMs in (40). In contrast to Sections VI-B and VI-C, for a more
realistic evaluation the same weighting and penalty parameters η

and ρ are now used in the weighted l1-norm sparsity-promoting
PMINT technique for all acoustic systems and NPMs. Simi-
larly, the same regularization parameter δ is used in the regu-
larized PMINT technique for all acoustic systems and NPMs.
To systematically compare both techniques, we investigate the
performance for two different settings of these parameters, i.e.,
the parameters η, ρ, and δ are determined as the parameters
minimizing CD for acoustic system S1 and

i) NPM = −33 dB, resulting in η = 10−7 , ρ = 10−4 , and
δ = 10−6 , and

ii) NPM = −3 dB, resulting in η = 10−7 , ρ = 10−3 , and
δ = 10−1 .

As indicated by the obtained parameter values, the weighting
and penalty parameters yielding a high performance for
the sparsity-promoting PMINT technique do not change
significantly for different NPMs, whereas the regularization
parameter yielding a high performance for the regularized
PMINT technique significantly changes for different NPMs.
This is not surprising since the regularized cost function in (18)
explicitly incorporates an RIR perturbation model in the filter
design where the appropriate regularization parameter depends
on the distortion energy due to RIR perturbations, whereas
the sparsity-promoting cost function in (24) only relies on
characteristics of clean speech signals. The performance of
both techniques is evaluated in terms of ΔDRR, ΔPESQ, and
ΔCD, and the presented performance measures are averaged
over all considered NPMs.

Table V presents the obtained ΔDRR, ΔPESQ, and ΔCD
values for both considered techniques using the parameters in
case i). In addition, the average performance measures over
all acoustic systems are also presented. It can be observed
that for these parameters the sparsity-promoting PMINT tech-
nique and the regularized PMINT technique yield a very similar
performance in terms of all performance measures. While the
sparsity-promoting PMINT technique results in a slightly higher
ΔDRR and ΔPESQ, the regularized PMINT technique results
in a slightly lower ΔCD.

Table VI presents the obtained ΔDRR, ΔPESQ, and ΔCD
values for both considered techniques using the parameters in
case ii). In addition, the average performance measures over all
acoustic systems are also presented. It can now be observed that
for these parameters the sparsity-promoting PMINT technique
significantly outperforms the regularized PMINT technique
in terms of all performance measures, yielding on average a
higher ΔDRR of 3.3 dB, a higher ΔPESQ of 0.4, and a lower
ΔCD of 0.5 dB.
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TABLE V
PERFORMANCE OF THE WEIGHTED l1 -NORM SPARSITY-PROMOTING PMINT TECHNIQUE (η = 10−7 , ρ = 10−4 ) AND

REGULARIZED PMINT TECHNIQUE (δ = 10−6 )

ΔDRR [dB] ΔPESQ ΔCD [dB]

S1 S2 S3 Average S1 S2 S3 Average S1 S2 S3 Average

Weighted l1 -S-PMINT 8.2 7.0 6.4 7.2 0.6 0.5 0.6 0.6 −1.2 −1.2 −0.7 −1.0
Regularized PMINT 7.9 7.0 5.4 6.8 0.5 0.6 0.5 0.5 −1.1 −1.3 −0.8 −1.1

TABLE VI
PERFORMANCE OF THE WEIGHTED l1 -NORM SPARSITY-PROMOTING PMINT TECHNIQUE (η = 10−7 , ρ = 10−3 ) AND

REGULARIZED PMINT TECHNIQUE (δ = 10−1 )

ΔDRR [dB] ΔPESQ ΔCD [dB]

S1 S2 S3 Average S1 S2 S3 Average S1 S2 S3 Average

weighted l1 -S-PMINT 8.8 7.4 6.6 7.6 0.7 0.6 0.7 0.7 −1.3 −1.3 −0.6 −1.1
regularized PMINT 3.4 5.8 3.6 4.3 0.2 0.5 0.2 0.3 −0.6 −0.8 −0.3 −0.6

In summary, these results show that the proposed signal-
dependent sparsity-promoting PMINT technique yields a simi-
lar or significantly better dereverberation performance than the
signal-independent regularized PMINT technique, depending
on the used weighting, penalty, and regularization parameters.
This shows the potential of incorporating sparsity-promoting
penalty functions which exploit well-established characteristics
of clean speech signals to increase the robustness of equaliza-
tion techniques against RIR perturbations. Combining signal-
independent regularization based on an RIR perturbation model
and signal-dependent penalty functions remains a topic for
future investigation.

VII. CONCLUSION

In this paper we have proposed to increase the robustness
of acoustic multi-channel equalization techniques against RIR
perturbations using signal-dependent penalty functions, such
that the output signal better resembles a clean speech signal. We
have proposed to extend the cost function of least-squares equal-
ization techniques with different sparsity-promoting penalty
functions, i.e., the l0-norm, the l1-norm, and the weighted
l1-norm. The sparsity-promoting filters have been iteratively
computed based on the ADMM. Simulation results show
that incorporating sparsity-promoting penalty functions in all
considered equalization techniques, i.e., MINT, RMCLS, and
PMINT, significantly increases the robustness against RIR
perturbations and suppresses artifacts generated by non-robust
equalization techniques. In addition, it is shown that the
weighted l1-norm penalty function typically outperforms
the l0- and l1-norm penalty functions, with the weighted
l1-norm sparsity-promoting PMINT technique yielding a
high reverberant energy suppression and outperforming all
other considered techniques in terms of perceptual speech
quality improvement. Finally, it is shown that the proposed
signal-dependent weighted l1-norm sparsity-promoting PMINT
technique yields a similar or significantly better dereverberation

performance than the signal-independent regularized PMINT
technique, confirming the advantage of using signal-dependent
penalty functions for robust dereverberation filter design and
motivating future research in this direction.
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