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Blind multichannel speech dereverberation methods based on multichannel linear predic-
tion (MCLP) estimate the dereverberated speech component without any knowledge of the
room acoustics by estimating and subtracting the undesired reverberant component from the
reference microphone signal. In this paper we present a general framework for incorporating
sparsity in the time-frequency domain into MCLP-based speech dereverberation. The pre-
sented framework enables to use either a wideband or a narrowband signal model with either
an analysis or a synthesis sparsity prior for the desired speech component and generalizes state-
of-the-art MCLP-based speech dereverberation methods, which is shown both analytically as
well as using simulations.

0 INTRODUCTION

Recordings of a speech signal in an enclosed space with
microphones placed at a distance from the speech source
are typically corrupted with reverberation, caused by re-
flections against surfaces and objects within the enclosure.
While some amount of reverberation can be beneficial,
strong reverberation is typically problematic for speech
communication applications, resulting in a degraded speech
intelligibility and automatic speech recognition perfor-
mance [1, 2]. Effective speech dereverberation is, hence, a
prerequisite for many applications, such as hands-free tele-
phony, voice-based human-machine interfaces, and hearing
aids. During the past decades many dereverberation ap-
proaches have been developed [3, 4], aiming to remove the
unwanted reverberant component from the recorded micro-
phone signals, while at the same time preserving the desired
speech component.

In general, multi-microphone techniques are more ap-
pealing than single-microphone techniques, since they
enable to exploit spatial information in addition to
spectro-temporal information. Widely investigated multi-
microphone techniques that can achieve perfect derever-
beration are based on inverse filtering [5]. Inverse filtering
methods can be broadly classified into indirect and direct
methods. Indirect methods consist of two steps: in the first

step the acoustic transfer functions (ATFs) between the
speech source and the microphones are estimated, e.g.,
using blind system identification [6]; in the second step
equalization filters are designed based on the estimated
ATFs [5]. Although robust multichannel (MC) equaliza-
tion techniques have been proposed, in practice their dere-
verberation performance is often limited due to ATF es-
timation errors, possibly causing severe distortions in the
output signals [7–9]. Direct methods, which will be con-
sidered in this paper, estimate dereverberation filters with-
out any knowledge of the ATFs [10–12]. A popular class
of direct inverse filtering methods is based on multichan-
nel linear prediction (MCLP), which estimate the desired
speech component by predicting the reverberant component
through linear filtering of (delayed) reverberant microphone
signals and subtracting it from the reference microphone
signal.

It is well known that speech signals have a sparse
representation in the time-frequency (TF) domain, due
to the combined effects of speech pauses and the spec-
tral shape and harmonic structure of speech signals [13,
14]. In the presence of reverberation, the recorded micro-
phone signals exhibit however a lower level of sparsity
than the anechoic speech signal, due to spectro-temporal
smearing of the speech energy [14]. This property has
been exploited for MCLP-based speech dereverberation, by
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estimating the desired speech component that is more sparse
than the recorded microphone signal [10, 12].

The main goal of this paper is to present a general frame-
work for blind speech dereverberation exploiting sparsity
of the speech signal in the TF domain. To model the ob-
served signals, we use a wideband MCLP-based signal
model in the time domain, or a narrowband MCLP-based
signal model in the TF domain. We derive several opti-
mization problems, combining either a wideband or a nar-
rowband signal model with a sparse analysis or synthesis
prior for the speech signal coefficients [15], which can be
solved using alternating direction method of multipliers
(ADMM) [16]. To transform the time-domain signal into
the TF domain we will use the short-time Fourier transform
(STFT), although the proposed framework supports general
TF transforms by using corresponding analysis/synthesis
operators, e.g., adaptive non-stationary Gabor transforms
[17]. To promote sparsity, we will use the commonly used
weighted �1-norm, although other sparsity-promoting func-
tions can be used in the presented framework. In addition
to the locally computed weights for the weighted �1-norm
[18], we also consider structured weights by using a neigh-
borhood in the TF domain [19] or a low-rank approximation
of the speech power spectrogram [20]. The effectiveness of
the considered speech dereverberation methods is evalu-
ated using simulations. It is shown that the ADMM-based
methods result in a competitive performance and may lead
to improvements in certain cases, e.g., for a small number
of reweighting iterations. While wideband methods offer
more flexibility, it is shown that the narrowband methods
achieve a good performance with a relatively low complex-
ity, making them more relevant for practical applications.
Moreover, including additional structure in the TF domain,
e.g., by using structured weights, can be used to improve
the performance of sparsity-based dereverberation meth-
ods. Some preliminary results have been presented in [21].

The paper is organized as follows. In Sec. 1 the signal
models for the MCLP-based speech dereverberation are
introduced. Several optimization problems are formulated
in Sec. 2, followed by a discussion on the selection of the
sparsity-promoting cost function and the relationship to the
existing methods. Using simulations, the performance of
all considered methods is evaluated in Sec. 3.

1 SIGNAL MODEL

We consider a fixed source-array geometry with a single
speech source in a reverberant environment and M micro-
phones. In the time-domain the m-th microphone signal
xm(t) can be modeled as the convolution of the anechoic
speech signal s(t) with a room impulse response (RIR)
rm(t) of length Lr, i.e., xm(t) = rm(t) ∗ s(t). The reference
microphone signal xref(t) can be decomposed into a desired
component d(t) and an undesired component u(t) as

xref(t) =
Lτ−1∑
l=0

rref(l)s(t − l)

︸ ︷︷ ︸
d(t)

+
Lr −1∑
l=Lτ

rref(l)s(t − l)

︸ ︷︷ ︸
u(t)

, (1)

where the desired component is obtained by convolving
the anechoic speech signal with the early part of the RIR
(consisting of the first Lτ samples) and the undesired com-
ponent is obtained by convolving the anechoic speech sig-
nal with the late part of the RIR (consisting of the re-
maining samples). The goal of speech dereverberation is
then to recover the desired component d(t) consisting of
the anechoic speech signal and early reflections, which
can be beneficial for speech intelligibility [22]. When
multiple microphones are available, it has been shown
that in principle perfect dereverberation can be achieved
using the multiple-input/output inverse theorem (MINT)
[5]. Assuming that the RIRs do not share common ze-
ros and using inverse filters hm(t) of length Lh ≥ (Lr −
1)/(M − 1), the anechoic speech signal can be obtained as
s(t) = ∑M

m=1 hm(t) ∗ xm(t). By using this, it can be shown
that the undesired component u(t) in Eq. (1) can be ob-
tained by convolving the delayed microphone signals with
the prediction filters gm(t), i.e., as

u(t) =
M∑

m=1

Lg−1∑
l=0

gm(l)xm(t − Lτ − l), (2)

where gm(l) is the prediction filter related to the m-th micro-
phone [23, 10]. The expression in Eq. (2) ensures that the
prediction filters gm(l) for estimation of the undesired com-
ponent u(t) exist and can be computed when the RIRs rm(t)
are perfectly known [10]. However, in this paper we aim
to estimate the prediction filters blindly, without using any
knowledge about the RIRs or the source-array geometry.
The prediction delay Lτ should ensure that the direct speech
component in the reference microphone cannot be predicted
using Eq. (2), i.e., that subtracting the predicted undesired
component does not destroy the short-time autocorrelation
of the speech signal [24, 10]. If the inter-microphone dis-
tances are relatively small (as assumed in this paper), the
relative delays between the reference microphone and the
other microphones are rather small, i.e., in the order of ms,
for all possible source positions. In this case, the required
prediction delay only depends on the short-term autocorre-
lation of the speech signal. A common practice in MCLP-
based dereverberation is, hence, to set the prediction delay
in the range of 30 to 40 ms [24, 10]. It has been shown in [10]
that with a suitable prediction delay and given enough sam-
ples, subtracting the undesired component in Eq. (2) from
the reference microphone signal does not change the direct
component, while possibly altering the early reflections. A
block scheme of an MCLP-based speech dereverberation
dereverberation system is depicted in Fig. 1.

In the following, we assume that a batch of T time-
domain samples is available, where T is much larger
than the number of the unknown filter coefficients MLg.
Eq. (2) can then be written in vector form as u = Xg,
where u = [u(1), . . . , u(T )]T is the undesired component
(with .T denoting the transpose operator), g ∈ R

M Lg is a
MC prediction filter composed of the filter coefficients for
all channels, i.e.,

g = [gT
1 , . . . , gT

M ]T ∈ R
M Lg (3)
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Fig. 1. Block scheme of an MCLP-based dereverberation system
with the first microphone selected as the reference.

and

X = [X1, . . . , XM ] ∈ R
T ×M Lg (4)

is an MC convolution matrix with Xm ∈ R
T ×Lg being the

convolution matrix of xm(t) delayed by Lτ samples, i.e.,

Xm

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
...

...
. . .

...

xm(1) 0
. . .

...

xm(2) xm(1)
. . .

...
... xm(2)

. . . 0
...

...
. . . xm(1)

...
...

. . .
...

xm(T − Lτ) . . . . . . xm(T − Lτ − Lg + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

The wideband signal model in Eq. (1) can hence be written
in vector form as

xref = d + Xg, (6)

where xref and d are defined similarly as u.
While the wideband model in Eq. (6) perfectly holds

when the MINT conditions are fulfilled, the prediction fil-
ter g can be very long and dereverberation based on the
wideband model can be computationally demanding [10].
In order to reduce the length of the filters, the wideband
model in Eq. (6) is commonly approximated in the STFT
domain [10–12]. Let � ∈ C

T ×K N , with KN > T, denote the
overcomplete frame [25] corresponding to the STFT, relat-
ing a time-domain signal with T samples to KN coefficients
in the TF domain, corresponding to N time blocks and K
frequency bins. The TF coefficients of the time-domain sig-
nal d can be obtained by applying the analysis transform as
d̃ = �Hd ∈ C

K N (with .H denoting conjugate transpose op-
erator). We will use d̃k ∈ C

N to denote a vector containing
the N TF coefficients in the k-th frequency bin and d̃k,n ∈ C

to denote a single coefficient.1 For simplicity, we assume
that ��H = I where I is the identity matrix implying that
the inverse STFT can be obtained as d = �d̃ (i.e., � is a

1 In the remainder of the paper all variables related to the TF
domain will be denoted with ˜(.).

Parseval tight frame [25]). The narrowband signal model is
obtained by approximating the time-domain convolution in
Eq. (6) in each frequency bin independently, i.e.,

x̃ref,k = d̃k + X̃k g̃k, (7)

where X̃k ∈ C
N×M L̃g is a MC convolution matrix obtained

from the coefficients in the k-th frequency bin delayed by
L̃τ time blocks. The prediction filters g̃k ∈ C

M L̃g for the
narrow-band model Eq. (7) are typically much shorter than
their time-domain counterpart (i.e., L̃g � Lg) and are esti-
mated independently for each frequency [10].

2 TIME-FREQUENCY DOMAIN SPARSITY FOR
DEREVERBERATION

Sparsity of speech signals in the TF domain has been ex-
tensively exploited in source separation [26, 14, 27], audio
inpainting [28], and dereverberation [29, 10, 12]. In general,
sparsity of a vector (signal) is related to the magnitude of
its elements (samples), e.g., a signal with only a small num-
ber of samples with significant magnitude is approximately
sparse. Sparsity has typically been used in the following
two paradigms: the synthesis sparsity and analysis sparsity
[15]. Synthesis sparsity is based on the assumption that a
signal can be expressed as a linear combination of a rela-
tively small number of elements from a dictionary. In the
considered scenario, this would imply that the time-domain
desired speech signal d can be represented with a relatively
small number of estimated coefficients in the TF domain,
i.e., d ≈ �d̃ with a sparse d̃. Analysis sparsity is based
on the assumption that a signal has a sparse representa-
tion when a suitable analysis operator is applied. In the
considered scenario, this would imply that the estimated
time-domain speech signal d has a sparse STFT represen-
tation, i.e., that d̃ = �Hd is sparse. While both paradigms
assume sparsity of the TF coefficients, the synthesis spar-
sity leads to estimation of the TF coefficients, while the
analysis sparsity leads to estimation of the time-domain
signal. The paradigms are equivalent only if the analysis
operator is equal to the inverse of the synthesis operator
[15]. In the considered case this is not fulfilled since the
STFT frame � is overcomplete (i.e., redundant, since KN
> T) and thus not invertible, and hence the two paradigms
differ.

In the remainder of this section we present different for-
mulations of MCLP-based speech dereverberation exploit-
ing sparsity in the TF domain for a fixed sparsity-promoting
cost function P. In Secs. 2.1 and 2.2 we first consider the
wideband model in Eq. (6) with analysis and synthesis
sparsity prior, respectively. In Sec. 2.3 we then consider
the narrowband model in Eq. (7) with the synthesis spar-
sity prior. All obtained optimization algorithms can be ef-
ficiently solved using the ADMM algorithm [16], which is
briefly reviewed in Appendix A. In Secs. 2.4 and 2.5 we
discuss the selection of the sparsity promoting cost func-
tion and the relationship of the existing algorithms with the
proposed formulations.
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2.1 Wideband Model and Analysis Sparsity
In this section we consider the problem of speech derever-

beration with the analysis sparsity prior and the wideband
model in Eq. (6). We estimate the desired speech signal d in
the time domain and enforce its TF coefficients to be sparse
in terms of the cost function P, leading to the following
optimization problem

mind,g P
(
�Hd

)
subject to d + Xg = xref .

(8)

By applying the ADMM algorithm (cf., Appendix A), the
obtained problem can be solved using the following iterative
update rules

d ← arg mind P
(
�Hd

) + ρ

2‖d + Xg − xref + μ‖2
2,

g ← arg ming ‖d + Xg − xref + μ‖2
2,

μ ← μ + γ (d + Xg − xref) ,

(9)

where ρ is the penalty parameter, μ is the dual variable, and
γ is a parameter used for faster convergence (cf., Appendix
A). The update for the time domain signal d corresponds
to a generalized Lasso problem [16] and can be efficiently
solved using ADMM algorithm as shown in Appendix B.
Note that in this case the ADMM algorithm for solving the
generalized Lasso is “nested” inside the ADMM algorithm
for solving Eq. (8).

The update for the filter g is a least-squares problem with
a closed-form solution given as

g ← (
XTX

)−1
XT (xref − d − μ) = g�2 − giter, (10)

where g�2 = (
XTX

)−1
XTxref is an iteration-independent

term, and giter = (
XTX

)−1
XT (d + μ) is an iteration-

dependent correction term. The iteration-independent term
g�2 is equal to the closed-form solution for the �2-norm as
the cost function in Eq. (8), i.e., P(�Hd) = ‖�Hd‖2

2. From
earlier work it is known that such filters typically do not
perform well for dereverberation [24, 10, 12]. However,
similarly as in [30], the iteration-dependent term giter can
be seen as a correction that “sparsifies” the estimate of the
desired speech d, which has shown to be crucial for MCLP-
based dereverberation [10, 12]. Note that the matrix XTX is
the same for all iterations, such that it only needs to be fac-
tored once and the factorization can be used for solving the
corresponding linear system in subsequent iterations [16].
Moreover, since X is a block-convolution matrix, both XTX
and XTxref can be obtained through multichannel correla-
tion. Additionally, the block-Toeplitz structure of XTX can
be further exploited to apply a faster solver, similarly as in
[30], but generalized to the multichannel case.

2.2 Wideband Model and Synthesis Sparsity
In this section we consider the problem of speech derever-

beration with the synthesis sparsity prior and the wideband
model in Eq. (6). We estimate the desired speech signal co-
efficients d̃ in the TF domain and enforce them to be sparse

in terms of the cost function P, leading to the following
optimization problem

mind̃,g P
(
d̃
)

subject to �d̃ + Xg = xref .
(11)

The desired speech signal in the time domain is then ob-
tained by performing the inverse STFT of the estimated
coefficients, i.e., d = �d̃. By applying the ADMM algo-
rithm (cf., Appendix A), the obtained problem can be solved
using the following iterative update rules

d̃ ← arg mind̃ P
(
d̃
) + ρ

2‖�d̃ + Xg − xref + μ‖2
2

g ← arg ming ‖�d̃ + Xg − xref + μ‖2
2

μ ← μ + γ
(
�d̃ + Xg − xref

)
,

(12)

where ρ is the penalty parameter, μ is the dual variable and
γ is a parameter used for faster convergence (cf., Appendix
A). The update for the STFT coefficients d̃ corresponds to
a Lasso problem [31] and can be efficiently solved using
the iterative shrinkage/thresholding algorithm (ISTA), as
shown in Appendix C, or using its fast variant (FISTA) [32].
Similarly as in Eq. (10), the update for the prediction filter
g is a least-squares problem with a closed-form solution
given as

g ← (
XTX

)−1
XT (

xref − �d̃ − μ
) = g�2 − giter, (13)

where g�2 is the same iteration-independent term as in

Eq. (10), and giter = (
XTX

)−1
XT

(
�d̃ + μ

)
is the iteration-

dependent term.

2.3 Narrowband Model
In this section we consider the problem of speech dere-

verberation with the synthesis sparsity prior and the narrow-
band model in Eq. (7). Similarly as in Sec. 2.2, we estimate
the desired speech signal coefficients d̃ in the TF domain
and enforce them to be sparse in terms of the cost function
P. In contrast to the wideband model, since the narrowband
model is independent across frequencies and assuming that
the cost function P is also separable, the speech signal co-
efficients d̃k can be estimated for each frequency bin k
independently. The desired speech signal in the time do-
main can then be obtained by performing the inverse STFT
of the estimated coefficients as d = �d̃. The optimization
problem in the k-th frequency bin for estimating d̃k can be
written as

mind̃k ,g̃k
P

(
d̃k

)
subject to d̃k + X̃k g̃k = x̃ref,k .

(14)

By applying the ADMM algorithm (cf., Appendix A), the
obtained problem can be solved using the following iterative
update rules

d̃k ← arg mind̃k
P

(
d̃k

) + ρ

2‖d̃k + X̃k g̃k − x̃ref,k + μ̃k‖2
2,

g̃k ← arg ming̃k ‖d̃k + X̃k g̃k − x̃ref,k + μ̃k‖2
2,

μ̃k ← μ̃k + γ
(
d̃k + X̃k g̃k − x̃ref,k

)
,

(15)

where ρ is the penalty parameter. The update for the STFT
coefficients d̃k in the k-th frequency bin is already in the
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form of a proximal operator (cf., Eq. (A.4)), and can be
immediately written as

d̃k ← S P
ρ

(
x̃ref,k − X̃k g̃k − μ̃k

)
, (16)

where SP
ρ is the proximal operator of the cost function P

(cf., Eq. (A.4)). Similarly as in Eq. (10) and Eq. (13), the
update for the prediction filter g̃k in the k-th frequency bin is
a least-squares problem with a closed-form solution given
as

g̃k ← (
X̃H

k X̃k
)−1

X̃H
k

(
x̃ref,k − d̃k − μ̃k

) = g̃k,�2 − g̃k,iter

(17)

where g̃k,�2 is the iteration-independent term, and g̃k,iter =(
X̃H

k X̃k
)−1

X̃H
k

(
d̃k + μ̃k

)
is the iteration-dependent term.

Similarly as before, the matrix X̃H
k X̃k only needs to be

factored once and can be used to solve the corresponding
linear system in subsequent iterations. Note that this matrix
is much smaller than the corresponding matrix in the wide-
band model (since L̃ g � Lg), and the resulting iterations do
not involve STFT analysis/synthesis since all computations
are performed in the TF domain.

2.4 Sparsity-Promoting Cost Function
The previously presented methods enforce sparsity of the

TF coefficients in terms of the cost function P, i.e., P is ap-
plied on the TF-domain coefficients. Hence, an appropriate
sparsity-promoting cost function P needs to be selected.
Typical cost functions for enforcing sparsity include the
�1-norm, nonconvex �p-norms with p ∈ (0, 1), or the �0-
norm (counting the number of non-zero coefficients) and
its smoothed variants [33, 34].

The proposed framework can be used with any sparsity-
promoting function P, as long as its proximal operator S P

ρ

can be computed (cf., Eq. (A.4)). However, in this work we
confine ourselves to the weighted �1-norm, which is one of
the most commonly used sparsity-promoting cost functions
[18, 19, 36, 37], and has been shown to be more effective for
audio applications than its non-weighted counterpart [36].
The cost function is then defined as

P
(
d̃
) = ‖d̃‖w,1 =

∑
k,n

wk,n|d̃k,n|, (18)

where d̃ is a vector of coefficients in the TF domain, and
w is a vector of nonnegative weights. The weights wk,n are
selected in such a way that the weighted �1-norm simulates
the behavior of the scaling-insensitive �0-norm [18, 36].

Estimation of a sparse d̃ using the weighted �1-norm
in Eq. (18) as the cost function is an iterative two-step
procedure. First, the weights w are computed based on the
previous estimate of d̃. Second, an appropriate optimization
problem with the cost function in Eq. (18) is solved, and
consequently a new estimate of the TF coefficients d̃ is
obtained. All previously presented ADMM-based methods
will be employed in such a reweighted procedure in Sec. 3.

The weights wk,n for the weighted �1-norm in Eq. (18)
are typically computed locally, using a single coefficient,

wk,n = ε

|d̃k,n| + ε
, (19)

Fig. 2. Computation of the weight wk,n for the coefficient marked
with : locally computed weight (top left), weight computed us-
ing a neighborhood with dimension 3 across time blocks and
frequencies (top right) and weight computed using a low-rank
approximation with rank equal to 3 (bottom).

where ε is a small regularization coefficient to prevent di-
vision by zero in the denominator and is included in the
numerator to ensure that the largest weight is normalized
to one [36]. Since in practice the true coefficients d̃k,n are
not available, the weights in Eq. (19) are computed based
on an estimate of d̃k,n from the previous iteration in the
reweighting procedure.

To take into account the TF structure of the desired signal,
the concept of neighborhoods for shrinkage operators has
been introduced in [19], and here we adopt it for computing
the weights. Assuming that a neighborhood Nk,n of the
coefficient d̃k,n is defined, the corresponding weight can be
computed as a weighted average across the neighborhood,
i.e.,

wk,n = ε√∑
(k ′,n′)∈Nk,n

ηk ′,n′ |d̃k ′,n′ |2 + ε
, (20)

where ηk ′,n′ are the coefficients of the neighborhood that
sum to one. Similarly as in [37, 19], in our simulations we
will employ rectangular neighborhoods with equal weights.
Alternatively, it is well known that speech spectrograms
can be modeled well using a low-rank approximation [38,
39]. Similarly as in [20], the weights can then be obtained
by computing a low-rank approximation p of the power
spectrogram |d̃|2 ∈ R

K×N
0+ , a nonnegative matrix containing

the squared magnitudes of the TF coefficients, i.e., p ≈ |d̃|2,
and computing the weights as

wk,n = ε√
pk,n + ε

. (21)

The three different considered ways of computing weights
for Eq. (18) are illustrated in Fig. 2. For illustration we used
a 3 × 3 neighborhood and a rank-3 approximation of |d̃|2.
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The proximal operator (cf., Eq. (A.4)) for the weighted
�1-norm in Eq. (18) can be computed element-wise using
soft thresholding as

SP
ρ

(
d̃k,n

) =
(

1 − ρ−1wk,n

|d̃k,n|
)

+︸ ︷︷ ︸
real-valued gain

d̃k,n, (22)

where (G)+ = max (G, 0) [16]. In the context of speech
enhancement [40], the proximal operator in Eq. (22) can be
interpreted as applying a real-valued gain on the complex-
valued coefficients in d̃. As noted in [40], in speech en-
hancement a lower bound Gmin on the gain is often in-
troduced, i.e., (G)+ = max (G, Gmin), in order to prevent
suppression of small coefficients d̃k,n to exactly zero. As
shown in Appendix D, this corresponds to a cost function
P in the form of a Huber function [16], which is quadratic
for small magnitudes and equal to a scaled absolute value
for large magnitudes, and the transition point depends on
the penalty parameter ρ, weight wk,n and the lower bound
Gmin (cf. (A.12)).

2.5 Relationship to Existing Methods
The wideband signal model has been employed for

MCLP-based dereverberation [41, 42, 24, 10], however,
without explicitly enforcing sparsity of the desired speech
signal. For example, in [41, 24] the time-domain prediction
filters were estimated by minimizing the output energy,
which is equivalent to using the �2-norm of d as the cost
function, i.e.,

P (d) = ‖d‖2
2 =

T∑
t=1

|d(t)|2. (23)

This is a special case of the formulation in Eq. (8), with
the �2-norm as the cost function and without the analy-
sis operator. In this case, the closed-form solution for the
prediction filter is given with g�2 , as in Sec. 2.1. In [10] a
short-time Gaussian model of the desired time-domain sig-
nal was used. The obtained algorithm is equivalent to using
the weighted �2-norm as the cost function, i.e.,

P (d) = ‖d‖2
w,2 =

T∑
t=1

w(t)|d(t)|2. (24)

This is a special case of the formulation in Eq. (8), with
the weighted �2-norm as the cost function and without the
analysis operator. For fixed weights, the obtained weighted
least-squares optimization problem has a closed-form solu-
tion for the prediction filter. The weights w(t) are computed
from the previous estimate of the desired speech signal
by averaging the energy in the time-domain across a short
window centered at t [10]. When employed in a reweight-
ing procedure, this can be interpreted as promoting spar-
sity of the desired time-domain signal d. However, orig-
inally a single reweighting iteration was used, and it was
reported that multiple iterations do not always improve per-
formance [10]. Note that the wideband methods in [24, 10]
use a signal-dependent prewhitening step before applying
dereverberation.

The narrowband signal model has also been employed
for MCLP-based speech dereverberation [10, 11]. The most
relevant method is the weighted prediction error (WPE)
method [10], and it has shown to be very effective for mul-
tichannel speech dereverberation [43, 4]. Based on a locally
Gaussian model of the desired speech coefficients, the cost
function for the WPE method is equal to the weighted �2-
norm [12], i.e.,

P
(
d̃k

) = ‖d̃k‖2
wk ,2 =

∑
n

wk,n|d̃k,n|2. (25)

This is a special case of the formulation in Eq. (8), with the
weighted �2-norm as the cost function. Although it would
be possible to use the ADMM algorithm for this cost func-
tion, the obtained optimization problem can be solved more
straightforwardly using the iteratively reweighted least
squares algorithm. For fixed weights, the obtained weighted
least-squares optimization problem has a closed-form so-
lution for the prediction filter. The weights wk can be com-
puted from the estimate of the desired speech coefficients
from the previous iteration as wk,n ← ε/

(|d̃k,n|2 + ε
)

[10,
12], which is similar to Eq. (19), by replacing magnitude
with squared magnitude. When employed in a reweighting
procedure, the considered weighted �2-norm cost function
simulates the behavior of the �0-norm [12], in the same
way as the weighted �1-norm in Sec. 2.4. Similarly as de-
scribed in Sec. 2.4, the weights for the WPE method can
be computed using a low-rank approximation of the speech
spectrogram [20], or using neighborhood based weights.

3 SIMULATIONS

In this section we evaluate the speech dereverberation
performance of the ADMM-based methods proposed in
Sec. 2 and the iteratively reweighted least squares-based
WPE method. We will consider the wideband model with
analysis sparsity (WB-A), the wideband model with syn-
thesis sparsity (WB-S), and the narrowband model (NB)
with the weighted �1-norm as the cost function.

3.1 Setup and Performance Measures
We consider an acoustic scenario with a single speech

source and M = 2 microphones. We have considered two
simulated acoustic systems with RIRs from the REVERB
challenge [4]. For the first acoustic system (AC1) the re-
verberation time was T60 ≈ 500 ms, while for the second
acoustic system (AC2) the reverberation time was T60 ≈ 700
ms. In both cases the distance between the speech source
and the microphones was approximately 2 m. The rever-
berant microphone signals were obtained by convolving
the RIRs with a clean speech signal, and the first micro-
phone was selected as the reference microphone. For the
evaluation we used a set of 10 speech samples (5 male and
5 female speakers) with an average length of approximately
5.2 s sampled at fs = 16 kHz.

The performance of the considered dereverberation
methods is evaluated in terms of frequency-weighted seg-
mental signal-to-noise ratio (FWSSNR) and PESQ [4].
These instrumental performance measures were selected
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because of their correlation with perceptual listening tests
when evaluating the quality and the perceived amount of
reverberation of processed speech signals [44, 4]. The clean
speech signal was used as the reference for evaluating the
measures, and the obtained results were averaged over all
speech samples [4].

3.2 Implementation Details
The analysis and synthesis STFT was computed using a

tight frame � based on a 64 ms Hamming window with
16 ms window shift. The length of the prediction filters
was set to Lg = 5120 for the wideband model and L̃g = 20
for the narrowband model, corresponding to 320 ms in the
time domain, which is a typical setting for the considered
acoustic systems [43]. The prediction delay was set to Lτ =
256 for the wideband model and L̃τ = 2 for the narrowband
model, corresponding to 32 ms in the time domain.

The weights wk,n for the weighted �1-norm in Eq. (18)
were computed either locally according to Eq. (19), us-
ing a rectangular neighborhood according to Eq. (20), or
using a low-rank approximation according to Eq. (21). In
all experiments the estimate of the desired speech signal
was initialized using the reverberant reference microphone
signal, which in turn was also used to compute the initial
weights. A small positive constant ε = 10−8 was used to
regularize the weights. The low-rank approximation p in
Eq. (21) was computed using nonnegative matrix factoriza-
tion (NMF) with Itakura-Saito divergence with the rank set
to 30 [20].

The maximum number of iterations for the ADMM al-
gorithm was set to 40 with γ = 1.6, since increasing the
number of ADMM iterations did not seem to have a sig-
nificant influence on the performance, while considerably
increasing the computational complexity. The stopping cri-
terion was defined as in [16] with a relative tolerance equal
to 10−3. For the generalized Lasso, required for the WB-A
method (cf., Sec. 2.1), we used the penalty parameter set
to δ = 1 (cf., Appendix B). For the Lasso problem, re-
quired for the WB-S method (cf., Sec. 2.2), we used FISTA
with the maximum number of iterations set to 40 with early
stopping when the relative change of the estimate is smaller
than 10−3 (cf., Appendix C). In all experiments we used the
lower bound Gmin = 0.01.

3.3 Simulation Results
In the following simulations we will investigate the per-

formance of the considered methods with respect to several
parameters. First, we investigate the influence of the penalty
parameter ρ for the ADMM-based methods. Second, we
investigate the influence of the rectangular neighborhoods
for computing the weights. Third, we investigate the perfor-
mance of the considered methods in the reweighting proce-
dure when using different weights. Finally, we discuss the
computational complexity of the methods. Exemplary au-
dio samples for all methods are available online2, showing

2 http://www.sigproc.uni-oldenburg.de/audio/ante/tfsp/audio.
html
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Fig. 3. Instrumental measures vs. penalty parameter ρ (local
weights, iRW = 1).

that most processed signals perceptually resemble the clean
signal, with some coloration due to the uncontrolled early
reflections and hardly audible processing artifacts arising
due to the soft thresholding operator.

3.3.1 Influence of the Penalty Parameter
While the ADMM algorithm typically converges to mod-

est accuracy after a few tens of iterations, typically the
penalty parameter ρ may have a large impact on the conver-
gence, such that an appropriate value needs to be selected.
In this section we investigate the influence of the penalty pa-
rameter ρ in Eqs. (8), (11), and (14) using locally computed
weights as in Eq. (19) and a single reweighting iteration
(iRW = 1).3

Fig. 3 depicts the obtained instrumental measures for the
reverberant reference microphone, the considered ADMM-
based methods for different values of the penalty parameter
ρ in the set {10−5, 5 · 10−5, . . ., 10−2}, and the WPE
method. It can be observed that all considered methods re-
sult in improvements in terms of the instrumental measures
when compared to the reverberant signal at the reference
microphone. The WPE method results in significant im-
provements compared to the reference for all measures and
both ACs. It can be observed that the performance ob-
tained using the ADMM-based methods depends on the
penalty parameter ρ. Both FWSSNR and PESQ exhibit a
similar behavior, with the performance first increasing and
then decreasing with ρ. This behavior can be explained by
referring to the shape of the proximal operator in Eq. (22).

3 As will be shown in Sec. 3.3.3, the most significant perfor-
mance improvement is typically observed after the first reweight-
ing iteration. Hence, it can be assumed that the optimal penalty
parameter for iRW = 1 also yields an adequate performance for
iRW > 1.
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Small values of the penalty parameter ρ result in a rela-
tively high value of the threshold when applying the proxi-
mal operator, resulting in a strong suppression of the STFT
coefficients and over-suppression of the desired speech sig-
nal in each ADMM iteration. Large values of the penalty
parameter result in a relatively low value of the threshold,
resulting in a weak suppression of the STFT coefficients
and a relatively low dereverberation in each ADMM itera-
tion. Overall, it can be observed that it is possible to achieve
a better performance using the ADMM-based methods than
using the WPE method. Similar behavior with respect to ρ

was also observed when using the neighborhood weights in
Eq. (20) and NMF weights in Eq. (21). Based on this exper-
imental evidence, for the following experiments we will use
ρ = 10−3.

3.3.2 Neighborhood Selection
In this section we investigate the influence of the rect-

angular neighborhood for computing the weights wk,n as in
Eq. (20). For this analysis we consider symmetric rectan-
gular neighborhoods with dimensions across time blocks
and frequency bins selected from the set {1, 3, 5, 9}. The
neighborhood coefficients ηk ′,n′ (cf., Eq. (20)) are set to
the same value and sum to 1, i.e., the neighborhood is uni-
form, and the current coefficient (k, n) is at the center of
the neighborhood, i.e., the neighborhood is symmetric. The
case of locally computed weights in Eq. (19) obviously
corresponds to a neighborhood with both dimensions equal
to 1. The obtained performance in terms of instrumental
measures is shown in Fig. 4. On the one hand, the depicted
results show that only small improvements compared to the
local weights are obtained using the considered rectangu-
lar neighborhoods for the ADMM-based methods. Typi-
cally, relatively small neighborhoods (e.g., with size equal
to three) resulted in minor improvements, with the effect
typically diminishing for larger sizes. On the other hand, it
can be observed that the proposed neighborhoods improve
the performance of the WPE method when compared to
the locally computed weights. Based on this experimen-
tal observation, for the following experiment we used a
symmetrical neighborhood with dimensions 3 × 3 for all
methods.

3.3.3 Reweighting Procedure
In this section we evaluate the performance of the consid-

ered methods for a varying number of reweighting iterations
iRW and different weight computation. For this analysis we
set the number of reweighting iterations to iRW ∈ {1, . . .,
10}. For the ADMM-based methods with a weighted �1-
norm as the cost function in Eq. (18), the weights wk,n are
computed either locally according to Eq. (19), using a rect-
angular 3 × 3 neighborhood according to Eq. (20), or using
NMF-based low-rank approximation according to Eq. (21).
For the WPE method, which employs a weighted �2-norm,
the weights are computed analogously, with magnitudes
replaced with squared magnitudes.

Figs. 5 and 6 depict the obtained performance in terms of
the instrumental measures for AC1 and AC2, respectively. It

Fig. 4. Influence of the size of the rectangular neighbor-
hood across time blocks and frequency bins for the weights
wk,n (iRW = 1).

can be observed that for a single reweighting iteration (iRW

= 1) and for locally computed weights the ADMM-based
methods perform significantly better than the WPE method.
The performance of the WPE method is significantly im-
proved when using neighborhood or NMF weights, while
only small differences can be observed for the ADMM-
based methods, resulting in a similar overall performance
for all methods. Moreover, it can be observed that additional
reweighting iterations in general improve the performance
of all considered methods. The obtained performance typ-
ically increases with reweighting iterations up to iRW = 5,
with marginal changes for a larger number of iterations.
Note that in Fig. 5 a some degradation in terms of PESQ
can be observed for WB-S using local weights. However,
this is not observed when using neighborhood and NMF
weights, indicating that the additional structure in the TF
domain, in addition to sparsity, can be beneficial. Over-
all, the obtained performance for iRW = 10 iterations is
relatively similar for all considered methods. This is a con-
sequence of the fact that both the weighted �1-norm used
with the ADMM-methods and the weighted �2-norm used
for the WPE method simulate the behavior of the �0-norm
when using the considered reweighting procedure.

Summarizing the simulation results, we conclude that
the ADMM-based methods perform mostly better than the
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Fig. 5. Influence of the number of reweighting iterations iRW

(AC1): (a) local weights, (b) neighborhood weights, and (c) NMF
weights.

WPE method for a single reweighting iteration, with the dif-
ference being relatively large when using the local weights
and relatively small when using structured (neighborhood
and NMF) weights. This performance difference can be
attributed to the difference in the cost functions, i.e., the
weighted �1-norm employed in the ADMM-based meth-
ods, resulting in a sparser solution than the weighted �2-
norm employed in the WPE method (and not to the used
optimization algorithm). In general, subsequent reweight-
ing iterations improve the obtained performance, with all
methods achieving a similar performance. These similari-
ties can again be attributed to the employed cost function,
since both the weighted �1- and �2-norm aim to approxi-
mate the �0-norm. Furthermore, the structured weights (i.e.,
neighborhood- and NMF-based) result in an improved per-
formance for the WPE method, while the effect is much
smaller for the ADMM-based methods.

3.3.4 Computational Complexity
In this section we discuss the computational complex-

ity of the considered methods in terms of their real-time
factor (RTF), which is defined as the ratio of the compu-
tation time and the input duration. All methods have been
implemented in Matlab running on a 3,46 GHz Windows
7 machine in single-thread mode. For the ADMM-based
methods the linear systems have been solved by factoring
the correlation matrix (i.e., XTX in Eq. (10) and Eq. (13) or
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Fig. 7. Average real-time factors for the considered methods.

X̃H
k X̃k in Eq. (17)) once (using Cholesky decomposition),

and applying the obtained decomposition to solve the cor-
responding linear system in the following iterations. Since
the WPE method is based on reweighted least squares and
hence the matrix of the linear system changes for each
reweighting iteration (cf., Eq. (25)), this was not possible
for the WPE method. For the narrowband methods (NB
and WPE) we sequentially processed all frequency bins,
without exploiting parallelization over frequencies.

Fig. 7 depicts the RTFs, averaged across the samples, for
the considered methods. On the one hand, the wideband
methods result in relatively large RTFs, due to the large
dimension (MLg) of the involved linear systems and the
fact that the analysis/synthesis operators �H and � need
to be applied in every ADMM iteration (cf., Appendix B

J. Audio Eng. Soc., Vol. 65, No. 1/2, 2017 January/February 25



JUKIĆ ET AL. PAPERS

and C). On the other hand, the narrowband methods have
much smaller RTFs, due to the smaller dimension (M L̃g)
of the involved linear systems and since the optimization
problems are in the TF domain (cf., Eq. (14)) the analysis
and synthesis operators need to be applied only once. While
the real-time factors for the NB and WPE methods are on
the same order of magnitude, the latter was significantly
faster (e.g., ∼0.9 vs. ∼0.2 for iRW = 1). However, it is
expected that complexity could be significantly reduced
for the ADMM-based methods by exploiting the block-
Toeplitz structure [30], which cannot be exploited for the
methods based on iteratively reweighted least squares. Note
that the complexity of all methods could possibly be further
reduced, e.g., by using [45] for fast computation of the
correlation matrices.

4 DISCUSSION AND CONCLUSIONS

In this paper we have presented a general framework
for multichannel speech dereverberation exploiting spar-
sity in the time-frequency domain. We have formulated
the MCLP-based speech dereverberation as an optimiza-
tion problem using a cost function that promotes sparsity
of the desired speech signal in the time-frequency domain.
The presented framework encompasses a wideband or a
narrowband signal model as well as an analysis and a syn-
thesis prior for the desired speech signal. While the dis-
cussion in this paper has been limited to sparsity in the
STFT domain, other time-frequency transforms could be
used through a suitable pair of analysis-synthesis opera-
tors. We have shown that all resulting optimization prob-
lems can be solved using the alternating direction method
of multipliers, and that different sparsity-promoting cost
functions can used by selecting an appropriate proximal
operator.

Simulation results show that the proposed ADMM-
based methods using the weighted �1-norm as the sparsity-
promoting cost function perform better than the conven-
tional WPE method for a single reweighting iteration (at
a higher computational complexity), and achieve a sim-
ilar performance for multiple iterations. In addition, we
have shown that using neighborhood-based weights for the
reweighting iterations can improve the dereverberation per-
formance of the sparsity-based methods.

In conclusion, the narrowband methods appear to be
more relevant in practice, since they achieve a good dere-
verberation performance with a significantly lower com-
putational complexity than the wideband methods. Nev-
ertheless, the wideband methods offer more flexibility in
the selection of the TF transform and could be used even
when the narrowband model does not hold, e.g., if there
is a strong influence between adjacent bands in the TF
domain. In addition, the considered reweighting proce-
dure in general improves the dereverberation performance,
since the reweighting typically results in a sparser output
signal.

The presented work constitutes a flexible and gen-
eral framework for sparsity-based dereverberation. Further
work could therefore include the design of cost functions

that exploit additional characteristics of the speech signal
and properties of auditory perception, implementation of
fast multichannel structure-exploiting linear solvers, and
exploration of adaptive time-frequency transforms in the
proposed framework.
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APPENDIX A: ALTERNATING DIRECTION
METHOD OF MULTIPLIERS (ADMM)

In this appendix we present a brief overview of the
ADMM algorithm, which can be used to solve the opti-
mization problems in Secs. 2.1, 2.2, and 2.3. A detailed
overview of the ADMM algorithm and applications can be
found in [16]. The ADMM algorithm is suitable for non-
smooth convex optimization problems of the form

mind,g P(d) + Q(g)
subject to Ad + Bg = c,

(A.1)

where the total cost function conveniently splits for the
variables d and g. The augmented Lagrangian for the con-
strained optimization problem in Eq. (A.1) can be written
as

Lρ (d, g,μ) = P(d) + Q(g)

+ ρ

2
‖Ad + Bg − c + μ‖2

2 − ρ

2
‖μ‖2

2 (A.2)

where μ denotes the dual variable and ρ denotes a penalty
parameter. The ADMM algorithm is obtained by minimiz-
ing the augmented Lagrangian in Eq. (A.2) alternately with
respect to d and g, followed by a dual ascent over μ [16].
This leads to the following update rules

di← arg mind P(d) + ρ

2‖Ad + Bgi−1 − c + μi−1‖2
2,

gi← arg ming Q(g) + ρ

2‖Adi + Bg − c + μi−1‖2
2,

μi←μi−1 + γ
(
Adi + Bgi − c

)
,

(A.3)

with i denoting the iteration index. These update rules are it-
eratively repeated until convergence, with the convergence
criterion defined in [16]. For easier readability the itera-
tion index i is not included in the ADMM-based update
rules in Sec. 2. The parameter γ ≥ 1 can be used for faster
convergence, and should be smaller than 1 + √

5/2 for a
convex P [46]. In many applications, the ADMM algorithm
converges to modest accuracy after a few tens of iterations,
which is often enough in practice [16, 30]. However, the
penalty parameter ρ may have a large effect on the con-
vergence of the algorithm and typically depends on the
particular choice of P and Q. Hence, when using a finite
number of iterations, an appropriate value for the penalty
parameter needs to be selected.

An important ingredient of ADMM-based algorithms is
the proximal operator. The proximal operator S P

ρ of the cost
function P with the penalty parameter ρ can be defined as

SP
ρ (z) = arg mind P(d) + ρ

2
‖z − d‖2

2, (A.4)

The proximal operator can be seen as a generalization of a
projection operator, e.g., if P is an indicator function of a
convex set the proximal operator is equal to the Euclidean
projection on that set [16]. In many cases the proximal
operator can be evaluated efficiently, e.g., when P is the
�1-norm SP

ρ is the well-known soft thresholding operator.
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Fig. 8. Proximal operators (left) and the corresponding cost func-
tions (right) on the real axis for ρ−1w = 1 and Gmin = {0, 0.2}.
For complex-valued inputs the proximal operator and the penalty
function are extended using circular symmetry.

APPENDIX B: GENERALIZED LASSO PROBLEM

In this appendix we present a brief overview of the opti-
mization problem for estimation of the desired signal d in
Eq. (8). An optimization problem in the form

min
d

P
(
�Hd

) + ρ

2
‖d − z‖2

2, (A.5)

where P is a weighted �1-norm is an instance of gener-
alized Lasso [16]. The minimizer of the cost function is
equal to the proximal operator of the composition of the
analysis operator �H and the function P, i.e., the optimal
d is equal to SP◦�H

ρ (z), with P ◦ �H denoting the com-
position of the analysis operator �H and the cost function
P, i.e.,

(
P ◦ �H

)
(d) = P

(
�Hd

)
. The optimization prob-

lem in Eq. (A.5) can be efficiently solved by applying the
ADMM algorithm, resulting in the following iterative up-
dates

d ← 1
1+ρ

[z + ρ� (ũ − μ̃)] ,

ũ ← SP
δρ

(
�Hd + μ̃

)
,

μ̃ ← μ̃ + γ
(
�Hd − ũ

)
,

(A.6)

where ũ is the splitting variable satisfying the constraint
�Hd − ũ = 0, and δ is the penalty parameter.

APPENDIX C: LASSO PROBLEM

In this appendix we present a brief overview of the op-
timization problem for estimation of the STFT coefficients
d̃ in Eq. (12). An optimization problem in the form

min
d̃

P
(
d̃
) + ρ

2
‖�d̃ − z‖2

2, (A.7)

where P is a weighted �1-norm is in the form of Lasso and
can be efficiently solved by applying the iterative shrink-
age/thresholding algorithm (ISTA) [47, 32]. The algorithm
consists of iteratively repeating the following update

d̃ ← SP
νρ

(
d̃ + 1

ν
�H (

z − �d̃
))

, (A.8)

where ν is the maximum eigenvalue of ��H, i.e., in our case
ν = 1. An accelerated version of the algorithm, fast ISTA
(FISTA) algorithm [32], employs a similar iteration, with
almost the same complexity and an improved convergence.

APPENDIX D: SOFT THRESHOLDING WITH A
LOWER-BOUND FOR THE GAIN AND THE
CORRESPONDING COST FUNCTION

In this appendix we present analytical expressions for
the cost function corresponding to the proximal operator
in Eq. (22) with a lower bound on the gain. We consider a
proximal operator SP

ρ for a penalty function P of a complex
scalar d̃, defined as

S P
ρ

(
d̃
) = max

(
1 − ρ−1w

|d̃| , Gmin

)
· d̃. (A.9)

Without the loss of generality (since the function SP
ρ is

circularly symmetric) we can focus only on the positive
part of the real axis, denoting the independent variable as t,
with t ∈ R, t > 0. As in [35], we define a function f (t) =∫ t

0 SP
ρ (ξ) dξ, t > 0. For the given mapping in Eq. (A.9), the

function f can be written as

f (t)

=

⎧⎪⎪⎨
⎪⎪⎩

1

2
Gmint2, for t <

ρ−1w

1 − Gmin
1

2

(
t − ρ−1w

)2 + 1

2

ρ−2w2Gmin

1 − Gmin
, for t ≥ ρ−1w

1 − Gmin

(A.10)

Following [35], the corresponding cost function can be ob-

tained as P (t) = ρ
[

f ∗ (t) − t2

2

]
, where f* is the convex

conjugate (Fenchel transform) of f. By observing that f is a
convex continuous piecewise quadratic function, its convex
conjugate can be obtained using [48] as

f ∗ (t)

=

⎧⎪⎪⎨
⎪⎪⎩

1

2

t2

Gmin
, for t <

ρ−1wGmin

1 − Gmin

ρ−1wt + 1

2
t2 − 1

2

ρ−2w2Gmin

1 − Gmin
, for t ≥ ρ−1wGmin

1 − Gmin

(A.11)

Finally, the cost function can be written as

P (t)

=

⎧⎪⎪⎨
⎪⎪⎩

ρ
1 − Gmin

Gmin

t2

2
, for t <

ρ−1wGmin

1 − Gmin

wt − 1

2

ρ−1w2Gmin

1 − Gmin
, for t ≥ ρ−1wGmin

1 − Gmin

(A.12)

Without the minimum-gain bound, i.e., when Gmin = 0, the
proximal operator in Eq. (A.9) reduces to soft threshold-
ing, and the cost function is a linear function of t, corre-
sponding to the weighted �1-norm. When Gmin > 0 the cost
function is quadratic for small values of t and linear for
large values of t. The point of transition between the linear
and quadratic behavior is modulated with the parameters
ρ and w. An illustration of the effect of the lower bound
on the proximal operator and the cost function is given in
Fig. 8.
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Ante Jukić received the Dipl.-Ing. degree in electrical
engineering in 2009 from the University of Zagreb, Croa-
tia. Since 2013 he is with the Signal Processing Group
at the University of Oldenburg, Germany, working on
speech dereverberation. Previously he was with the Ru −der
Bošković Institute and Xylon, both in Zagreb, Croatia.
His research interests include acoustic signal processing,
sparse signal processing, and machine learning for data
enhancement and analysis.

•
Toon van Waterschoot received the M.Sc. degree (2001)

and the Ph.D. degree (2009) in electrical engineering,
both from KU Leuven, Belgium. He is currently a tenure-
track Assistant Professor at KU Leuven, Belgium. He
has previously held teaching and research positions with
the Antwerp Maritime Academy, Belgium (2002), the In-
stitute for the Promotion of Innovation through Science
and Technology in Flanders (IWT), Belgium (2003–2007),
KU Leuven, Belgium (2008–2009), Delft University of
Technology, The Netherlands (2010–2011), and the Re-
search Foundation - Flanders (FWO), Belgium (2011–
2014). Since 2005, he has been a Visiting Lecturer at the
Advanced Learning and Research Institute of the Univer-
sity of Lugano (Universit della Svizzera italiana), Switzer-
land. His research interests are in acoustic signal enhance-
ment, acoustic modeling, audio analysis, and audio repro-
duction. He has been the Scientific Coordinator of the FP7-
PEOPLE Marie Curie Initial Training Network on Derever-
beration and Reverberation of Audio, Music, and Speech
(DREAMS). Dr. van Waterschoot has been serving as an
Associate Editor for the Journal of the Audio Engineering
Society (AES) and for the EURASIP Journal on Audio, Mu-
sic, and Speech Processing, and as a Guest Editor for Signal
Processing. He has been a Nominated Officer for the Euro-
pean Association for Signal Processing (EURASIP), and a
member of the IEEE Audio and Acoustic Signal Processing
Technical Committee (AASP-TC). He has been serving as
an Area Chair for Speech Processing at the European Signal
Processing Conference (EUSIPCO 2010, 2013–2015), and
as General Chair of the 60th AES Conference in Leuven,
Belgium, 2016. He is a member of the AES, the Acoustical
Society of America, EURASIP, and IEEE.

•
Timo Gerkmann studied electrical engineering and infor-

mation sciences at the universities of Bremen and Bochum,
Germany. He received his Dipl.-Ing. degree in 2004 and
his Dr.-Ing. degree in 2010 both in electrical engineer-
ing and information sciences from the Ruhr-Universität
Bochum, Bochum, Germany. In 2005, he spent six months
with Siemens Corporate Research in Princeton, NJ, USA.

During 2010 to 2011 Dr. Gerkmann was a postdoctoral
researcher at the Sound and Image Processing Lab at the
Royal Institute of Technology (KTH), Stockholm, Sweden.
From 2011 to 2015 he was a professor for speech signal
processing at the Universität Oldenburg, Oldenburg, Ger-
many. During 2015 to 2016 he was a Principal Scientist
for Audio & Acoustics at Technicolor Research & Inno-
vation in Hanover, Germany. Since 2016 he is a professor
for signal processing at the University of Hamburg, Ger-
many. His research interests are on digital signal processing
algorithms for speech and audio applied to communica-
tion devices, hearing instruments, audio-visual media, and
human-machine interfaces. Timo Gerkmann is a Senior
Member of the IEEE.

•
Simon Doclo received the M.Sc. degree in electrical en-

gineering and the Ph.D. degree in applied sciences from
the Katholieke Universiteit Leuven, Belgium, in 1997 and
2003. From 2003 to 2007 he was a Postdoctoral Fellow with
the Research Foundation - Flanders at the Electrical Engi-
neering Department (Katholieke Universiteit Leuven) and
the Adaptive Systems Laboratory (McMaster University,
Canada). From 2007 to 2009 he was a Principal Scien-
tist with NXP Semiconductors at the Sound and Acoustics
Group in Leuven, Belgium. Since 2009 he is a full pro-
fessor at the University of Oldenburg, Germany, and sci-
entific advisor for the project group Hearing, Speech and
Audio Technology of the Fraunhofer Institute for Digital
Media Technology. His research activities center around
signal processing for acoustical and biomedical applica-
tions, more specifically microphone array processing, ac-
tive noise control, acoustic sensor networks, and hearing aid
processing. Prof. Doclo received the Master Thesis Award
of the Royal Flemish Society of Engineers in 1997 (with
Erik De Clippel), the Best Student Paper Award at the
International Workshop on Acoustic Echo and Noise Con-
trol in 2001, the EURASIP Signal Processing Best Paper
Award in 2003 (with Marc Moonen) and the IEEE Signal
Processing Society 2008 Best Paper Award (with Jingdong
Chen, Jacob Benesty, Arden Huang). He was member of
the IEEE Signal Processing Society Technical Commit-
tee on Audio and Acoustic Signal Processing (2008–2013)
and Technical Program Chair for the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics
(WASPAA) in 2013. Prof. Doclo has served as guest editor
for several special issues (IEEE Signal Processing Maga-
zine, Elsevier Signal Processing) and is associate editor for
IEEE/ACM Transactions on Audio, Speech and Language
Processing and EURASIP Journal on Advances in Signal
Processing.

30 J. Audio Eng. Soc., Vol. 65, No. 1/2, 2017 January/February




