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ABSTRACT

The multi-channel Wiener filter (MWF) for dereverberation relies on
estimating the late reverberant power spectral density (PSD) and the
relative early transfer functions (RETFs) of the target signal from
a reference microphone to all microphones. State-of-the-art multi-
channel late reverberant PSD estimators also require an estimate of
the RETFs, which may be difficult to estimate accurately, particularly
in highly reverberant and noisy scenarios. Recently we proposed
a more advantageous late reverberant PSD estimator based on an
eigenvalue decomposition (EVD) which does not require knowledge
of the RETFs, thereby avoiding the propagation of any RETF es-
timation errors into the PSD estimate. However, the performance
of the proposed EVD-based estimator was analyzed by using it in
an MWF with simulated RETF estimation errors for a fixed speaker
position in noiseless scenarios. In this paper the EVD-based estimator
is combined with several practical RETF estimation methods, i.e., the
covariance whitening, covariance subtraction, and least-squares meth-
ods. The performance of the MWF using the EVD-based estimator
and the considered RETF estimation methods is then investigated for
a fixed and a moving speaker in different noiseless and noisy scenar-
ios. Experimental results show that while combining the EVD-based
estimator with any of the considered RETF estimation methods yields
a high performance, in noiseless scenarios the covariance whitening
and subtraction methods result in the best performance, whereas in
noisy scenarios the least-squares method results in the best perfor-
mance.

Index Terms— dereverberation, EVD, RETF estimation, MWF

1. INTRODUCTION

In many speech communication applications such as teleconferencing
applications, voice-controlled systems, and hearing aids, the micro-
phone signals are corrupted by reverberation, typically leading to
decreased speech quality and intelligibility [1,2] and performance de-
terioration in speech recognition systems [3]. Since late reverberation
is the major cause of speech quality and intelligibility degradation,
effective enhancement techniques that reduce the late reverberation
are required. A commonly used speech enhancement technique is
multi-channel Wiener filtering (MWF), which yields a minimum
mean-square error estimate of the target signal [4–6]. Implement-
ing the MWF for speech dereverberation requires estimates of i) the
late reverberant power spectral density (PSD), and ii) the relative
early transfer functions (RETFs) of the target signal from the ref-
erence microphone to all microphones. Many multi-channel late
reverberant PSD estimators [5–10] also require an estimate of the
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RETFs, which may be difficult to estimate accurately, particularly in
highly reverberant and noisy scenarios. As experimentally validated
in [11, 12], RETF estimation errors degrade the PSD estimation ac-
curacy, resulting in an additional degradation in the dereverberation
performance of the speech enhancement system. Recently we have
proposed a multi-channel late reverberant PSD estimator based on an
eigenvalue decomposition (EVD) which does not require knowledge
of the RETFs [13]. By decoupling the PSD estimation from the RETF
estimation it is avoided that any RETF estimation errors propagate
into the PSD estimate. The advantage of decoupling the PSD estima-
tion from the RETF estimation has been illustrated in [13], where it is
shown that using the RETF-independent EVD-based PSD estimator in
a MWF outperforms using the RETF-dependent maximum-likelihood
PSD estimator from [6], both when the true RETFs are known as well
as in the presence of RETF estimation errors.

However, in [13] the performance of the EVD-based PSD esti-
mator was analyzed by using it in an MWF with simulated RETF
estimation errors for a fixed speaker position. Moreover, the effect
of additive noise was neglected. In this paper we investigate the
dereverberation and noise reduction performance of the MWF for a
fixed and a moving speaker using the EVD-based PSD estimator and
RETFs estimated with several practical methods, i.e., the covariance
whitening method [14,15], the covariance subtraction method [15,16],
and the least-squares method [17]. It is shown that combining the
EVD-based PSD estimator with the covariance whitening and subtrac-
tion methods is straightforward and does not introduce any significant
additional computations. Furthermore, it is shown that while any of
the considered RETF estimation methods results in a high perfor-
mance, the covariance whitening and subtraction methods yield the
best performance in noiseless scenarios, whereas the least-squares
method yields the best performance in noisy scenarios.

2. PROBLEM FORMULATION

Consider a reverberant and noisy system with a single source and
M ≥ 2 microphones. In the short-time Fourier transform domain,
the M -dimensional vector of the microphone signals y(k, l) =
[Y1(k, l) . . . YM (k, l)]T , with k the frequency index and l the frame
index, is given by

y(k, l) = xd(k, l) + xr(k, l)︸ ︷︷ ︸
x(k,l)

+v(k, l), (1)

with x(k, l) the speech component, xd(k, l) the direct and early re-
verberant speech component, xr(k, l) the late reverberant speech
component, and v(k, l) the additive noise component. Assuming
a moving speaker, the direct speech component xd(k, l) can be de-
scribed by

xd(k, l) = d(k, l)S(k, l), (2)

116978-1-5090-5925-6/17/$31.00 ©2017 IEEE HSCMA 2017



with S(k, l) the target signal (direct and early reverberant speech
component) received by a reference microphone and d(k, l) the vec-
tor of time-varying RETFs of the target signal from the reference
microphone to all microphones. Without loss of generality, we as-
sume that the first microphone is the reference microphone such that
the RETF vector is given by d(k, l) = [1 D2(k, l) . . . DM (k, l)]T .
Since the processing is done independently in each frequency, in the
following the frequency index k is omitted.

Assuming that the speech and noise components are uncorrelated,
the PSD matrix of the microphone signals is equal to

Ry(l) = E{y(l)yH(l)} = E{x(l)xH(l)}︸ ︷︷ ︸
Rx(l)

+ E{v(l)vH(l)}︸ ︷︷ ︸
Rv(l)

, (3)

with E the expected value operator. Furthermore, assuming that the
direct and early reverberant speech component is uncorrelated to the
late reverberant speech component, the PSD matrix Rx(l) can be
written as

Rx(l) = E{xd(l)xH
d (l)}︸ ︷︷ ︸

Rxd
(l)

+ E{xr(l)x
H
r (l)}︸ ︷︷ ︸

Rxr (l)

(4)

= d(l)dH(l)Φs(l) + Rxr(l), (5)

with Φs(l) = E{|S(l)|2} the target signal PSD. Modeling the late
reverberation as a diffuse sound field, the PSD matrix of the late
reverberant speech component Rxr(l) may be written as [5, 7, 9, 10]

Rxr(l) = Φr(l)Γ, (6)

with Φr(l) the late reverberant PSD and Γ the diffuse spatial coher-
ence matrix which can be analytically computed given the geometry
of the microphone array.

The MWF w(l) = [W1(l) . . . WM (l)]T is designed such that
the mean-square error between the output signal Z(l) = wH(l)y(l)
and the target signal S(l) is minimized. It is well known that the
MWF can be decomposed into a Minimum Variance Distortionless
Response (MVDR) Beamformer wMVDR(l) and a single-channel
Wiener postfilter G(l) applied to the MVDR output [18], i.e.,

w(l) =
R−1

u (l)d(l)

dH(l)R−1
u (l)d(l)︸ ︷︷ ︸

w
MVDR

(l)

Φs(l)

Φs(l) + (dH(l)R−1
u (l)d(l))−1︸ ︷︷ ︸

G(l)

, (7)

with Ru(l) the PSD matrix of the undesired signal components (i.e.,
late reverberation and noise) given by

Ru(l) = Φr(l)Γ + Rv(l). (8)

As illustrated in (7) and (8), the implementation of the MWF requires
knowledge of the late reverberant PSD Φr(l), coherence matrix Γ,
noise PSD matrix Rv(l), RETF vector d(l), and target signal PSD
Φs(l). In previous work it has been assumed that Γ, Rv(l), and
d(l) are known such that only the PSDs Φs(l) and Φr(l) need to be
estimated [5–10]. In this work we only assume that Γ and Rv(l)
are known, such that the PSDs Φs(l) and Φr(l) and the RETF vector
d(l) need to be estimated. While Γ can be analytically computed
based on the array geometry [5,7,9,10], the PSD matrix Rv(l) can be
periodically updated in time-frequency regions where the speech level
is low in comparison to the noise level, e.g., using the multi-channel
speech presence probability estimator in [19]. Note that since the
noise PSD matrix Rv(l) is assumed to be available, also the speech
PSD matrix Rx(l) can be estimated, e.g., as Rx(l) = Ry(l)−Rv(l),
with Ry(l) estimated from the microphone signals.

3. EVD-BASED
LATE REVERBERANT PSD ESTIMATION

In the following we briefly review the recently proposed EVD-based
estimator from [13] which estimates the late reverberant PSD using
the eigenvalues of the whitened PSD matrix Rx(l). In order to whiten
Rx(l), the coherence matrix Γ and its inverse Γ−1 are decomposed
using the Cholesky decomposition as

Γ = LLH , Γ−1 = L−HL−1, (9)

with L an M ×M -dimensional lower triangular matrix. Using (9),
the whitened PSD matrix Rw

x (l) is computed as

Rw
x (l) = L−1Rx(l)L−H . (10)

Using (5), (6), and (9), the matrix Rw
x (l) can be written as

Rw
x (l) = Φs(l)L

−1d(l)dH(l)L−H + Φr(l)L
−1ΓL−H (11)

= Φs(l)b(l)bH(l) + Φr(l)I, (12)

with I theM×M -dimensional identity matrix and b(l) the whitened
RETF vector, i.e.,

b(l) = L−1d(l). (13)
Computing the EVD of Rw

x (l) yields

Rw
x (l) = U(l)S(l)UH(l), (14)

with U(l) an M ×M -dimensional matrix of eigenvectors and S(l)
theM×M -dimensional diagonal matrix of eigenvalues. Since Rw

x (l)
is the sum of a rank-1 matrix and a scaled identity matrix, cf. (12),
S(l) is given by

S(l) = diag{[σ(l) + Φr(l) Φr(l) . . . Φr(l)]
T }, (15)

with σ(l) the only non-zero eigenvalue of the rank-1 matrix
Φs(l)b(l)bH(l). Based on (15) and using the fact that the trace
of a matrix is equal to the sum of its eigenvalues, in [13] we have
proposed to estimate the late reverberant PSD as

Φ̂r(l) =
1

M − 1
(tr{Rw

x (l)} − λ1{Rw
x (l)}) , (16)

where tr{·} denotes the matrix trace operator and λ1{·} denotes
the first (maximum) eigenvalue. Using Φ̂r(l), an estimate of the
clean speech PSD Φ̂s(l) is obtained based on the decision directed
approach [20].

Unlike other state-of-the-art multi-channel late reverberant PSD
estimators [5–10], the EVD-based estimator in (16) does not require
knowledge of the RETF vector d(l). An RETF-independent PSD
estimator is advantageous in order to avoid the propagation of any
RETF estimation errors into the PSD estimate. As is experimentally
validated in [13], using the EVD-based PSD estimator in the MWF
in (7) yields a better dereverberation performance than the maximum
likelihood estimator in [6], both for perfectly estimated RETFs as well
as in the presence of RETF estimation errors. However, the RETF
estimation errors considered in [13] were simulated using knowledge
of the true RETFs.

4. RETF ESTIMATION

In the following several practical RETF estimation methods which
can be used together with the EVD-based PSD estimator are de-
scribed, i.e., the covariance whitening method [14,15], the covariance
subtraction method [15, 16], and the least-squares method [17]. Note
that the covariance whitening and subtraction methods typically have
been used to estimate the complete relative transfer functions in-
stead of the RETFs [15], hence, in the following these methods are
formulated for RETF estimation.
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4.1. Covariance whitening method

In order to estimate the RETFs using the covariance whitening
method, the EVD in (14) can readily be used. Let us denote by u(l)
the eigenvector corresponding to λ1{Rw

x (l)} (i.e., the first column of
U(l)). Since Rw

x (l) is given by (12) with b(l) in (13), the RETF vec-
tor d(l) is a scaled and rotated version of u(l). The estimated RETF
vector using the covariance whitening method is obtained by trans-
forming u(l) back from the whitened domain and normalizing by its
first entry (since the first microphone is the reference microphone),
i.e.,

d̂CW (l) =
Lu(l)

eTLu(l)
, (17)

with e = [1 0 . . . 0]T .

4.2. Covariance subtraction method

In order to estimate the RETFs using the covariance subtraction
method, first an estimate of the late reverberant PSD matrix R̂xr(l)

is constructed using Φ̂r(l) in (16) and the coherence matrix Γ, i.e.,
R̂xr(l) = Φ̂r(l)Γ. By subtracting R̂xr(l) from Rx(l) in (5), an
estimate of the direct and early reverberant speech component PSD
matrix R̂xd(l) is obtained, i.e., R̂xd(l) = Rx(l) − R̂xr(l). The
estimated RETF vector using the covariance subtraction method is
then computed by normalizing the first column of R̂xd(l) by its first
entry, i.e.,

d̂CS(l) =
R̂xd(l)e

eT R̂xd(l)e
. (18)

Note that for perfect knowledge of the speech component PSD matrix,
late reverberant PSD, and late reverberation coherence matrix, both
the covariance whitening and subtraction method yield the true RETF
vector according to the signal model in (5). However, due to unavoid-
able errors in the estimation of Rx(l) and since the late reverberation
is not truly isotropic (i.e., the assumed coherence matrix is erroneous)
the covariance whitening and subtraction methods can yield different
RETFs.

4.3. Least-squares method

In order to estimate the RETFs using the least-squares method, con-
sider that the direct and early reverberant speech componentsXd,m(l)
are related by the RETFs Dm(l) according to (cf. (2))

Xd,m(l) = Dm(l)Xd,1(l), m = 2, . . . , M. (19)

Multiplying both sides of (19) by X∗d,1(l) and taking the expectation
yields

Φdm,1(l) = Dm(l)Φd1(l), (20)

with Φdm,1(l) the cross-PSD ofXd,m(l) andXd,1(l), i.e., Φdm,1(l) =
E{Xd,m(l)X∗d,1(l)}, and Φd1(l) the PSD of Xd,1(l), i.e., Φd1(l) =

E{|Xd,1(l)|2}. Using (20), a least-squares criterion can be formu-
lated to estimate the RETFs Dm(l). Assuming that the RETFs are
time-invariant during the latest T frames, a least-squares estimate of
Dm(l) is given by

D̂m,LS(l) =

∑l
l′=l−T+1 Φdm,1(l′)Φd1(l′)∑l

l′=l−T+1 Φ2
d1

(l′)
. (21)

In order to estimate Xd,m(l), single-channel dereverberation and
denoising filters are applied to each microphone signal. For details
on the derivation of these filters, the reader is referred to [17]. The
PSDs required in (21) are then computed from the estimated Xd,m(l)
by recursive averaging.

Table 1: Characteristics of the considered acoustic systems.

System T60 [ms] dim [cm]

AS1 610 8
AS2 800 5

5. EXPERIMENTAL RESULTS

In this section the performance of the MWF in (7) using the EVD-
based PSD estimator described in Section 3 and the different RETF
estimation methods described in Section 4 is evaluated by means
of objective performance measures. In Section 5.2 the performance
in noiseless scenarios is investigated, whereas in Section 5.3 the
performance in noisy scenarios is investigated.

5.1. Setup

We consider two multi-channel acoustic systems consisting of a lin-
ear microphone array with M ∈ {2, 3, 4} microphones. Table 1
presents the reverberation time T60 and the inter-microphone distance
dim for each acoustic system. For system AS1 the speaker was lo-
cated at fixed positions of 0◦, 15◦, 30◦, 45◦, and 60◦, with the speech
components generated by convolving an 18 s long anechoic signal
with measured room impulse responses (RIRs) [21]. For system AS2

the speaker was moving from 0◦ to 60◦, with the speech components
simulated with the signal generator from [22] using a 3 s long ane-
choic signal. For both acoustic systems, the anechoic signals were
taken from the TIMIT database [23]. It should be noted that although
the performance of the considered techniques has been analyzed for a
wide range of acoustic systems (different anechoic signals and RIRs),
due to space constraint only two exemplary acoustic systems are
presented in this paper. The noise components consist of a stationary
directional interference at−30◦ and spatially uncorrelated noise. The
considered signal-to-interference ratios (SIRs) are 10, 20, and 30 dB,
and the signal-to-noise ratio is 20 dB. To be able to estimate the noise
PSD matrix Rv during speech absence, a 500 ms long noise-only
signal precedes the speech signal.

The signals are processed using a weighted overlap-add frame-
work with a frame size of 1024 samples and an overlap of 75% at a
sampling frequency of 16 kHz. The PSD matrices are computed using
recursive averaging with a time constant of 50 ms. For the noiseless
scenarios in Section 5.2, the PSD matrix Rx(l) is directly estimated
from the microphone signals. For the noisy scenarios in Section 5.3,
the PSD matrix Rx(l) is estimated as Ry(l)−Rv, with Ry(l) es-
timated from the microphone signals during the speech-plus-noise
period and Rv estimated during the noise-only period. Due to PSD
matrix estimation errors, computing Rx(l) as Ry(l)−Rv may not
yield a positive definite matrix, particularly at low input SIRs. The
estimated Rx(l) is forced to be positive semi-definite by computing
its eigenvalue decomposition and setting the negative eigenvalues to
0. The number of frames used for the least-squares average in (21) is
T = 3. A minimum gain of −20 dB is used for the single-channel
Wiener postfilter.

The performance is evaluated in terms of the improvement in
frequency-weighted segmental signal-to-noise-ratio (∆fwSSNR) [24]
and cepstral distance (∆CD) [25] between the output signal and the
first microphone signal. The fwSSNR and CD measures are intrusive
measures, comparing the output signal to a reference signal. The
reference signal used in this paper is the anechoic signal. Note that
a positive ∆fwSSNR and a negative ∆CD indicate a performance
improvement.
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Fig. 1: Dereverberation performance for system AS1 using the true
and the estimated RETFs: (a) ∆fwSSNR and (b) ∆CD.
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Fig. 2: Dereverberation performance for system AS2 using the esti-
mated RETFs: (a) ∆fwSSNR and (b) ∆CD.

5.2. Performance in noiseless scenarios

In this section the dereverberation performance of the MWF using
the EVD-based PSD estimator and the considered RETF estimation
methods is investigated for both acoustic systems and all considered
array configurations. Since for system AS1 the measured RIRs are
available, the true RETFs can be constructed using the frequency
response of the truncated direct path and early reflections of the
measured RIRs (up to 10 ms). Hence, for system AS1 also the
performance when using the true RETFs is investigated, representing
the optimal achievable performance.

Fig. 1 depicts the dereverberation performance for system AS1

when using the true RETFs and the RETFs estimated with the con-
sidered methods. It can be observed that using the RETFs estimated
with the covariance whitening and subtraction methods yields a very
similar performance. In addition, it can be observed that using these
methods results in a slightly better performance than using the least-
squares method, both in terms of ∆fwSSNR and ∆CD. Finally, it can
be observed that using the true RETFs yields only a slightly better
performance than using the RETFs estimated with the covariance
whitening and subtraction methods, with an insignificant performance
difference in the order of 0.20 dB for ∆fwSSNR and 0.15 dB for
∆CD. Fig. 2 depicts the dereverberation performance for system AS2

when using the RETFs estimated with the considered methods. Simi-
larly as for system AS1, it is illustrated that the covariance whitening
and subtraction methods yield a very similar performance, slightly
outperforming the least-squares method. Comparing the results pre-
sented in Figs. 1 and 2 it can be observed that although system AS2

represents a more challenging system where the speaker position
changes fast, the performance improvement obtained for both sys-
tems and all considered array configurations is similar.

In summary these results demonstrate the suitability of combining
any of the considered RETF estimation methods with the EVD-based
PSD estimator in a MWF to successfully dereverberate a fixed as well
as a moving speaker. Since the covariance whitening and subtraction
methods yield the best performance and since they do not introduce
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Fig. 3: Dereverberation and noise reduction performance using the
true and the estimated RETFs for (a) system AS1 and (b) system AS2

(∆fwSSNR, M = 4).

any additional significant computations, it can be said that they are
the preferred methods to be used in reverberant scenarios.

5.3. Performance in noisy scenarios

In this section the dereverberation and noise reduction performance
of the MWF using the EVD-based PSD estimator and the considered
RETF estimation methods is investigated for both acoustic systems
and M = 4 microphones. As in Section 5.2, for system AS1 also the
performance when using the true RETFs is depicted. Since similar
conclusions are derived by analyzing the ∆fwSSNR and the ∆CD
values, Fig. 3 depicts only the ∆fwSSNR values for both acoustic sys-
tems. Fig. 3a shows that for system AS1 using the RETFs estimated
with the covariance whitening and subtraction methods yields a very
similar performance. In addition, it is illustrated that in the presence
of additive noise these methods result in a worse performance than
the least-squares method, particularly for lower input SIRs. This can
be explained by the fact that the covariance whitening and subtraction
methods rely on the speech PSD matrix Rx(l) to estimate the RETFs,
which is unavoidably erroneous when computed as Ry(l) − Rv

(particularly for lower input SIRs). Finally, it can be observed that
using the true RETFs yields only a slightly better performance than
using the RETFs estimated with the least-squares method. Similar
conclusions can be derived by analyzing the performance for system
AS2 depicted in Fig. 3b, i.e., the covariance whitening and subtrac-
tion methods yield a very similar performance. Furthermore, the
least-squares method outperforms the covariance whitening and sub-
traction methods. However, the difference in performance between
the different RETF estimation methods is smaller than for system
AS1, since system AS2 represents a rather challenging system for any
of the considered RETF estimation methods.

In summary these results demonstrate the suitability of combining
any of the considered RETF estimation methods with the EVD-based
PSD estimator to successfully dereverberate and denoise a fixed as
well as a moving speaker. Since the least-squares method yields the
best performance, it is the preferred method to be used in reverberant
and noisy scenarios.

6. CONCLUSION

In this paper the performance of the MWF using the EVD-based late
reverberant PSD estimator and several RETF estimation methods
has been investigated for noiseless and noisy scenarios as well as for
a fixed and a moving a speaker. It has been shown that using the
EVD-based PSD estimator and any of the considered RETF estima-
tion methods, i.e., the covariance whitening, covariance subtraction,
and least-squares methods, yields a high dereverberation and noise
reduction performance. While the covariance whitening and subtrac-
tion methods yield the best performance in reverberant scenarios, the
least-squares method yields the best performance in reverberant and
noisy scenarios.
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