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Dereverberation techniques based on acoustic multichannel equalization, such as the relaxed
multichannel least squares (RMCLS) technique and the partial multichannel equalization tech-
nique based on the multiple-input/output inverse theorem (PMINT), are known to be sensitive
to room impulse response perturbations. In order to increase their robustness, several methods
have been proposed, e.g., using a shorter reshaping filter length, incorporating regularization,
or incorporating a sparsity-promoting penalty function. This paper focuses on evaluating the
performance of these methods for single-source multi-microphone scenarios, both using instru-
mental performance measures as well as using subjective listening tests. While commonly used
instrumental performance measures indicate that the regularized RMCLS technique yields the
largest reverberant energy suppression, subjective listening tests show that the regularized and
sparsity-promoting PMINT techniques yield the best perceptual speech quality. By analyzing
the correlation between the instrumental and the perceptual results, it is shown that signal-based
performance measures are more advantageous than channel-based performance measures to
evaluate the perceptual speech quality of signals dereverberated by equalization techniques.
Furthermore, this analysis also demonstrates the need to develop more reliable instrumental
performance measures.

1 INTRODUCTION

Speech signals recorded in an enclosed space by mi-
crophones placed at a distance from the speaker are often
corrupted by reverberation, which arises from the superpo-
sition of many delayed and attenuated copies of the clean
signal. Reverberation causes signal degradation, typically
leading to decreased speech quality and intelligibility [1–3]
and performance deterioration in automatic speech recogni-
tion systems [4, 5]. With the continuously growing demand
for high-quality hands-free communication in teleconfer-
encing applications, voice-controlled systems, and hearing
aids, speech enhancement techniques aiming at dereverber-
ation have become indispensable.

*This work was supported in part by the Cluster of Excellence
1077 “Hearing4All,” funded by the German Research Foundation
(DFG) and the Marie Curie Initial Training Network DREAMS
(Grant No. 316969).

In the last decades, many single and multichannel dere-
verberation techniques have been proposed [6], with multi-
channel techniques being generally preferred since they ex-
ploit both the spectro-temporal and the spatial characteris-
tics of the received microphone signals. Existing multichan-
nel dereverberation techniques can be broadly classified
into spectral enhancement techniques [7, 8], probabilistic
modeling-based techniques [9, 10], and acoustic multichan-
nel equalization techniques [11–14]. Acoustic multichan-
nel equalization techniques aim to reshape the available
room impulse responses (RIRs) between the speaker and
the microphone array. They can in theory achieve perfect
dereverberation performance [11] and hence comprise an
attractive approach to speech dereverberation.

A well-known multichannel equalization technique aim-
ing at acoustic system inversion is the multiple-input/output
inverse theorem (MINT) technique [11], which, however,
suffers from drawbacks in practice. Since the available RIRs
typically differ from the true RIRs due to, e.g., temperature
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or position variations [15–17] or due to the sensitivity of
blind and supervised system identification methods to near-
common zeros or background noise [13, 18–21], MINT
fails to invert the true RIRs [22]. This may lead to per-
ceptually severe distortions in the output signal [13, 14].
In order to increase the robustness against RIR perturba-
tions, partial multichannel equalization techniques such as
relaxed multichannel least-squares (RMCLS) [13] and par-
tial multichannel equalization based on MINT (PMINT)
[14] have been proposed. Since early reflections tend to
improve speech intelligibility [23] and late reflections are
the major cause of speech intelligibility degradation, the
objective of these techniques is to suppress only the late
reflections.

Although partial equalization techniques are signifi-
cantly more robust than MINT, their performance still re-
mains susceptible to RIR perturbations [14]. Hence, several
methods have been proposed to further increase the robust-
ness of the RMCLS and PMINT techniques against RIR
perturbations. In [24] it has been proposed to use a shorter
reshaping filter length than conventionally used, resulting
in a better-conditioned optimization criterion. In [14] it has
been proposed to incorporate regularization in the filter de-
sign such that the distortion energy due to RIR perturbations
is reduced. In [25, 26] it has been proposed to incorporate
a signal-dependent sparsity-promoting penalty function in
the filter design such that the output signal exhibits spectro-
temporal characteristics of a clean signal. While simulation
results in [14, 24–26] have shown using instrumental per-
formance measures that all proposed methods effectively
increase the robustness of the RMCLS and PMINT tech-
niques, an extensive instrumental and perceptual compari-
son of the performance of all these methods is lacking.

The objective of this paper is threefold. First, using
channel-based and signal-based instrumental performance
measures, the reverberant energy suppression and the per-
ceptual speech quality of the different robust extensions
of the RMCLS and PMINT techniques are compared for
various RIR perturbation levels. While instrumental per-
formance measures indicate that the regularized RMCLS
technique yields the largest reverberant energy suppression,
different conclusions can be drawn about the perceptual
speech quality based on different instrumental performance
measures. Second, in order to determine the most percep-
tually advantageous technique, the overall speech quality
is evaluated using subjective listening tests, showing that
the regularized and sparsity-promoting PMINT techniques
yield the best perceptual speech quality. Third, the corre-
lation between the instrumental and the perceptual results
is analyzed, showing the advantage of signal-based perfor-
mance measures over channel-based performance measures
as well as the necessity to develop more reliable instrumen-
tal performance measures to evaluate the perceptual speech
quality of signals dereverberated using equalization tech-
niques.

The paper is organized as follows. In Sec. 2 the RMCLS
and PMINT techniques for acoustic multichannel equaliza-
tion as well as the different proposed methods to increase
their robustness against RIR perturbations are briefly re-

Fig. 1. Acoustic system configuration.

viewed. In Sec. 3 the considered acoustic scenarios and
the algorithmic settings are described. In Secs. 4 and 5 the
performance of the different techniques is compared using
instrumental performance measures and subjective listen-
ing tests. Finally, Sec. 6 discusses the correlation between
the instrumental and the perceptual results.

2 ROBUST ACOUSTIC MULTICHANNEL
EQUALIZATION

2.1 Configuration and Notation
Consider the acoustic system depicted in Fig. 1, consist-

ing of a single speech source in a reverberant room and M
microphones. The mth microphone signal ym(n), m = 1, . . .,
M, at time index n is given by

ym(n) =
Lh−1∑
l=0

hm(l)s(n − l)

︸ ︷︷ ︸
xm (n)

+ vm(n) = xm(n) + vm(n), (1)

where hm(l), l = 0, . . ., Lh − 1, are the coefficients of the
time-invariant RIR between the speech source and the mth
microphone, s(n) is the clean speech signal, xm(n) is the re-
verberant speech component, and vm(n) is the additive noise
component. Since this paper aims to investigate the derever-
beration performance of acoustic multichannel equalization
techniques, in the following it is assumed that vm(n) = 0,
hence ym(n) = xm(n).

Using the filter-and-sum structure in Fig. 1, the output
signal z(n) is equal to the sum of the filtered microphone
signals, i.e.,

z(n) =
M∑

m=1

Lw−1∑
l=0

wm(l)xm(n − l), (2)

where wm(l), l = 0, . . ., Lw − 1, are the coefficients of the
Lw-taps long filter applied to the mth microphone signal.
In vector notation, the RIR hm and the filter wm can be
described as

hm = [hm(0) . . . hm(Lh−1)]T, wm = [wm(0) . . . wm(Lw−1)]T.

Using the MLw-dimensional stacked filter vector w =
[wT

1 . . . wT
M ]T , the equalized impulse response (EIR) vector

c of length Lc = Lh + Lw − 1, i.e., c = [c(0) . . . c(Lc − 1)]T ,
can be expressed as

c = Hw, (3)
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where H denotes the Lc × MLw-dimensional multichannel
convolution matrix of the RIRs, i.e., H = [H1 . . . HM ], and

Hm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hm (0) 0 . . . 0

hm (1) hm (0)
. . .

...
... hm (1)

. . . 0

hm (Lh − 1)
...

. . . hm (0)

0 hm (Lh − 1)
. . . hm (1)

...
. . .

. . .
...

0 . . . 0 hm (Lh − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Defining the Lc–dimensional clean speech vector s(n) =
[s(n) . . . s(n − Lc + 1)]T and the Lw–dimensional mth re-
verberant signal vector xm(n) = [xm(n) . . . xm(n − Lw +
1)]T , with xm(n) = HT

ms(n), the output signal z(n) can be
expressed as

z(n)=
M∑

m=1

wT
mxm(n)=

M∑
m=1

wT
mHT

ms(n)=wT HT︸ ︷︷ ︸
cT

s(n). (5)

As indicated by Eq. (5), the dereverberation performance of
the speech enhancement system fully depends on the EIR
vector c. For conciseness, the time index n will be omitted
when possible in the remainder of this paper.

2.2 Acoustic Multichannel Equalization
Acoustic multichannel equalization techniques assume

that measurements or estimates of the RIRs are available.
Such techniques aim at speech dereverberation by design-
ing a reshaping filter w such that the (weighted) EIR in Eq.
(3) is equal to a (weighted) dereverberated target EIR. Since
the true RIRs are typically not available in practice, the re-
shaping filter is designed using the perturbed multichannel
convolution matrix Ĥ constructed from the available RIRs
ĥm . This matrix is equal to Ĥ = H + E, where E represents
the convolution matrix of the RIR perturbations arising due
to, e.g., temperature fluctuations [15], source-microphone
geometry mismatches [16, 17], RIR estimation errors from
blind and supervised system identification methods [18,
19], or microphone transfer function mismatches. It should
be noted that microphone transfer function mismatches re-
sult in convolutive RIR perturbations instead of additive
perturbations. However, the techniques discussed in the re-
mainder of this paper are independent of the type of RIR
perturbations present in the system, as long as a model is
available to characterize these perturbations.

In this paper we will focus on the RMCLS [13] and
PMINT [14] techniques, which compute the filter w as the
solution to

WĤw = Wct , (6)

with W an Lc × Lc–dimensional diagonal weighting ma-
trix and ct the Lc–dimensional target EIR. The definition
of the weighting matrix W and the target EIR ct for the
RMCLS and PMINT techniques is presented in Tables 1
and 2 respectively, where τ denotes a delay, Ld denotes the
length of the direct path and early reflections, I denotes the
Lc × Lc–dimensional identity matrix, and p ∈ {1, . . ., M},

Table 1. Definition of the weighting matrix W in Eq. (6) for the
RMCLS and PMINT techniques.

Technique Weighting matrix W

RMCLS diag[1 . . . 1︸ ︷︷ ︸
τ

1 0 . . . 0︸ ︷︷ ︸
Ld

1 . . . 1]T

PMINT I

Table 2. Definition of the target EIR ct in Eq. (6) for the
RMCLS and PMINT techniques.

Technique Target EIR ct

RMCLS [0 . . . 0︸ ︷︷ ︸
τ

1 0 . . . 0]T

PMINT [0 . . . 0︸ ︷︷ ︸
τ

ĥ p(0) . . . ĥ p(Ld − 1)︸ ︷︷ ︸
Ld

0 . . . 0]T

i.e., for the PMINT technique, the direct path and the early
reflections of the target EIR are controlled by the first part
of one of the available RIRs. Without loss of generality,
other desired EIRs could also be used instead, as long as
they are perceptually close to the true RIRs. From these
definitions of W and ct , it can be observed that on the one
hand, the RMCLS technique does not constrain all taps of
the EIR, aiming only at suppressing the reverberant tail,
while on the other hand, the PMINT technique constrains
all taps of the EIR, aiming at suppressing the reverberant
tail and preserving the perceptual speech quality. For more
details on these techniques, we refer to [13, 14].

The filter solving Eq. (6) is computed by minimizing the
least-squares cost function1

JLS = ‖W(Ĥw − ct )‖2
2. (7)

As shown in [11, 14], assuming that the RIRs ĥm do not
share any common zeros and using Lw ≥ ⌈ Lh−1

M−1

⌉
, with

� · � the ceiling operator, the filter minimizing Eq. (7) is
equal to

wLS = (WĤ)+Wct , (8)

where { · }+ denotes the matrix pseudo-inverse. When
the true RIRs are available, i.e., Ĥ = H, this filter yields
perfect dereverberation performance, i.e., WHwLS = Wct

[14]. However, in the presence of RIR perturbations, i.e.,
Ĥ �= H, this filter typically fails to achieve dereverberation,
i.e., WHwLS �= Wct , possibly even causing large distortions
in the output signal [14].

2.3 Increasing Robustness Against RIR
Perturbations

In this section several methods that have been proposed
to increase the robustness of the RMCLS and PMINT tech-
niques are briefly reviewed. Furthermore, insights on the
computational complexity of these different methods are
provided.

1
Strictly speaking, the cost function in Eq. (7) is a weighted

least-squares cost function for W �= I.
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2.3.1 Decreasing the Reshaping Filter Length
In [24] it was analytically shown that using a shorter re-

shaping filter length than conventionally used, i.e., Lw <⌈ Lh−1
M−1

⌉
, decreases the condition number of the matrix WĤ.

As analytically shown in [27], a smaller condition number
yields a better-conditioned least-squares optimization cri-
terion, with the resulting least-squares solution wLS in Eq.
(8) being less sensitive to perturbations in WĤ.

2.3.2 Incorporating Regularization
In [14] it was proposed to increase the robustness of the

RMCLS and PMINT techniques by incorporating regular-
ization in the filter design, such that the distortion energy
due to RIR perturbations is reduced. The regularized least-
squares cost function is given by

JRLS = ‖W(Ĥw − ct )‖2
2 + δwT Rew, (9)

with Re denoting the matrix modeling the perturbations, i.e.,
Re = E{ET E}, where E denotes the expected value opera-
tor, and δ is a regularization parameter providing a trade-off
between the minimization of the least-squares error JLS and
the distortion energy due to RIR perturbations wT Rew. The
regularized least-squares filter minimizing Eq. (9) is given
by

wRLS = [(WĤ)T (WĤ) + δRe]−1(WĤ)T Wct . (10)

2.3.3 Incorporating Sparsity-Promoting Penalty
Functions

In [25, 26] it was proposed to increase the robustness
of the RMCLS and PMINT techniques by incorporating
penalty functions that promote sparsity of the output signal
in the short-time Fourier transform (STFT) domain, such
that the output signal exhibits characteristics of a clean
speech signal. The Lz-dimensional output signal vector z =
[z(n) . . . z(n − Lz + 1)]T can be expressed as

z = Xw, (11)

where X denotes the Lz × MLw-dimensional multichannel
convolution matrix of the microphone signals, i.e., X =
[X1 X2 . . . XM ], and

Xm =

⎡
⎢⎢⎣

xm (n) · · · xm (n − Lw + 1)
xm (n − 1) · · · xm (n − Lw)

...
. . .

...
xm (n − Lz + 1) · · · xm (n − Lw − Lz + 2)

⎤
⎥⎥⎦ . (12)

The sparsity-promoting least-squares cost function is then
given by

JSLS = ‖W(Ĥw − ct )‖2
2 + η fSP (�z), (13)

where fSP denotes a sparsity-promoting penalty function
and η is a weighting parameter providing a trade-off be-
tween the minimization of the least-squares error JLS and
the penalty function value fSP (�z). The operator � denotes
the STFT operator transforming the Lz-dimensional time-
domain vector z into the Lz̃-dimensional time-frequency
domain vector z̃ consisting of the STFT coefficients of the
output signal, with z̃ = �z. Since no closed-form expres-
sion is available for the filter minimizing the cost func-

tion in Eq. (13), the sparsity-promoting least-squares filter
can be computed using, e.g., the iterative alternating direc-
tion method of multipliers (ADMM) algorithm [28]. Intro-
ducing the auxiliary variable a such that the optimization
problem in Eq. (13) is split into simpler sub-problems, the
ADMM algorithm computes the sparsity-promoting least-
squares filter using the following update rules [25, 26] until
a termination criterion is satisfied (cf., Sec. 3):

w(i+1) = [2(WĤ)T (WĤ) + ρXT X]−1

× [2(WĤ)T (Wct ) + ρXT �H(a(i) − λ(i))],
(14)

a(i+1) = Sη/ρ(�Xw(i+1) + λ(i)), (15)

λ(i+1) = λ(i) + �Xw(i+1) − a(i+1). (16)

In Eqs. (14)–(16), { · }(i) denotes the variable in the ith
iteration, λ is the so-called dual (splitting) variable, ρ >

0 is the ADMM penalty parameter, and Sη/ρ denotes the
proximal mapping of the used sparsity-promoting penalty
function [29]. Simulation results in [26] have shown that
incorporating an l0-norm, l1-norm, or weighted l1-norm
sparsity-promoting penalty function significantly increases
the robustness of the RMCLS and PMINT techniques, with
the weighted l1-norm penalty function yielding the best
performance. Hence, in this paper we only consider the
weighted l1-norm penalty function, defined as

fSP (z̃) = ‖diag{u}z̃‖1 =
Lz̃−1∑
q=0

|u(q)z̃(q)|, (17)

with u(q) > 0, q = 0, . . . , Lz̃ − 1, denoting user-defined
scalar weights. In order to preserve the spectro-temporal
structure of a typical speech signal, the weights u(q) are
defined as [26]

u(q) = 1

|x̃ p(q)| + ζ
, q = 0, . . . , Lz̃ − 1, (18)

with x̃ p(q) the STFT coefficients of the p-th microphone
signal, where p ∈ {1, . . ., M}, and ζ > 0 a small positive
scalar used to avoid division by 0.

While simulation results in [14, 24–26] have shown that
all proposed methods are effective in increasing the ro-
bustness of the RMCLS and PMINT techniques against
RIR perturbations, an extensive instrumental and percep-
tual comparison of the performance of all these methods to
determine the most robust and perceptually advantageous
technique is lacking.

2.3.4 Computational Complexity Considerations
The computational complexity of all considered methods

is at most cubic2, since matrix multiplications and matrix in-
versions account for the dominant operations in all reshap-
ing filter computations, cf., Eqs. (8), (10), and (14)–(16).
The complexity of using a shorter reshaping filter length is
O(n3

r ), where nr denotes the number of rows of the matrix

2. This upper bound may be tightened when exploiting the fact
that the matrices involved are symmetric or Toeplitz.
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Table 3. Characteristics of the considered acoustic systems.

System T60 [ms] dsm [m] dim [m] Lh

S1 450 3 0.05 3600
S2 610 2 0.04 4880

WĤ when Lw <
⌈ Lh−1

M−1

⌉
. The complexity of using regular-

ization is O(n3
c), where nc denotes the number of columns

of the matrix WĤ when Lw = ⌈ Lh−1
M−1

⌉
. Finally, the com-

plexity of using a sparsity-promoting penalty function is
O(L3

z ), where Lz denotes the length of the output signal vec-
tor. Since typically nr < nc 	 Lz, decreasing the reshaping
filter length results in the lowest computational complexity,
whereas incorporating a sparsity-promoting penalty func-
tion results in the highest computational complexity. In
addition, the execution of the sparsity-promoting method
takes a significantly longer time than the execution of the
other methods due to the multiple number of iterations.

3 ACOUSTIC SCENARIOS AND ALGORITHMIC
SETTINGS

This section describes the considered acoustic scenarios
and the algorithmic settings for which the performance of
the robust extensions of the RMCLS and PMINT techniques
is evaluated.

3.1 Acoustic Scenarios
We considered two different reverberant acoustic sys-

tems with a single speech source and M = 4 omnidirectional
microphones. For each acoustic system, Table 3 presents
the reverberation time T60, the source-microphone distance
dsm, the inter-microphone distance dim, and the RIR length
Lh at a sampling frequency fs = 8 kHz. The RIRs between
the speech source and the microphones were measured us-
ing the swept-sine technique [30] and the reverberant sig-
nals were generated by convolving two sentences of clean
speech (approximately 4 s long) from the HINT database
[31] with the measured RIRs. In order to simulate RIR per-
turbations, the measured RIRs were perturbed by propor-
tional Gaussian distributed errors as proposed in [32], such
that a desired normalized projection misalignment (NPM),
defined as

NPM = 10 log10

∥∥∥hm − hT
m ĥm

ĥT
m ĥm

ĥm

∥∥∥2

2

‖hm‖2
2

, (19)

is obtained. The considered NPMs are NPM1 =−33 dB and
NPM2 = −15 dB, with NPM1 representing a moderate per-
turbation level and NPM2 representing a high perturbation
level. Hence, the performance of all considered techniques
is evaluated for four different acoustic scenarios, i.e., S1-
NPM1, S2-NPM1, S1-NPM2, and S2-NPM2.

3.2 Algorithmic Settings
As previously mentioned, we investigate the performance

of the following techniques (cf., Sec. 2.2):

� L-RMCLS, i.e., the RMCLS technique using a shorter
reshaping filter length;

� R-RMCLS, i.e., the regularized RMCLS technique;
� S-RMCLS, i.e., the weighted l1-norm sparsity-promoting

RMCLS technique;
� L-PMINT, i.e., the PMINT technique using a shorter

reshaping filter length;
� R-PMINT, i.e., the regularized PMINT technique; and
� S-PMINT, i.e., the weighted l1-norm sparsity-promoting

PMINT technique.

For the R-RMCLS, S-RMCLS, R-PMINT, and S-PMINT
techniques the reshaping filter length is set to Lw = ⌈ Lh−1

M−1

⌉
,

i.e., Lw = 1200 for the system S1 and Lw = 1627 for the sys-
tem S2. As shown in [11], this filter length is the minimum
length required for perfect dereverberation performance.
For all techniques, the delay is set to τ = 90 and the length
of the direct path and early reflections is set to Ld = 0.01
× fs (i.e., 10 ms), cf., Tables 1 and 2. The target EIR ct

for the robust extensions of the PMINT technique is set
to the direct path and early reflections of the first RIR ĥ1,
i.e., p = 1. For the regularized techniques, the matrix Re

modeling the RIR perturbations is set to Re = I. For the
sparsity-promoting techniques, the STFT is computed us-
ing a 32 ms Hamming window with 50% overlap between
successive frames. As in [25], the variables w, a, and λ are
initialized with [1 0. . .0]T and the termination criterion is
set to either the number of iterations exceeding 150 or the
change in the filter norm dropping below 10−3. The weights
in Eq. (18) are computed using the STFT coefficients of the
first microphone signal x̃1(q), i.e., p = 1.

The considered reshaping filter lengths Lw for the L-
RMCLS and L-PMINT techniques, regularization param-
eters δ for the R-RMCLS and R-PMINT techniques, and
weighting and penalty parameters η and ρ for the S-RMCLS
and S-PMINT techniques are

Lw ∈
{

500, 600, . . . ,

⌈
Lh − 1

M − 1

⌉}
, (20)

δ ∈ {10−7, 10−6, . . . , 10−1, 1, 3, 5, 7, 10}, (21)

η ∈ {10−7, 10−6, 10−5, 10−4}, (22)

ρ ∈ {10−7, 10−6, . . . , 10−1}. (23)

As in [14, 24], the optimal reshaping filter length, the op-
timal regularization parameter, and the optimal weighting
and penalty parameters used in the following simulations
are intrusively selected from Eqs. (20)–(23) as the parame-
ters maximizing the perceptual evaluation of speech qual-
ity (PESQ) score [33] for each technique and each acoustic
scenario (cf., Sec. 4 for details on the PESQ score computa-
tion). It should be noted that the computation of the PESQ
score for selecting the optimal parameters is an intrusive
procedure that is not applicable in practice, since knowl-
edge of the true RIRs is required in order to compute the
reference signal and the resulting EIR.
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Fig. 2. Instrumental measures for the robust extensions of the RMCLS and PMINT techniques for all considered acoustic scenarios: (a)
DRR, (b) SRMR, (c) LLR, and (d) PESQ.

4 INSTRUMENTAL EVALUATION

In this section the performance of the different con-
sidered techniques is evaluated by means of commonly
used instrumental performance measures, i.e., direct-to-
reverberant ratio (DRR) [6], speech-to-reverberation modu-
lation energy ratio (SRMR) [34], log likelihood ratio (LLR)
[35], and PESQ [33]. The channel-based DRR measure has
been shown to correlate well with the perceived amount
of reverberation for unprocessed signals [36], whereas the
signal-based SRMR, LLR, and PESQ measures have been
shown to correlate well with the perceived overall quality
of signals processed by speech enhancement algorithms for
dereverberation and noise reduction [37]. While the SRMR
measure is a non-intrusive measure, the LLR and PESQ
measures are intrusive measures comparing the output sig-
nal to a (dereverberated) reference signal. The reference
signal employed in this evaluation is the clean speech sig-
nal convolved with the direct path and the early reflections
(up to 10 ms) of the true RIR h1. Note that a higher DRR,
a higher SRMR, a lower LLR, and a higher PESQ score
indicate a better performance.

Fig. 2a depicts the obtained DRR for the input RIR h1

and for the EIRs c obtained using the robust extensions of
the RMCLS and PMINT techniques. The following con-
clusions can be drawn by comparing the presented DRR
values:

� All techniques improve the DRR in comparison to the
input RIR h1.

� The robust extensions of the RMCLS technique generally
yield a similar or higher DRR than the robust extensions

of the PMINT technique. This is to be expected since the
robust extensions of the RMCLS technique relax the con-
straints on the filter design and aim only at suppressing
the late reverberation, whereas the robust extensions of
the PMINT technique also aim at preserving the percep-
tual speech quality (which is not reflected by the DRR
measure).

� The R-RMCLS technique typically yields the highest
DRR for the considered scenarios (except for the sce-
nario S2-NPM1, where the S-RMCLS technique yields
the highest DRR).

� The R-PMINT technique typically yields a higher DRR
than the S-PMINT technique (except for the scenario S1-
NPM1, where the R-PMINT and S-PMINT techniques
yield a similar DRR).

� The L-RMCLS and L-PMINT techniques yield the low-
est DRR out of all considered robust extensions. This
is not surprising since these techniques simply use a
shorter reshaping filter length, without explicitly taking
into account the structure of the RIR perturbations or the
characteristics of the output speech signal.

� The performance of all considered techniques is gen-
erally higher for the system S1 than for the system
S2. This can be explained by the higher reverberation
time of the system S2, leading to a larger number of
perturbed RIR taps to be reshaped, and hence, an in-
creased sensitivity of all considered techniques to RIR
perturbations.

Figs. 2b–2d depict the obtained SRMR, LLR, and
PESQ scores for the reverberant microphone signal x1(n)
and for the output signals z(n) obtained using the robust
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Fig. 3. MUSHRA scores for the reverberant microphone signal x1(n) and for the output signals z(n) obtained using the robust extensions
of the RMCLS and PMINT techniques for all considered acoustic scenarios. In addition, the scores of the hidden reference and the
anchor are displayed. For each box, the central mark is the median, the edges of the box are the 25th and the 75th percentiles, and the
whiskers extend to 1.5 times the interquartile range from the median.

extensions of the RMCLS and PMINT techniques. The
following conclusions can be drawn by comparing the pre-
sented instrumental measures:

� Not all techniques improve the overall quality in compar-
ison to the reverberant signal x1(n), e.g., the L-RMCLS
technique yields a lower SRMR for scenarios S2-NPM1

and S2-NPM2, the L-PMINT technique yields a lower
SRMR for the scenario S2-NPM2, and the R-PMINT
technique is the only technique consistently improving
the LLR for all scenarios.

� The robust extensions of the PMINT technique generally
yield a similar or better SRMR and LLR than the robust
extensions of the RMCLS technique. Surprisingly, the
robust extensions of the RMCLS technique generally
yield a similar or better PESQ score than the robust ex-
tensions of the PMINT technique, implying that PESQ
does not appear to reflect the better preservation of the
early reflections achieved by the robust extensions of the
PMINT technique but puts more emphasis instead on the
better reverberant tail suppression achieved by the robust
extensions of the RMCLS technique.

� The R-PMINT technique typically yields the best SRMR
and LLR (except for the scenario S2-NPM2, where the
S-RMCLS technique yields the best SRMR), whereas
the R-RMCLS technique typically yields the best PESQ
score.

� As expected, the L-RMCLS and L-PMINT techniques
typically yield the lowest performance in terms of all
instrumental performance measures.

� The performance of all considered techniques is gener-
ally higher for the system S1 than for the system S2.

In summary, based on instrumental performance mea-
sures it can be said that incorporating regularization and
sparsity-promoting penalty functions is more advantageous
to increase the robustness of equalization techniques than
using a shorter reshaping filter length. Furthermore, as ex-
pected, the robust extensions of the RMCLS technique
achieve a larger reverberant energy suppression (as eval-
uated using the DRR measure) than the robust extensions
of the PMINT technique, with the R-RMCLS technique

typically yielding the best performance. However, when
comparing the perceptual speech quality achieved by the
different techniques, different conclusions can be derived
depending on the used instrumental performance measure,
highlighting the necessity of conducting subjective listen-
ing tests.

5 PERCEPTUAL RESULTS

The perceptual evaluation is based on a multi stimulus
test with hidden reference and anchor (MUSHRA) using the
specifications given in [38]. The evaluation is conducted for
the reverberant microphone signal x1(n) and for the output
signals z(n) obtained using all considered techniques. In
addition to these signals, a hidden reference and an anchor
are presented to the subjects. The hidden reference has
been generated as the clean speech signal convolved with
the direct path and the early reflections (up to 10 ms) of
the true RIR h1. The anchor has been generated as the
low-pass filtered microphone signal x1(n) with a cut-off
frequency of 3 kHz. Sound samples for each considered
acoustic scenario can be found at bit.ly/mushrasamples.
The signals are diotically presented to the subjects through
headphones (Sennheiser HDA 200) using an RME Fireface
UFX sound card, with all signals normalized in amplitude.
A total of 21 self-reported normal hearing subjects who are
familiar with speech processing participated in the listening
tests. The subjects evaluated the signals in terms of the
attribute “overall speech quality” on a scale from 0 to 100.
Prior to the actual evaluation, the subjects were trained to
familiarize themselves with the task and the signals under
test. Furthermore, they could adjust the sound volume to a
comfortable level. The order of presentation of signals and
scenarios were randomized between all subjects.

Fig. 3 depicts the obtained MUSHRA scores for the
reverberant microphone signal and for the output sig-
nals obtained using the robust extensions of the RMCLS
and PMINT techniques. For completeness, the obtained
MUSHRA scores for the reference and the anchor are also
depicted, illustrating that the reference is correctly identi-
fied for all scenarios and that the anchor is typically rated as
having the worst perceptual speech quality (except for the
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scenario S2-NPM1, where the L-RMCLS technique yields a
worse quality). In general it can be observed that the rating
variability between subjects (as shown by the whiskers in
each boxplot) is rather large. This is commonly the case for
listening tests evaluating the overall speech quality achieved
by dereverberation algorithms, e.g., [2, 3, 39]. Since the
artifacts and distortions produced by the considered tech-
niques are quite different, the perception of these artifacts
and distortions by different subjects is also rather different.

For the moderate RIR perturbation level (NPM1 = −33
dB), it can be observed that all proposed techniques typ-
ically improve the perceptual speech quality in compari-
son to the reverberant microphone signal (except for the
L-RMCLS technique yielding a worse perceptual speech
quality and the L-PMINT technique yielding a similar
perceptual speech quality for the system S2). Further-
more, out of the different methods proposed to increase
the robustness of equalization techniques, incorporating a
sparsity-promoting penalty function yields the best percep-
tual speech quality, whereas using a shorter reshaping filter
length yields the worst perceptual speech quality. Finally,
it can be observed that due to the better preservation of the
early reflections, the robust extensions of the PMINT tech-
nique yield a better perceptual speech quality than the robust
extensions of the RMCLS technique, with the S-PMINT
technique yielding the best perceptual speech quality.

For the higher RIR perturbation level (NPM2 = −15 dB),
it can be observed that more techniques fail to improve the
perceptual speech quality in comparison to the reverberant
microphone signal, i.e., the L-RMCLS, S-RMCLS, and S-
PMINT techniques yield a similar or worse quality for the
system S2. Furthermore, it can be observed that, similarly
as before, the robust extensions of the PMINT technique
yield a similar or better perceptual speech quality than the
robust extensions of the RMCLS technique (except for the
S-PMINT technique yielding a worse quality than the S-
RMCLS technique for the system S2). However, unlike for
NPM1 = −33 dB, it can now be observed that the R-PMINT
technique results in the best perceptual speech quality, out-
performing the S-PMINT technique. Incorporating regu-
larization in the RMCLS and PMINT techniques yields
the best perceptual speech quality, whereas incorporating
sparsity-promoting penalty functions typically yields the
worst perceptual speech quality. Hence, while incorporat-
ing sparsity-promoting penalty functions seems to be very
advantageous to increase the robustness and the perceptual
speech quality in the presence of moderate RIR perturbation
levels, the performance of sparsity-promoting techniques
seems to deteriorate more rapidly with increasing perturba-
tion levels than the performance of regularized techniques.
This is not unexpected, since sparsity-promoting penalty
functions only rely on general spectro-temporal character-
istics of clean speech signals, whereas regularization aims
at explicitly modeling and suppressing the level of RIR
perturbations.

To determine whether the previously discussed results
are statistically significant, a statistical analysis has been
conducted. Since the data are not normally distributed, a
Friedman’s test [40] with the factor “technique” has been

Table 4. Results of the Friedman’s test for all considered
scenarios. The variable χ2 denotes the Friedman’s chi square

statistic and the value ρ < 0.001 indicates the significance of the
results.

Scenario χ2 ρ

S1-NPM1 140 ρ < 0.001
S2-NPM1 88 ρ < 0.001
S1-NPM2 119 ρ < 0.001
S2-NPM2 83 ρ < 0.001

performed for the different considered scenarios. As sum-
marized in Table 4, the statistical analysis shows a signifi-
cant influence of the factor “technique” for all scenarios. To
determine the sources of significance, a Wilcoxon signed-
rank test [41] has been separately conducted for each sce-
nario. The obtained results for each acoustic scenario are
presented in Tables 5–8, with the ticks representing a statis-
tically significant difference, i.e., p < 0.05, and the crosses
representing no statistically significant difference, i.e., p <

0.05. The presented results are obviously symmetric across
the diagonal since such entries correspond to the same pair
comparison. Table 5 shows that for the system S1 and the
moderate RIR perturbation level NPM1 only the regularized
and the sparsity-promoting techniques yield a statistically
significant improvement in comparison to the reverberant
microphone signal. Furthermore, it can be observed that
the S-PMINT technique is the only technique yielding a
statistically significant improvement in comparison to all
other techniques. Table 6 shows that for the system S2

and the moderate RIR perturbation level NPM1 only the
R-PMINT, S-PMINT, and R-RMCLS techniques yield a
statistically significant improvement in comparison to the
reverberant microphone signal. Furthermore, it can be ob-
served that these techniques yield the most statistically sig-
nificant improvements in comparison to other techniques.
Table 7 shows that for the system S1 and the high RIR
perturbation level NPM2 the R-PMINT technique and the
robust extensions of the RMCLS technique yield a statisti-
cally significant improvement in comparison to the rever-
berant microphone signal. Furthermore, it can be observed
that the R-PMINT and the R-RMCLS techniques yield the
most statistically significant improvements in comparison
to other techniques. Finally, Table 8 shows that for the sys-
tem S2 and the high RIR perturbation level NPM2 only the
R-PMINT technique yields a statistically significant im-
provement in comparison to the reverberant microphone
signal. Furthermore, the R-PMINT technique also yields
the most statistically significant improvements in compar-
ison to other techniques.

In summary, even though the statistical significance crite-
rion is not always satisfied, the trend of the results confirm
that the robust extensions of the PMINT technique yield
a better perceptual speech quality than the robust exten-
sions of the RMCLS technique. Furthermore, the S-PMINT
technique results in the best perceptual speech quality for
moderate RIR perturbation levels, whereas the R-PMINT
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Table 5. Wilcoxon signed-rank test for scenario S1-NPM1. The ticks represent a statistically significant
difference and the crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n) ✗
√ √

✗
√ √

L-RMCLS ✗
√ √

✗
√ √

R-RMCLS
√ √

✗ ✗
√ √

S-RMCLS
√ √

✗
√

✗
√

L-PMINT ✗ ✗ ✗
√ √ √

R-PMINT
√ √ √

✗
√ √

S-PMINT
√ √ √ √ √ √

Table 6. Wilcoxon signed-rank test for scenario S2-NPM1. The ticks represent a statistically significant
difference and the crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n) ✗
√

✗ ✗
√ √

L-RMCLS ✗
√

✗ ✗
√

✗

R-RMCLS
√ √ √ √

✗
√

S-RMCLS ✗ ✗
√

✗
√

✗

L-PMINT ✗ ✗
√

✗
√

✗

R-PMINT
√ √

✗
√ √ √

S-PMINT ✗ ✗
√

✗ ✗
√

Table 7. Wilcoxon signed-rank test for scenario S1-NPM2. The ticks represent a statistically significant
difference and the crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n)
√ √ √

✗
√

✗

L-RMCLS
√ √ √ √ √ √

R-RMCLS
√ √

✗
√ √ √

S-RMCLS
√ √

✗
√ √ √

L-PMINT ✗
√ √ √ √ √

R-PMINT
√ √ √ √ √

✗

S-PMINT ✗
√ √ √ √

✗

Table 8. Wilcoxon signed-rank test for scenario S2-NPM2. The ticks represent a statistically significant
difference and the crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n)
√

✗ ✗ ✗
√

✗

L-RMCLS
√ √ √ √ √ √

R-RMCLS ✗
√

✗ ✗ ✗ ✗

S-RMCLS ✗
√

✗ ✗
√

✗

L-PMINT ✗
√

✗ ✗ ✗ ✗

R-PMINT
√ √

✗
√

✗
√

S-PMINT ✗
√

✗ ✗ ✗
√

J. Audio Eng. Soc., Vol. 65, No. 1/2, 2017 January/February 125



KODRASI ET AL. PAPERS

Table 9. Absolute value of the Pearson product-moment
correlation coefficient between the perceptual ratings and the

instrumental performance measures.

Measure S1-NPM1 S2-NPM1 S1-NPM2 S2-NPM2

DRR 0.25 0.61 0.81 0.44
SRMR 0.93 0.97 0.62 0.52
LLR 0.77 0.71 0.75 0.87
PESQ 0.76 0.69 0.82 0.56

technique results in the best perceptual speech quality for
high RIR perturbation levels.

6 CORRELATION ANALYSIS BETWEEN
INSTRUMENTAL AND PERCEPTUAL RESULTS

When comparing the instrumental evaluation results in
Sec. 4 with the perceptual evaluation results in Sec. 5,
it can be observed that not all perceptual results can be
well predicted by the instrumental performance measures.
On the one hand, the instrumental performance measures
accurately predicted that (1) the regularized and sparsity-
promoting techniques generally outperform the techniques
using a shorter reshaping filter length and that (2) the per-
formance of all considered techniques for the system S1 is
typically better than for the system S2. On the other hand,
the instrumental performance measures failed to predict (1)
the consistent perceptual advantage of the robust extensions
of the PMINT technique over the robust extensions of the
RMCLS technique as well as (2) the perceptual advantage
of the S-PMINT technique over the R-PMINT technique
for moderate RIR perturbation levels.

Table 9 shows the correlation between the perceptual
ratings and the instrumental performance measures as de-
termined by the Pearson product-moment correlation coef-
ficient (PPMCC), computed as

PPMCC =
∑

j (a j − ā)(b j − b̄)√∑
j (a j − ā)2(b j − b̄)2

, (24)

where aj and bj denote the perceptual and instrumental rat-
ings for the j-th sound sample and ā and b̄ denote the respec-
tive mean values. It can be observed that for each scenario
at least one instrumental performance measure yields a high
correlation to the perceptual ratings, with the signal-based
performance measures typically yielding a higher correla-
tion than the channel-based DRR measure. Furthermore,
it can be observed that except for the LLR measure, the
correlation for all other measures strongly depends on the
considered scenario. The correlation for the DRR measure
varies between 0.25 and 0.81, which is to be expected since
a purely energy-based measure cannot always reflect how
the remaining distortions in the late reverberant tail are per-
ceived. For the moderate RIR perturbation level NPM1,
the SRMR measures shows a very high correlation to
the perceptual ratings, whereas for the higher perturbation
level NPM2, the correlation values significantly decrease.
Hence, it appears that the SRMR measure, which has been
primarily developed and optimized on unprocessed rever-

berant signals, can very well predict the quality of sig-
nals with little or no distortions but does not reflect the
distortions introduced by equalization techniques. Further-
more, the auditory-based PESQ measure does not always
appear to reflect the distortions introduced by equaliza-
tion techniques, e.g., yielding a low correlation of 0.56
for the scenario with most distortions in the output signal,
i.e., S2-NPM2. Finally, it appears that a relatively simple
linear prediction coefficient based distance measure such
as LLR reflects the distortions introduced by equalization
techniques more reliably than all other measures over all
considered scenarios, with correlation values varying be-
tween 0.71 and 0.87.

In summary, while instrumental performance measures
are certainly a valuable tool when designing speech dere-
verberation techniques, the impact of distortions and ar-
tifacts caused by acoustic multichannel equalization tech-
niques can only be truly assessed using subjective listening
tests. Since the considered instrumental measures are inca-
pable of accurately predicting the perceptual ratings, further
development of instrumental performance measures is re-
quired.

7 CONCLUSION

In this paper we have evaluated the performance of sev-
eral robust extensions of acoustic multichannel equalization
based on RMCLS and PMINT by means of instrumental
performance measures and subjective listening tests. Instru-
mental performance measures show that the regularized
RMCLS technique yields the largest reverberant energy
suppression. Subjective listening tests show that the robust
extensions of the PMINT technique yield the best percep-
tual speech quality, with the sparsity-promoting PMINT
technique yielding the best quality for moderate RIR pertur-
bation levels and the regularized PMINT technique yield-
ing the best quality for high RIR perturbation levels. A
correlation analysis between the instrumental and percep-
tual results shows that signal-based performance measures
typically yield a higher correlation than channel-based per-
formance measures when evaluating the perceptual quality
of signals processed by acoustic multichannel equalization
techniques. Furthermore, the provided correlation analysis
highlights the need to develop more accurate instrumental
performance measures, reliably reflecting the distortions in-
troduced by acoustic multichannel equalization techniques.
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[25] I. Kodrasi, A. Jukić, and S. Doclo, “Robust
Sparsity-Promoting Acoustic Multichannel Equalization
for Speech Dereverberation,” Proc. IEEE International

J. Audio Eng. Soc., Vol. 65, No. 1/2, 2017 January/February 127



KODRASI ET AL. PAPERS

Conference on Acoustics, Speech, and Signal Pro-
cessing, Shanghai, China (Mar. 2016), pp. 166–170.
http://dx.doi.org/10.1109/ICASSP.2016.7471658

[26] I. Kodrasi and S. Doclo, “Signal-Dependent Penalty
Functions for Robust Acoustic Multichannel Equalization,”
IEEE Transactions on Audio, Speech, and Language Pro-
cessing, manuscript under review (2016 Mar.).

[27] P. Wedin, “Perturbation Theory for
Pseudo-Inverses,” BIT Numerical Mathemat-
ics, vol. 13, no. 2, pp. 217–232 (1973 Jun.).
http://dx.doi.org/10.1007/BF01933494

[28] S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein, “Distributed Optimization and Statistical Learning
via the Alternating Direction Method of Multipliers,” Foun-
dations and Trends in Machine Learning, vol. 3, no. 1, pp.
1–122 (2011 Jan.). http://dx.doi.org/10.1561/2200000016

[29] N. Parikh and S. P. Boyd, “Proximal Al-
gorithms,” Foundations and Trends in Optimiza-
tion, vol. 1, no. 3, pp. 127–239 (2014 Jan.).
http://dx.doi.org/10.1561/2400000003

[30] A. Farina, “Simultaneous Measurement of Impulse
Response and Distortion with a Swept-Sine Technique,”
presented at the 108th Convention of the Audio Engineering
Society (2000 Feb.), convention paper 5093.

[31] M. Nilsson, S. D. Soli, and A. Sullivan, “Develop-
ment of the Hearing in Noise Test for the Measurement of
Speech Reception Thresholds in Quiet and in Noise,” J.
Acous. Soc. Am., vol. 95, no. 2, pp. 1085–1099 (1994 Feb.).
http://dx.doi.org/10.1121/1.408469

[32] W. Zhang and P. A. Naylor, “An Algorithm to Gen-
erate Representations of System Identification Errors,” Re-
search Letters in Signal Processing, vol. 2008 (Jan. 2008).
http://dx.doi.org/10.1155/2008/529291

[33] ITU-T, "Perceptual Evaluation of Speech Quality
(PESQ), an Objective Method for End-to-End Speech Qual-
ity Assessment of Narrowband Telephone Networks and
Speech Codecs P.862," International Telecommunications
Union (ITU-T) Recommendation (Feb. 2001).

[34] J. F. Santos, M. Senoussaoui, and T. H.
Falk, “An Improved Non-Intrusive Intelligibility Met-

ric for Noisy and Reverberant Speech,” Proc. In-
ternational Workshop on Acoustic Echo and Noise
Control, Antibes, France (Sep. 2014), pp. 55–59.
http://dx.doi.org/10.1109/IWAENC.2014.6953337

[35] Y. Hu and P. C. Loizou, “Evaluation of Ob-
jective Quality Measures for Speech Enhancement,”
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 1, pp. 229–238 (2008 Jan.).
http://dx.doi.org/10.1109/TASL.2007.911054

[36] B. Cauchi, H. Javed, T. Gerkmann, S. Doclo, S.
Goetze, and P. Naylor, “Perceptual and Instrumental Eval-
uation of the Perceived Level of Reverberation,” Proc. IEEE
International Conference on Acoustics, Speech, and Signal
Processing, Shanghai, China (Mar. 2016), pp. 629–633.
http://dx.doi.org/10.1109/ICASSP.2016.7471751

[37] K. Kinoshita, M. Delcroix, S. Gannot, E. A. P. Ha-
bets, R. Haeb-Umbach, W. Kellermann, V. Leutnant, R.
Maas, T. Nakatani, B. Raj, A. Sehr, and T. Yoshioka, “A
Summary of the REVERB Challenge: State-of-the-Art and
Remaining Challenges in Reverberant Speech Processing
Research,” EURASIA J. Advan. Sig. Proc., vol. 2016, no. 7
(2016). http://dx.doi.org/10.1186/s13634-016-0306-6

[38] ITU-T, "Method for the Subjective Assessment of
Intermediate Quality Levels of Coding Systems," Interna-
tional Telecommunications Union (ITU-T) Recommenda-
tion (Jan. 2003).

[39] B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Jukić,
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