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ABSTRACT output signal in the STFT domain [10, 11]. Real-time capable adap-
tive implementations based on recursive least squares (RLS) have

This paper investigates four single-channel speech dereverberatig@en proposed in [15, 16]. Motivated by TF masking approaches
algorithms, i.e., two unsupervised approaches based on (i) spectfadm the field of CASA, i.e., aiming to achieve speech separation
enhancement and (ii) linear prediction, as well as two supervised ag noisy environments [14], also TF masking approaches for speech
proaches relying on machine learning which incorporate deep newereverberation have been proposed [12, 13]. However, in peactic
ral networks to predict either (jii) the magnitude spectrogram or (iv)an accurate estimate of the TF mask remains challenging [13, 17].
the ideal ratio mask. The relative merits of the four algorithms in Recently, the great success of supervised learning using deep
terms of several objective measures, automatic speech recognitigreural networks (DNNs) for ASR [18] has been extended to speech
performance, robustness against noise, variations between simulaigshancement/separation, e.g., in [17, 19, 20], by considering the re
and recorded reverberant speech, computation time and latency aggionship between the distorted signal (noisy or reverberant speech)
discussed. Experimental results show that all four algorithms are cand the target signal (clean or anechoic speech) as a nonlinear trans-
pable of providing benefits in reverberant environments even withlormation. From this perspective, speech dereverberation cam-be fo
moderate background noises. In addition, low complexity and lamulated as asupervisedearning problem on the basis of the un-
tency indicate their potential for real-time applications. derlying dereverberation principles derived from the aforementioned
unsuperviseanethods. According to the training targets of DNNs,
Wwe consider two different supervised algorithms for real-time speech
dereverberation, i.e., one based on mapping and one based on mask
ing. More specifically, inspired by the spectral enhancement derever
1. INTRODUCTION beration methods, mapping-based methods (e.g., [17]) train a non-

linear mapping between the spectra of the reverberant speech and

Reverberation, caused by multiple acoustic reflections inside an e specira of the corresponding anechoic speech. Masking-based

closed space, has been shown_tp be detrimental to speech perceptrlﬁgthods train DNN to estimate the mask that best approximates
and automatic speech recognition (ASR) systems [1, 2]. Speecg reference mask computed using the clean and reverberant spec-
dereverberation is therefore desirable for speech communication P 9 P

cppicatons aimingat mproung prceptal spech auelty, speec, " 715 e mapr based metocs whcn decty o
intelligibility and ASR performance [2, 3, 4]. Single-channel speech: P ’ 9 q

dereverberation approaches include acoustic channel equaliz:%';1 E:eridmfi?] z:lttlij\:s ijv:enrpvl:/trtto m I?)NN% Ta?rgti ' tg ImptLo(;/tie dt:ael gh’:grs
tion [5, 6], spectral enhancement [7, 8, 9], probabilistic model-dbase p P gets, €.9., y

. L . mask (IBM) [14] or the ideal ratio mask (IRM) [19]. Motivated by
dereverberation [10_’ 11], and time frequenpy (TF) masklng_ (87, 1 findings in masking-based speech separation [21] that the best in-
adopted from the field of speech separation in computational aus. : . e - .

. ) ) ..~ . dividual features were both auditory-inspired in matched and mis-
ditory scene analysis (CASA) [14]. Since channel equalization Snatched test conditions, herein we propose to use auditory-inspired
a non-blind speech dereverberation method, requiring an accura%e ' prop y-Insp

estimate of the room impulse response (RIR) between the speel atures that are capable of extracting temporal modulation cues [22]

source and the microphone [6, 13], this severely limits its applicayv ich are known to play an important role in the human auditory

bility in practice. Spectral enhancement methods aim at estimating %VSte”? o analyze dynamic acous_tlc st|_mul|. .
o . . : This paper aims to systematically investigate the performance

real-valued gain in the short-time Fourier transform (STFT) domain R . >
. - and the applicability of the four mentioned single-channel speech
to obtain the clean speech spectral coefficients. These methods afe

often based on a statistical RIR model, e.g., Polack’s RIR modebe_reve_rberatlon algonthmg for real-time _appllcatlo_ns. Section 2
S . e riefly introduces the algorithms and Section 3 outlines the experi-
requiring an estimate of the reverberation time (RT) [7] or a more

generalized model additionally requiring the direct-to-reverberan ental procedure. Performance resuilts and detailed discussions of
. . he relative merits will be addressed in Section 4.

ratio (DRR) [8]. The low complexity of spectral enhancement

methods is attractive for real-time applications even in spite of their 5 SPEECH DEREVERBERATION ALGORITHMS

inherent trade-off between late reverberation suppression anchspee

distortion. Speech dereverberation can also be performed by estimé-1. Spectral Enhancement

ing the late/undesired reverberation using linear prediction, wher8pectral enhancement based dereverberation methods usually as-

the filters are typically computed by maximizing sparsity of thesume that late reverberation is uncorrelated to the direct or early

Index Terms— Speech dereverberation, supervised learning
objective measure, speech recognition, real-time application
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speech component and hence, can be considered as additive disbounded DNN target. The time domain signal is then synthesized
turbance. In the STFT domain the reverberant speggh?] for using the phase of the reverberant speech. The DNN operates on a
frequency index: and block time index can be represented as the frame-by-frame basis allowing for real-time processing.

addition of the (clean) early speech component speefh ¢] and

the late reverberation speech componeit, 4], i.e., 2.4. Masking-based Supervised Dereverberation

z[k, €] = xe[k, €] + z1[k, €] . @ The masking-based supervised approaches take the TF mask as the
) ] DNN target, for which IRM usually provides better performance
When the spectral variance of the late reverberation component C3Ran other mask types (e.g., IBM) according to the findings from
be accurately estimated, speech dereverberation can be achlevgfeech separation [19]. The considered IRM which is applied to the

e.g., by estimating the amplitude of the clean speech componeféyerberant spectrum for dereverberation is defined as (c}, [28]
in a minimum mean square error (MMSE) sense [23]. Typically,

a statistical RIR model is used to estimate the spectral variance of
the late reverberation component [7]. In order to cover scenarios
in which the speaker-microphone distance is smaller than the crit-
ical distance, i.e., the DRR is larger than 0 dB [24], a generalizedvith o introducing a linear/nonlinear warping of the spectrum,
model [8] is adopted here. To jointly estimate RT and DRR, we havee.g.,a = 1 for magnitude spectrumy = 2 for power spectrum, or
used a trained neural network with a low complexity [25]. a = 2/3 motivated by auditory power law. On the other hand, it is
A parameterized MMSE spectral magnitude estimator [26] ismportant to search a proper feature representation as the DNN input,
used to determine the gain functigf, ¢], where the required a- which is required to be strongly related to the targets as well as be
priori early-to-late-reverberation energy ratio is estimated using theobust in terms of discriminative power. Herein we apply a temporal
decision-directed approach [23]. Subsequently, the desired speegtpdulation filter bank which is inspired by speech processing of

|z [k, €]
|zelk, €] + e[k, €]~ 7

m[k:, ﬂ = )

componentt.[k, £] is estimated as the human auditory system to the conventional log-mel-spectrogram
. coefficients, so that temporal modulation knowledge from O until
elk, €] = max(g[k, {], gmin) x[k, ], (2) 50 Hz can be extracted.

where gnin is a lower bound for the gain functiogik, ¢], which
alleviates speech distortions. An inverse STFT is then used to recon- 3. EXPERIMENTAL SETUP

struct the speech signal in the time domain. We adopt the evaluation test set from the REVERB Challenge [4],
which contains six simulated test sets (three rooms with near and
far speaker-to-microphone distances, denoted as sin, s1f,242n, s
Dereverberation using linear prediction is based on the assumptia8n, s3f, with in tota176 utterances), and one additional realistic
that the late reverberant component at the current time can be preecording scenario (in toté72 utterances with moderate ambient
dicted from the previous microphone signals, which holds exactlyhoise). Stationary background noise is added to the simulated test
for the multi-channel case [10] and is a good approximation for thedata with signal-to-noise ratios (SNRs) [eb, 20, 15, 10, 5, 0] dB.
single-channel case [27]. In the single-channel case, the late revefhe reference anechoic speech data of the simulated and realistic
beration can then be modeled as test sets are clean speech files from the WSJCAMO British English
corpus [29] and the headset microphone recordings from the MC-

2.2. Dereverberation by Single-Channel Linear Prediction

Lp—1 .
_ WSJ-AV corpus [30], respectively.
wilk, €] = Z; pulk, falk, £ =7 =], ®) All simulations have been performed at a sampling frequency of

16 kHz, where the STFT has been computed usir&p ans Hann

wherep, [k, ¢] denotes the-th prediction coefficient at timé, L, is window with 40% overlap, i.e., a hop size dfd ms. For the spec-

the number of the coefficients, amds the prediction delay to deter- tral enhancement method (denoted Sk}, in (2) is set to—10 dB,

mine the boundary between early reflections and late reverberatiowhich provides a good compromise between late reverberation sup-

An estimate of the desired signal [k, £] can be obtained once the pression and speech distortion (please refer to [3] for other paramete

prediction coefficientg, [k, £] in (3) are accurately estimated as settings). For the single-channel linear prediction method (denoted
SCLP),r andL,, in (3) are set t@ and30 with a forgetting factor of

Zelk, f] = xlk, {] — 2k, €] . (4 0.99 for the RLS algorithm.

For the mapping-based and masking-based supervised methods
denoted MAP and MASK), feedforward DNNs are used with five
idden layers, each havirzp48 rectified linear hidden units. The
mean squared error has been used as the cost function for the DNN
training. For MAP DNN, a201-dimensional reverberant spectro-
gram input (FFT length ofl00 in STFT) as well as a length1
context window § for left and 5 for right) is used, and the out-

In contrast to the unsupervised dereverberation methods describedt layer represents the targ¥il-dimensional clean spectrogram.
above, supervised methods rely on the learning abilities of DNN$or MASK, we usel2 temporal modulation filters (cf. [22]) per-
to generate a transformation from reverberant speech to anechdimrming on the40-dimensional log-mel-spectrogram to generate the
speech. A straightforward manner is to train a mapping from the reauditory-inspired features as DNN input. Additional context win-
verberant spectra to the anechoic spectra [17]. The log-speatmogradow with length3 (1 for left and1 for right) is applied as well. The

of the reverberant speech signal is chosen as the DNN input, arautput layer represents the tar@étl -dimensional IRM in (5) with

its anechoic version is used as the DNN target. Note that the tarx = 1, which provides slightly better results than other values of
get log-spectrogram is normalized to the rangd0ofl] to provide  « in our pilot experiments. The training data for these two DNNs

The unknown prediction coefficients are typically estimated by max-,
imizing sparsity of the output (desired) speech signal in the STF
domain [10, 11]. An online method suitable for real-time implemen-
tations, based on the RLS algorithm, has been proposed in [16].

2.3. Mapping-based Supervised Dereverberation
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was generated by convolving the anechoic utterances with the pr(@
vided RIRs from the REVERB training set [4] but without additive - |~
noises, resulting in861 reverberant speech files (SNR>s dB) in

total. Note that these RIRs were recorded by8achannel micro-
phone array with near and far positions and two different angles ilo
six rooms different from those rooms for the simulated and realistic

test sets [4], and all thes92 recorded RIRs (agaings different  (© £
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recorded RIRs in the simulated test set) were involved in ordertt 3 |~ ~ ~ g /\
boost the generalization of observing various reverberation effect € //\v,/ o

2
Z e 7Y

2.29]
2.79]
432
3.19
489
3.04

© i © Y L] 9] [=]

< N <} 0 = =] S
=}

4 o =] 0 ~ ) =)

g
o

ol &

D Impro

o

10 MAP MASK

—6— SE —6— SCLP

g
o

—~

o
o

o

during DNN training.
The performance of the considered algorithms is evaluater
in terms of speech quality and intelligibility, ASR performance and
real-time applicability. The used objective measures include cepstr:(e? ¢ 3 3 T 8§ § g
distance (CD) [31], frequency-weighted segmental signal-to-nois 20-1
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lation energy ratio (SRMR) [32], perceptual evaluation of speect
quality score (PESQ) [33] and short-time objective intelligibility
score (STOI) [34]. Following the REVERB ASRchprocedure [4], 01
GMM/HMM s replaced by DNN/HMM as the acoustic modeling

(cf. [3]). Besides the clean condition training (CIn) using only clean
speech, we have also used multi-condition training (Mc) which isFig. 1. Improvements of the objective measures for SE, SCLP,
generated by using the reverberant speech (using botiyof the ~ MAP and MASK for the simulated test set in a noise-free condition
RIRs provided by the REVERB training script, but without additive (SNR =oco dB) compared to the reference scores of the unprocessed
noises). Mc is also generated by using the dereverberated speetverberant speech data (at the top of each panel).

processed by each dereverberation algorithm on the reverberant ) ) ]
training data (same amount of files as Cln for fair comparison). Théeduction can be achieved by all considered algorithms, where both

real-time factor (RTF, defined as the computation time divided bysupervised methods (MAP, MASK) perform very similarly and yield
the duration of the processed speech file) and the latency (deted-relative WER reduction of nearly0% compared to the unsuper-

mined as the time delay between the input and output speech) a¥ésed methods (SE, SCLP). This indicates that DNN-based derever-
evaluated as well. beration algorithms are able to preserve the clean speech feature vari-

ations that match with the clean trained model quite well.

sln sif s2n s2f s3n s3f Avg. sln sif s2n s2f s3n s3f Avg.

o

4. RESULTS AND DISCUSSION
4.2. ASR Performance

4.1. Objective Measures It is well known that multi-condition training is able to improve the

For the simulated test set in a noise-free condition, Fig. 1 (a)-(e) ilperformance of ASR systems. In order to further improve the ASR
lustrates the improvements of the considered objective measures fperformance when the training set is not large enough to learn the
speech quality and intelligibility compared to the unprocessed refeature variations caused by reverberation (like REVERB), speech
verberant speech data (as reference). In general, the avexaigs s dereverberation as front-end processing is a common strategy to re-
across all conditions (rooms and speaker-to-microphone distance&)ove reverberation-associated feature variances from both training
indicate that all considered algorithms are capable of improving th@nd test data, cf. [3]. Fig. 2 compares the WER for clean condi-
objective measures, although the algorithms behave quite differentijon training (ClIn) and multi-condition training (Mc). For the un-
w.r.t. different measures and reverberant conditions. SE ggnera processed test data, it can be observed that Mc leads to a signifi-
yields minor but consistent improvements for all reverberant condicant WER reduction of more th&% on average compared to Cin.
tions, except in terms of speech intelligibility (predicted by STOI). Moreover, the speech dereverberation algorithms (except for MAP)
On the other hand, SCLP only seems to yield improvements fore able to further reduce the WERs byt.5% on average over the
high reverberant conditions (s2n, s2f, s3n, s3f) and even degradunprocessed case. Compared to Cin, SCLP consistently performs
the performance for low reverberant conditions (sin, sif), probaslightly better than SE (except for the low reverberant conditions,
bly due to distortions caused by overestimating the late reverbera-€. sln and s1f), and MASK consistently performs better than MAP.
tion. On average, the performance improvements of SE and SCLIPis interesting to note that in contrast to CIn, MAP and MASK are
are quite similar (except for SRMR). Similarly, the performance im-not superior to SE and SCLP when using Mc. This is presumably
provement of MAP is quite inconsistent across different revertieran
conditions, probably due to inconsistencies between the estimate
normalized magnitude spectrogram and the unprocessed phase.

o

‘ > ° 60 Unproc. —6— SCLP 2
average, MAP hardly seems to yield any performance improvemer< " MAP /&
(except for CD and SRMR). MASK outperforms all other consid- & MASK o
ered algorithms (except in terms of SRMR improvement), showingg 20 =

that DNNs incorporating auditory-inspired features seem to be abl L% =
to accurately estimate the IRM. sln sif s2n s2f s3n s3f Avg. sln sif s2n s2f s3n s3f Avg.

In addition, Fig. 1 (f) depicts the word error rate (WER) reduc-
tion for clean condition training, reflecting the proximity between Fig- 2. ASR performance for the simulated test sets in a noise-free
features computed on dereverberated signals and clean refezance fcondition with clean and multi-condition training; clean speech with
tures. Itis C|ear|y observed that on average more s WER Cln is considered as the Optlmal result with an AVg WER of 4.80%.

ASR Cln ASR Mc
15/ —e—'SE

Clean
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due to the fact that more reverberant feature variations are removed4. Performance with Realistic Recordings
by MAP and MASK, which may benefit ASR with Cln but may hin-
der DNN generalization with Mc since too much variability from the
training data has been removed.

In order to evaluate the robustness of the considered dereverberation
algorithms against variations that are not reproducible by simulation,
Table 1 summarizes the performance for realistic recordings from a
meeting room with moderate stationary ambient noise [4, 30]. Most
results are in accordance with the results for the simulated reverber-

Since background noise typically negatively affects the performancant and noisy data from Section 4.3, i.e., the best CD, PESQ, STOI
of dereverberation algorithms, in this section we investigate the roand ASR (ClIn) scores are obtained by MASK and MAP, while the
bustness of the considered dereverberation algorithms (without al3est SRMR score is obtained by SE and the best ASR (Mc) score is
dedicated denoising strategies) against noise. For the simulated t@tained by SCLP. On the other hand, although Fig. 3 (b) suggests
set, Fig. 3 shows the improvement of the average scores (averagétft MAP could offer the best FWSSNR score and SE the worst
across all reverberant conditions) for different SNRs. Although be Score, this is the other way around for the recordings, where the best
efits can still be clearly observed for all considered algorithms, theiFWSSNR score is obtained by SE.
robustness to noise is quite different.

For SE, SCLP and MASK, the improvements for most objec-

4.3. Influence of Background Noise

Table 1. Objective measures and ASR performance with realistic
ref:ordings; WER is 6.98% for the headset mic recordings with Cin.

tive measures gradually decrease with decreasing SNR, meaning tha CD | FWSSNR| SRMR | PESQ] STOT || WER Cln | WER Mc
the effectiveness of dereverberation degrades as the noise level irtUnproc. [ .87 -2.01 159 | 1.17 | 0.66 73.86 30.11
creases. For example, for CD, PESQ and ASR (Mc) no obvioug SE 4721 -021 249 | 122 | 064 | 6313 26.53
improvements can be observed at SNRs lower thadB. On the potP | 202) 179 ) LIT | 12| 070 B1e8 | 2887
other hand, the SRMR improvement of SE, SCLP and MASK seems mask | 4.44| -102 | 209 | 126 | 0.76 | 3655 | 27.64

to be relatively constant for different SNRs, presumably because the
ratio of the modulation frequency energies is not so much affected 5. RTF and Latency

by stationary noise. For MAP, it is interesting - but not entirely un- .
expected - that in general the improvements for most objective meaable 2 lists the average RTF based on all test sets and the latency

sures increase with decreasing SNR. In other words, MAP behavég each consi_dered derever_beration E}Igorithm. SE and_ SCLP were
quite robustly to noise, which may be explained by the underlyin mplemented in Matlab running d@enuinelntel x864 64bits CPU

principle that the MAP DNN is trained to map non-target spectro-2:0 GHzplatform. For MAP and MASK, besides the feature extrac-

gram information (i.e. reverberant and silent parts) to zero. Sinclon and the STFT analysis/synthesis implemented |n_MatIat_3, the es-
timated magnitude spectrograms or IRMs were obtained via DNNs

the MAP DNN probably considers noise as non-target information, led with | he inh
this results in denoising to some extent. Overall, MAP performs th%’mpl ed with dTesla K20c NVIDIA GPU 5 GBIhe inherent STFT

best in terms of CD and FWSSNR across all SNRs, as well as th@tency is one block length (hes ms) for all algorithms. Due to
best in terms of SRMR, PESQ and ASR (Cln) at low SNRs (be-t e context window for DNN input, additional latenciesiénd 1
low 10 dB). At moderate SNRs (abou® dB), SE provides the best block_length (cf. Section 3) are required for MAP and MASK, re-
SRMR measure and MASK leads to the best PESQ and ASR (CI pectively. MASK needs further latency £ block length because

scores. SCLP and MASK still seems to result in the best improve-fthe longest modulation filter with length @b for the auditory-
ment of ASR (Mc) and STOI, respectively, even at low SNRs inspired feature extraction. As a result, it shows that SE, MAP and
' ' ' MASK cost very low complexity, while SCLP is the most demand-

@ s =z v =z @ =5 § & § & ing computationally. MASK has longer latency compared to other
S e o 3 3 8 w| 23S o o 4 g o methods, which could be reduced by selecting shorter modulation
s E filters. Overall, RTFs belowt.0 and the low latencies indicate that
§ 05 % 74:;\\ all four dereverberation algorithms are fit to real-time applications.
O n ! : 0 . . X

ol = Table 2. RTFs and latencies of the four dereverberation algorithms.

O ket v g

© v T T @ . 5 T 3 SE | SCLP | MAP | MASK
z 4 & & « a A& z 5 3 3 3 S 32 RTF 0.028 | 0.679 | 0.035| 0.052
S 05| —— SE —¢— SCLP s MAP MASK Latency | 25ms| 25ms | 75ms| 275 ms
E - - E 02
% o—=a—=e——06—=¢ g e\é\.«
% ol a °r 5. CONCLUSIONS
© g5 3 3 & g O SR % 8 § ¢S In this paper, we presented a comparative study of two unsuper-
e - B s - = = S vised and two supervised single-channel speech dereverberation al-
g g ii gorithms. Results showed that spectral enhancement is capable of
5 @ 5. _a_ e T providing minor put consistent _benefits fqr .aII reverberant condi-
5 2 o H:g "“g‘"@‘—”—*g" tions. Although single-channel linear prediction shows limited ben-

oL 18 3 & 5 &8 efits in low reverberant scenarios, it performs the best on average

cc 2 15 10 5 0 60 20 15 10 5 0 for multi-condition trained ASR. In a noise-free condition, the IRM-

based supervised approach provides the best overall objective mea
Fig. 3. (a)-(e): Improvements of the objective measures compared tdures and ASR performance using clean condition training, while the
the average reference scores of the unprocessed reverbatamifad ~Spectral mapping based supervised approach is the least sensitive to
the top of each panel) for different SNRs; (f): WER improvementsbackground noise. As part of future work, subjective listening tests
for ASR with CIn (solid curves, reference WERs at the top) and Mcshould be performed to evaluate the correlation between the objec-
(dashed curves, reference WERs at the bottom). tive performance measures and subjective scores.
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