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ABSTRACT

This paper investigates four single-channel speech dereverberation
algorithms, i.e., two unsupervised approaches based on (i) spectral
enhancement and (ii) linear prediction, as well as two supervised ap-
proaches relying on machine learning which incorporate deep neu-
ral networks to predict either (iii) the magnitude spectrogram or (iv)
the ideal ratio mask. The relative merits of the four algorithms in
terms of several objective measures, automatic speech recognition
performance, robustness against noise, variations between simulated
and recorded reverberant speech, computation time and latency are
discussed. Experimental results show that all four algorithms are ca-
pable of providing benefits in reverberant environments even with
moderate background noises. In addition, low complexity and la-
tency indicate their potential for real-time applications.

Index Terms— Speech dereverberation, supervised learning,
objective measure, speech recognition, real-time application

1. INTRODUCTION

Reverberation, caused by multiple acoustic reflections inside an en-
closed space, has been shown to be detrimental to speech perception
and automatic speech recognition (ASR) systems [1, 2]. Speech
dereverberation is therefore desirable for speech communication
applications aiming at improving perceptual speech quality, speech
intelligibility and ASR performance [2, 3, 4]. Single-channel speech
dereverberation approaches include acoustic channel equaliza-
tion [5, 6], spectral enhancement [7, 8, 9], probabilistic model-based
dereverberation [10, 11], and time-frequency (TF) masking [12, 13]
adopted from the field of speech separation in computational au-
ditory scene analysis (CASA) [14]. Since channel equalization is
a non-blind speech dereverberation method, requiring an accurate
estimate of the room impulse response (RIR) between the speech
source and the microphone [6, 13], this severely limits its applica-
bility in practice. Spectral enhancement methods aim at estimating a
real-valued gain in the short-time Fourier transform (STFT) domain
to obtain the clean speech spectral coefficients. These methods are
often based on a statistical RIR model, e.g., Polack’s RIR model
requiring an estimate of the reverberation time (RT) [7] or a more
generalized model additionally requiring the direct-to-reverberant
ratio (DRR) [8]. The low complexity of spectral enhancement
methods is attractive for real-time applications even in spite of their
inherent trade-off between late reverberation suppression and speech
distortion. Speech dereverberation can also be performed by estimat-
ing the late/undesired reverberation using linear prediction, where
the filters are typically computed by maximizing sparsity of the

output signal in the STFT domain [10, 11]. Real-time capable adap-
tive implementations based on recursive least squares (RLS) have
been proposed in [15, 16]. Motivated by TF masking approaches
from the field of CASA, i.e., aiming to achieve speech separation
in noisy environments [14], also TF masking approaches for speech
dereverberation have been proposed [12, 13]. However, in practice
an accurate estimate of the TF mask remains challenging [13, 17].

Recently, the great success of supervised learning using deep
neural networks (DNNs) for ASR [18] has been extended to speech
enhancement/separation, e.g., in [17, 19, 20], by considering the re-
lationship between the distorted signal (noisy or reverberant speech)
and the target signal (clean or anechoic speech) as a nonlinear trans-
formation. From this perspective, speech dereverberation can be for-
mulated as asupervisedlearning problem on the basis of the un-
derlying dereverberation principles derived from the aforementioned
unsupervisedmethods. According to the training targets of DNNs,
we consider two different supervised algorithms for real-time speech
dereverberation, i.e., one based on mapping and one based on mask-
ing. More specifically, inspired by the spectral enhancement derever-
beration methods, mapping-based methods (e.g., [17]) train a non-
linear mapping between the spectra of the reverberant speech and
the spectra of the corresponding anechoic speech. Masking-based
methods train DNN to estimate the mask that best approximates
a reference mask computed using the clean and reverberant spec-
tra. In contrast to the mapping-based methods which directly con-
sider spectra as DNN features, masking-based methods require ded-
icated features as input to the DNN in order to improve the DNN’s
discriminative power w.r.t. the DNN targets, e.g., the ideal binary
mask (IBM) [14] or the ideal ratio mask (IRM) [19]. Motivated by
findings in masking-based speech separation [21] that the best in-
dividual features were both auditory-inspired in matched and mis-
matched test conditions, herein we propose to use auditory-inspired
features that are capable of extracting temporal modulation cues [22]
which are known to play an important role in the human auditory
system to analyze dynamic acoustic stimuli.

This paper aims to systematically investigate the performance
and the applicability of the four mentioned single-channel speech
dereverberation algorithms for real-time applications. Section 2
briefly introduces the algorithms and Section 3 outlines the experi-
mental procedure. Performance results and detailed discussions of
the relative merits will be addressed in Section 4.

2. SPEECH DEREVERBERATION ALGORITHMS

2.1. Spectral Enhancement
Spectral enhancement based dereverberation methods usually as-
sume that late reverberation is uncorrelated to the direct or early
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speech component and hence, can be considered as additive dis-
turbance. In the STFT domain the reverberant speechx[k, ℓ] for
frequency indexk and block time indexℓ can be represented as the
addition of the (clean) early speech component speechxe[k, ℓ] and
the late reverberation speech componentxl[k, ℓ], i.e.,

x[k, ℓ] = xe[k, ℓ] + xl[k, ℓ] . (1)

When the spectral variance of the late reverberation component can
be accurately estimated, speech dereverberation can be achieved,
e.g., by estimating the amplitude of the clean speech component
in a minimum mean square error (MMSE) sense [23]. Typically,
a statistical RIR model is used to estimate the spectral variance of
the late reverberation component [7]. In order to cover scenarios
in which the speaker-microphone distance is smaller than the crit-
ical distance, i.e., the DRR is larger than 0 dB [24], a generalized
model [8] is adopted here. To jointly estimate RT and DRR, we have
used a trained neural network with a low complexity [25].

A parameterized MMSE spectral magnitude estimator [26] is
used to determine the gain functiong[k, ℓ], where the required a-
priori early-to-late-reverberation energy ratio is estimated using the
decision-directed approach [23]. Subsequently, the desired speech
component̂xe[k, ℓ] is estimated as

x̂e[k, ℓ] = max(g[k, ℓ], gmin)x[k, ℓ] , (2)

wheregmin is a lower bound for the gain functiong[k, ℓ], which
alleviates speech distortions. An inverse STFT is then used to recon-
struct the speech signal in the time domain.

2.2. Dereverberation by Single-Channel Linear Prediction

Dereverberation using linear prediction is based on the assumption
that the late reverberant component at the current time can be pre-
dicted from the previous microphone signals, which holds exactly
for the multi-channel case [10] and is a good approximation for the
single-channel case [27]. In the single-channel case, the late rever-
beration can then be modeled as

xl[k, ℓ] =

Lp−1∑

ι=0

pι[k, ℓ]x[k, ℓ− τ − ι] , (3)

wherepι[k, ℓ] denotes theι-th prediction coefficient at timeℓ, Lp is
the number of the coefficients, andτ is the prediction delay to deter-
mine the boundary between early reflections and late reverberation.
An estimate of the desired signalx̂e[k, ℓ] can be obtained once the
prediction coefficientspι[k, ℓ] in (3) are accurately estimated as

x̂e[k, ℓ] = x[k, ℓ]− x̂l[k, ℓ] . (4)

The unknown prediction coefficients are typically estimated by max-
imizing sparsity of the output (desired) speech signal in the STFT
domain [10, 11]. An online method suitable for real-time implemen-
tations, based on the RLS algorithm, has been proposed in [16].

2.3. Mapping-based Supervised Dereverberation

In contrast to the unsupervised dereverberation methods described
above, supervised methods rely on the learning abilities of DNNs
to generate a transformation from reverberant speech to anechoic
speech. A straightforward manner is to train a mapping from the re-
verberant spectra to the anechoic spectra [17]. The log-spectrogram
of the reverberant speech signal is chosen as the DNN input, and
its anechoic version is used as the DNN target. Note that the tar-
get log-spectrogram is normalized to the range of[0, 1] to provide

a bounded DNN target. The time domain signal is then synthesized
using the phase of the reverberant speech. The DNN operates on a
frame-by-frame basis allowing for real-time processing.

2.4. Masking-based Supervised Dereverberation

The masking-based supervised approaches take the TF mask as the
DNN target, for which IRM usually provides better performance
than other mask types (e.g., IBM) according to the findings from
speech separation [19]. The considered IRM which is applied to the
reverberant spectrum for dereverberation is defined as (cf. [28]),

m[k, ℓ] =
|xe[k, ℓ]|

α

|xe[k, ℓ]|α + |xr[k, ℓ]|α
, (5)

with α introducing a linear/nonlinear warping of the spectrum,
e.g.,α = 1 for magnitude spectrum,α = 2 for power spectrum, or
α = 2/3 motivated by auditory power law. On the other hand, it is
important to search a proper feature representation as the DNN input,
which is required to be strongly related to the targets as well as be
robust in terms of discriminative power. Herein we apply a temporal
modulation filter bank which is inspired by speech processing of
the human auditory system to the conventional log-mel-spectrogram
coefficients, so that temporal modulation knowledge from 0 until
50 Hz can be extracted.

3. EXPERIMENTAL SETUP

We adopt the evaluation test set from the REVERB Challenge [4],
which contains six simulated test sets (three rooms with near and
far speaker-to-microphone distances, denoted as s1n, s1f, s2n, s2f,
s3n, s3f, with in total2176 utterances), and one additional realistic
recording scenario (in total372 utterances with moderate ambient
noise). Stationary background noise is added to the simulated test
data with signal-to-noise ratios (SNRs) of[∞, 20, 15, 10, 5, 0] dB.
The reference anechoic speech data of the simulated and realistic
test sets are clean speech files from the WSJCAM0 British English
corpus [29] and the headset microphone recordings from the MC-
WSJ-AV corpus [30], respectively.

All simulations have been performed at a sampling frequency of
16 kHz, where the STFT has been computed using a25 ms Hann
window with 40% overlap, i.e., a hop size of10 ms. For the spec-
tral enhancement method (denoted SE),gmin in (2) is set to−10 dB,
which provides a good compromise between late reverberation sup-
pression and speech distortion (please refer to [3] for other parameter
settings). For the single-channel linear prediction method (denoted
SCLP),τ andLp in (3) are set to2 and30 with a forgetting factor of
0.99 for the RLS algorithm.

For the mapping-based and masking-based supervised methods
(denoted MAP and MASK), feedforward DNNs are used with five
hidden layers, each having2048 rectified linear hidden units. The
mean squared error has been used as the cost function for the DNN
training. For MAP DNN, a201-dimensional reverberant spectro-
gram input (FFT length of400 in STFT) as well as a length11
context window (5 for left and 5 for right) is used, and the out-
put layer represents the target201-dimensional clean spectrogram.
For MASK, we use12 temporal modulation filters (cf. [22]) per-
forming on the40-dimensional log-mel-spectrogram to generate the
auditory-inspired features as DNN input. Additional context win-
dow with length3 (1 for left and1 for right) is applied as well. The
output layer represents the target201-dimensional IRM in (5) with
α = 1, which provides slightly better results than other values of
α in our pilot experiments. The training data for these two DNNs
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was generated by convolving the anechoic utterances with the pro-
vided RIRs from the REVERB training set [4] but without additive
noises, resulting in7861 reverberant speech files (SNR =∞ dB) in
total. Note that these RIRs were recorded by an8-channel micro-
phone array with near and far positions and two different angles in
six rooms different from those rooms for the simulated and realistic
test sets [4], and all these192 recorded RIRs (against48 different
recorded RIRs in the simulated test set) were involved in order to
boost the generalization of observing various reverberation effects
during DNN training.

The performance of the considered algorithms is evaluated
in terms of speech quality and intelligibility, ASR performance and
real-time applicability. The used objective measures include cepstral
distance (CD) [31], frequency-weighted segmental signal-to-noise
ratio (FWSSNR) [31], normalized speech-to-reverberation modu-
lation energy ratio (SRMR) [32], perceptual evaluation of speech
quality score (PESQ) [33] and short-time objective intelligibility
score (STOI) [34]. Following the REVERB ASR1chprocedure [4],
GMM/HMM is replaced by DNN/HMM as the acoustic modeling
(cf. [3]). Besides the clean condition training (Cln) using only clean
speech, we have also used multi-condition training (Mc) which is
generated by using the reverberant speech (using only1ch of the
RIRs provided by the REVERB training script, but without additive
noises). Mc is also generated by using the dereverberated speech
processed by each dereverberation algorithm on the reverberant
training data (same amount of files as Cln for fair comparison). The
real-time factor (RTF, defined as the computation time divided by
the duration of the processed speech file) and the latency (deter-
mined as the time delay between the input and output speech) are
evaluated as well.

4. RESULTS AND DISCUSSION

4.1. Objective Measures

For the simulated test set in a noise-free condition, Fig. 1 (a)-(e) il-
lustrates the improvements of the considered objective measures for
speech quality and intelligibility compared to the unprocessed re-
verberant speech data (as reference). In general, the average scores
across all conditions (rooms and speaker-to-microphone distances)
indicate that all considered algorithms are capable of improving the
objective measures, although the algorithms behave quite differently
w.r.t. different measures and reverberant conditions. SE generally
yields minor but consistent improvements for all reverberant condi-
tions, except in terms of speech intelligibility (predicted by STOI).
On the other hand, SCLP only seems to yield improvements for
high reverberant conditions (s2n, s2f, s3n, s3f) and even degrades
the performance for low reverberant conditions (s1n, s1f), proba-
bly due to distortions caused by overestimating the late reverbera-
tion. On average, the performance improvements of SE and SCLP
are quite similar (except for SRMR). Similarly, the performance im-
provement of MAP is quite inconsistent across different reverberant
conditions, probably due to inconsistencies between the estimated
normalized magnitude spectrogram and the unprocessed phase. On
average, MAP hardly seems to yield any performance improvement
(except for CD and SRMR). MASK outperforms all other consid-
ered algorithms (except in terms of SRMR improvement), showing
that DNNs incorporating auditory-inspired features seem to be able
to accurately estimate the IRM.

In addition, Fig. 1 (f) depicts the word error rate (WER) reduc-
tion for clean condition training, reflecting the proximity between
features computed on dereverberated signals and clean reference fea-
tures. It is clearly observed that on average more than10% WER
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Fig. 1. Improvements of the objective measures for SE, SCLP,
MAP and MASK for the simulated test set in a noise-free condition
(SNR =∞ dB) compared to the reference scores of the unprocessed
reverberant speech data (at the top of each panel).

reduction can be achieved by all considered algorithms, where both
supervised methods (MAP, MASK) perform very similarly and yield
a relative WER reduction of nearly50% compared to the unsuper-
vised methods (SE, SCLP). This indicates that DNN-based derever-
beration algorithms are able to preserve the clean speech feature vari-
ations that match with the clean trained model quite well.

4.2. ASR Performance

It is well known that multi-condition training is able to improve the
performance of ASR systems. In order to further improve the ASR
performance when the training set is not large enough to learn the
feature variations caused by reverberation (like REVERB), speech
dereverberation as front-end processing is a common strategy to re-
move reverberation-associated feature variances from both training
and test data, cf. [3]. Fig. 2 compares the WER for clean condi-
tion training (Cln) and multi-condition training (Mc). For the un-
processed test data, it can be observed that Mc leads to a signifi-
cant WER reduction of more than20% on average compared to Cln.
Moreover, the speech dereverberation algorithms (except for MAP)
are able to further reduce the WERs by1-1.5% on average over the
unprocessed case. Compared to Cln, SCLP consistently performs
slightly better than SE (except for the low reverberant conditions,
i.e. s1n and s1f), and MASK consistently performs better than MAP.
It is interesting to note that in contrast to Cln, MAP and MASK are
not superior to SE and SCLP when using Mc. This is presumably
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due to the fact that more reverberant feature variations are removed
by MAP and MASK, which may benefit ASR with Cln but may hin-
der DNN generalization with Mc since too much variability from the
training data has been removed.

4.3. Influence of Background Noise

Since background noise typically negatively affects the performance
of dereverberation algorithms, in this section we investigate the ro-
bustness of the considered dereverberation algorithms (without any
dedicated denoising strategies) against noise. For the simulated test
set, Fig. 3 shows the improvement of the average scores (averaged
across all reverberant conditions) for different SNRs. Although ben-
efits can still be clearly observed for all considered algorithms, their
robustness to noise is quite different.

For SE, SCLP and MASK, the improvements for most objec-
tive measures gradually decrease with decreasing SNR, meaning that
the effectiveness of dereverberation degrades as the noise level in-
creases. For example, for CD, PESQ and ASR (Mc) no obvious
improvements can be observed at SNRs lower than10 dB. On the
other hand, the SRMR improvement of SE, SCLP and MASK seems
to be relatively constant for different SNRs, presumably because the
ratio of the modulation frequency energies is not so much affected
by stationary noise. For MAP, it is interesting - but not entirely un-
expected - that in general the improvements for most objective mea-
sures increase with decreasing SNR. In other words, MAP behaves
quite robustly to noise, which may be explained by the underlying
principle that the MAP DNN is trained to map non-target spectro-
gram information (i.e. reverberant and silent parts) to zero. Since
the MAP DNN probably considers noise as non-target information,
this results in denoising to some extent. Overall, MAP performs the
best in terms of CD and FWSSNR across all SNRs, as well as the
best in terms of SRMR, PESQ and ASR (Cln) at low SNRs (be-
low 10 dB). At moderate SNRs (above10 dB), SE provides the best
SRMR measure and MASK leads to the best PESQ and ASR (Cln)
scores. SCLP and MASK still seems to result in the best improve-
ment of ASR (Mc) and STOI, respectively, even at low SNRs.
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Fig. 3. (a)-(e): Improvements of the objective measures compared to
the average reference scores of the unprocessed reverberant data (at
the top of each panel) for different SNRs; (f): WER improvements
for ASR with Cln (solid curves, reference WERs at the top) and Mc
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4.4. Performance with Realistic Recordings

In order to evaluate the robustness of the considered dereverberation
algorithms against variations that are not reproducible by simulation,
Table 1 summarizes the performance for realistic recordings from a
meeting room with moderate stationary ambient noise [4, 30]. Most
results are in accordance with the results for the simulated reverber-
ant and noisy data from Section 4.3, i.e., the best CD, PESQ, STOI
and ASR (Cln) scores are obtained by MASK and MAP, while the
best SRMR score is obtained by SE and the best ASR (Mc) score is
obtained by SCLP. On the other hand, although Fig. 3 (b) suggests
that MAP could offer the best FWSSNR score and SE the worst
score, this is the other way around for the recordings, where the best
FWSSNR score is obtained by SE.

Table 1. Objective measures and ASR performance with realistic
recordings; WER is 6.98% for the headset mic recordings with Cln.

CD FWSSNR SRMR PESQ STOI WER Cln WER Mc
Unproc. 4.87 -2.01 1.59 1.17 0.66 73.86 30.11
SE 4.72 -0.21 2.49 1.22 0.64 63.13 26.53
SCLP 5.02 -1.79 1.77 1.22 0.70 57.38 25.97
MAP 3.72 -3.27 2.46 1.29 0.75 39.86 31.28
MASK 4.44 -1.02 2.09 1.26 0.76 36.55 27.64

4.5. RTF and Latency

Table 2 lists the average RTF based on all test sets and the latency
of each considered dereverberation algorithm. SE and SCLP were
implemented in Matlab running onGenuineIntel x8664 64bits CPU
2.0 GHzplatform. For MAP and MASK, besides the feature extrac-
tion and the STFT analysis/synthesis implemented in Matlab, the es-
timated magnitude spectrograms or IRMs were obtained via DNNs
compiled with aTesla K20c NVIDIA GPU 5 GB. The inherent STFT
latency is one block length (here25 ms) for all algorithms. Due to
the context window for DNN input, additional latencies of5 and1
block length (cf. Section 3) are required for MAP and MASK, re-
spectively. MASK needs further latency of24 block length because
of the longest modulation filter with length of49 for the auditory-
inspired feature extraction. As a result, it shows that SE, MAP and
MASK cost very low complexity, while SCLP is the most demand-
ing computationally. MASK has longer latency compared to other
methods, which could be reduced by selecting shorter modulation
filters. Overall, RTFs below1.0 and the low latencies indicate that
all four dereverberation algorithms are fit to real-time applications.

Table 2. RTFs and latencies of the four dereverberation algorithms.
SE SCLP MAP MASK

RTF 0.028 0.679 0.035 0.052
Latency 25 ms 25 ms 75 ms 275 ms

5. CONCLUSIONS

In this paper, we presented a comparative study of two unsuper-
vised and two supervised single-channel speech dereverberation al-
gorithms. Results showed that spectral enhancement is capable of
providing minor but consistent benefits for all reverberant condi-
tions. Although single-channel linear prediction shows limited ben-
efits in low reverberant scenarios, it performs the best on average
for multi-condition trained ASR. In a noise-free condition, the IRM-
based supervised approach provides the best overall objective mea-
sures and ASR performance using clean condition training, while the
spectral mapping based supervised approach is the least sensitive to
background noise. As part of future work, subjective listening tests
should be performed to evaluate the correlation between the objec-
tive performance measures and subjective scores.
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