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ABSTRACT

The proportionate normalized least-mean-squares (PNLMS) algo-
rithm is commonly used in acoustic echo cancellation (AEC) con-
text. It provides faster initial convergence and tracking rates com-
pared to the NLMS algorithm for the case of sparse echo impulse
responses. The improved PNLMS algorithm (IPNLMS) has been
proven to be more powerful than PNLMS by exploiting new rules
for computing the weight of each step-size corresponding to each
adaptive filter coefficient. However, the application of the PNLMS
and the IPNLMS algorithms for adaptive feedback control (AFC) in
hearing aids (HAs) is still limited due to high correlation between
the loudspeaker and incoming signals. This paper proposes imple-
mentations of the PNLMS/IPNLMS algorithms for AFC using the
prediction error method (PEM) for hearing aids. The proposed meth-
ods have been evaluated for both speech and music incoming sig-
nals. Simulation shows that the proposed methods have faster initial
convergence and tracking than the PEM using the NLMS algorithm
(PEM-NLMS).

Index Terms— Adaptive feedback control, prediction error
methods, hearing aids, PNLMS, IPNLMS.

1. INTRODUCTION

Hearing aids (HAs) usually suffer from acoustic feedback problems
due to a coupling between the loudspeaker and microphone. This
acoustic feedback does not only limit the achievable stable gain, but
also often produces howling. The most commonly used method to
cancel the negative effects of the acoustic feedback is adaptive feed-
back control (AFC) [1, 2, 3, 4]. In this method an adaptive filter is
used to estimate the acoustic feedback path, then the estimated feed-
back signal is subtracted from the microphone signal. However, the
estimated feedback path often includes a bias due to the correlation
between the loudspeaker and incoming signals. This correlation is
present due to the closed loop feature of hearing aids.

Recently, the prediction error method (PEM) has been proposed
as an efficient method to reduce this bias for speech incoming signals
[3, 5, 6]. The PEM models the incoming signal by filtering a white
gaussian-noise sequence via an all-pole filter. The inverse model
of the incoming signal is estimated and then used to pre-whiten the
inputs of an adaptive filter (in the feedback canceller path). As a
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result, an unbiased solution for the feedback path estimate may be
achieved.

Commonly, the least mean squares (LMS) or normalized LMS
(NLMS) are employed to estimate the acoustic feedback path due
to their simplicity and efficiency. Unfortunately, these algorithms
degrade the convergence rate of an AFC system for the case of spec-
trally coloured incoming signals. To improve the convergence as
well as to achieve a low steady-state error several solutions have been
introduced in the literatures, e.g., affine projection algorithms (APA)
[7, 8,9, 10], or variable step-size algorithms [11, 12, 13, 14, 15], or
affine combination of two adaptive filters using different step-sizes
[16, 17, 18], or PNLMS/IPNLMS algorithms [19, 20, 21].

The PNLMS/IPNLMS algorithms are popular in the acoustic
echo cancellation (AEC) context. They provide faster initial con-
vergence and tracking compared to the NLMS algorithm by using a
tap-dependent step-size for updating the adaptive filter coefficients.
However, their application for AFC in HAs is still limited due to the
high correlation between the loudspeaker and incoming signals. In
[22] a variant of the PNLMS algorithm called Levenberg-Marquardt
regularized NLMS was introduced. However, this algorithm was
only applied to the AEC and AFC in public address systems (PAs),
not to HAs. Moreover, this algorithm required prior knowledge of
the unknown feedback paths as well as incoming signal powers.
Note that the length of the feedback paths and the distance between
the loudspeaker and the microphone in HAs are much shorter than
those in PAs. Thus the acoustic feedback problem in HAs is more
severe than that in PAs. In [23] the PNLMS algorithm was employed
for two-microphone AFC.

In this paper we propose to implement the PNLMS/IPNLMS
algorithms for the AFC using PEM (PEM-PNLMS/PEM-IPNLMS)
in HAs. Simulation results show that the proposed methods provide
better initial convegence as well as tracking while maintaining lower
steady-state error than the PEM-NLMS for both speech and music
incoming signals. Furthermore, our proposed methods require no
prior knowledge of the feedback paths as well as incoming signal
power.

2. PROPOSED AFC SYSTEM

The proposed AFC system is depicted in Fig. 1. This sys-
tem is designed based on the PEM, but uses different algorithms
(NLMS/PNLMS/IPNLMS) to estimate the impulse response (IR) of
the feedback path. In the proposed system the microphone signal is
defined by an addition of the feedback signal v (k) = f* (k) y (k)
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and the incoming signal u (k), i.e.,
@ (k) = u (k) + v (k). M

where f (k) is the L-dimensional IR vector of the true feedback
path and y (k) is the L s-dimensional vector of the loudspeaker sig-
nal,

£(k) = [fo k), f1 (k). fr, 1 (K)]" 2)

The error signal e (k) is computed as follows

e(k) = (k) — " (k)y (%), @

where the L ;-dimensional vector (k) is an estimate of f(k),

. R N R T
By = [fo®), fr(k), o frmi ()] and y (k) is the L;-
dimensional vector of the loudspeaker signal defined in a manner
analogous to (3). Assuming that the forward path K (g, k) in-
cludes a delay dj, and an amplifier with broadband gain |K|, i.e.,
K (g,k) = |K| g~ . The delay is selected such that dy > 1. The
loudspeaker signal y (k) is formed by delaying and amplifying the
error signal e (k) in the forward path, i.e.,

y (k) = K(g,k)e(k). ©)

We assume that the incoming signal u (k) can be modeled using
an all-pole filter G~ (g, k) to filter a white Gaussian noise sequence
w (k), i.e.,

u k) =G"" (g, k) w(k). ©)
Then an estimate of G (g, k) can be utilized to pre-whiten the in-
puts of the adaptive filter F' (¢, k), i.e., z, (k) = G (¢, k) « (k) and
yp (k) = G (g, k) y (k), where G (¢, k) is an estimate of G (g, k)
and G (g, k) is the inverse of the incoming signal model. The pre-
whitened error signal is denoted as

ep (k) = mp (k) — £ (k) yp (k), N

T
where y, (k) = [yp ) yp (B —1) 1 sy (k:foA+ 1)] .
The Levinson-Durbin algorithm is used to estimate the coefficients
of G (q, k) from the error signal e (k) [24]. In the PEM-NLMS, the
IR of the feedback path is estimated as

f(k)=f(k—1)+ yo (k) ep (), (8)

m
(lyp(B)II5 + dnzars)

where dn s is a regularization parameter and p is a fixed step-
size. In the following the PEM with different algorithms for estimat-
ing the feedback path is analysed. These algorithms are the PNLMS
and IPNLMS using l1-norm or lo-norm.

2.1. PEM-PNLMS

The PNLMS algorithm was firstly introduced by Duttweiler for the
AEC context [19]. This algorithm uses an adaptive step-size in pro-
portion to the estimated filter coefficient to update each coefficient of
the adaptive filter. Therefore, a significant improvement in adapta-
tion speed compared to the NLMS algorithm can be achieved. Note
that unlike the AEC systems, the AFC systems suffer from correla-
tion between the loudspeaker signal and the incoming signal.

In our proposed PEM-PNLMS for AFC applications, the PEM is
used to decorrelate the loudspeaker signal and the incoming signal,
resulting in a lower bias in the estimate of the feedback path. Then
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Fig. 1: The proposed AFC system.

the pre-whitened signals are used in the PNLMS algorithm to further
improve the initial convergence and tracking. The proposed PEM-
PNLMS is described as

pA (k—1)yp (k) ep (k)
yE(E)A(k—=1)yp(k) +dpnrms’

A(k—l):dmg{ao{k—1},...,aLf,1{k—1}}, (10)

where dpnras is a regularization parameter and A (k— 1) is a
diagonal matrix. This diagonal matrix is used to allocate a step-size
to each filter coefficient such that a larger coefficient receives a larger
increment and vice versa. Hence, an increase in the convergence of
that coefficient is achieved.

In the original PNLMS algorithm [19], the diagonal elements
a; {k} are computed as

f(k)y="Ff(k—1)+ ©)

an (k) = an

Zi:fl Ai (k)
N (k) = max ¢, |fo (0)] - [ )] a2)
N (k) = max {pX] (k) |fu (k)] } (13

where p, ¢ are positive parameters with typical values p = 5/L #
¢ = 0.01. The constant p prevents f; (k) from stalling when it is
very small and ( is a regularization parameter.

2.2. PEM-IPNLMS

To further improve the convergence of the PNLMS, the improved
PNLMS [20, 21] modified the PNLMS by providing new rules to
better exploit the shape of the estimated feedback path for calculat-
ing the tap-dependent step-size. In [20] the /1-norm of the adaptive
filter is exploited, whereas the lo-norm is used in [21]. In this subsec-
tion we propose to employ the IPNLMS with {;-norm or /o-norm for
the PEM in HAs. The proposed PEM-IPNLMS (/-norm) method
uses a smoother choice for the elements in (13), i.e.,

£ (k)

I 2
— e i), a

Av(k) =(1-a)

where —1 < o < 1 and Hf(k)Hl =yt fim) =
1

0,1,...,L; — 1. Thus the diagonal elements of A (k — 1) in (9)
can be recalculated as

; 15)




where ¢ is a small positive value added to avoid division by zero. If
a = —1, the IPNLMS becomes the NLMS algorithm. If o = 1, the
IPNLMS is similar to the PNLMS. In practice, good choices for «
are -0.5 or 0. The relation among the regularization parameters of
the mentioned algorithms are é;pnrims = (1 — ) 6NLMS/2Lf
and 6pNLMsS = 6NL]V[S/Lf’ [20].

For the IPNLMS algorithm the /p-norm can be a good alternative
to the [1-norm [21]. The lp-norm of a vector is the number of its non-

zero components. The lo-norm of a vector b = [bo, b1, ...,br—1] s
defined as
L—1
Ibll,, = > f(b), (16)
1=0
1, b#0
b)) = 17
/(o) {07 b= 0. (17
The function f (b;) can be approximated as [25]
f (o) =1 —exp(=7[bul), (18)
where + is a large positive value. Hence,
L—1
by, = > [1 = exp (= i) (19)
1=0

In the PEM-IPNLMS using the /o-norm the equations (13) and (15)
are rewritten as follows

£ (k) .
Ak =(1—a) ‘L’O +(1+a) [1- BN o)
f
—a 1—exp(— f k
a(k) =%+ (1+a) e}?( v[79]) @)
2Ly 2|[E (k)| +e

3. SIMULATION RESULTS

Fig. 2 shows the IRs of measured acoustic feedback paths of length
Ly = 100 with a two-microphone behind-the-ear hearing aid [26]
used for the simulations. The first feedback path (f;) and the sec-
ond feedback path (f2) were measured in free-field and with a tele-
phone receiver close to the ear, respectively. The sampling frequency
was fs = 16kHz. The proposed methods PEM-PNLMS and PEM-
IPNLMS are evaluated for both speech and music incoming signals.
The speech incoming signal is the same concatenated real male and
female speech as in [4], while the music incoming signal is John
Lennon’s Imagine. All simulations are run for 80s with a sudden
change from the free-field to the telephone-near feedback path after
40s. For the evaluation of all mentioned AFC methods we use the
normalized misalignment (A 1.S) and the added stable gain (ASG)
[3, 27] which are defined as

MIS =101 lie —F1i3 22
- Oglo( ||fH2 )7 ( )

2

1

ASG = 10log,, =
maxa |F(©) — F(Q)?
1

101log,, m, (23)
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Fig. 2: Impulse responses of measured feedback paths.

where F'(Q) and F(Q) are the frequency responses of estimated
and measured acoustic feedback paths at the normalized frequency
Q, respectively. We set the following parameters for all simula-
tions. The adaptive filter of length L ; = 64, step-size u = 0.001,
ONLMS = € = 10*1? and o = 0, v = 50 were chosen. The
prediction-error filter G(g, k) of order 20 was updated using the
Levinson-Durbin algorithm every 10 ms. The delay in the feedback
canceller path was 1 sample, whereas the delay and gain in the for-
ward path were d, = 96 samples and | K| = 30 dB, respectively.

Fig. 3 compares the performance of all metioned methods for
the speech incoming signal. The proposed PEM-PNLMS outper-
forms the PEM-NLMS for both initial convergence and tracking
rates while remaining a similar steady-state error. The PEM-
IPNLMS provides a further improvement in initial convergence
and tracking compared to the PEM-PNLMS. The performance of
the PEM-IPNLMS using lo-norm is slightly better than the PEM-
IPNLMS using /1 -norm.

Fig. 4 illustrates the performance of the proposed methods for
the music incoming signal. It can be seen that the proposed PEM-
PNLMS and PEM-IPNLMS have slightly faster initial convergence
as well as lower misalignment and ASG than the PEM-NLMS for the
free-field feedback path. The powerful characteristic of the proposed
methods is exposed when the feedback path suddenly changes af-
ter 40s, where the tracking of the PEM-PNLMS and PEM-IPNLMS
(with 1 -norm/lp-norm) is quicker than that of the PEM-NLMS.

Table 1: Average misalignment and average added stable gain for
the PEM using NLMS, PNLMS, IPNLMS algorithms with speech
incoming signal.

AFC methods MIS ASG

PEM-NLMS -19.1896  20.5104
PEM-PNLMS -19.9289  21.1166
PEM-IPNLMS (I;-norm) -20.1112  21.4114
PEM-IPNLMS (lp-norm) -20.1920 21.4603
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Fig. 3: (a) Misalignment, (b) ASG of the PEM using NLMS,
PNLMS, IPNLMS algorithms with speech incoming signal.

Table 2: Average misalignment and average added stable gain for
the PEM using NLMS, PNLMS, IPNLMS algorithms with music
incoming signal.

AFC methods MIS ASG

PEM-NLMS -14.6301  16.4178
PEM-PNLMS -14.9743  17.0056
PEM-IPNLMS (I;-norm) -15.0450 16.8715
PEM-IPNLMS (lp-norm) -15.0675 16.8815

Table 1- 2 present evaluations of the PEM-NLMS, PEM-
PNLMS and PEM-IPNLM for the speech and music incoming
signals, respectively. It can be seen that the PEM-PNLMS and PEM-
IPNLM using /1 -norm or [p-norm yield better average misalignment
(M1S) as well as average added stable gain (ASG) compared to
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Fig. 4: (a) Misalignment, (b) ASG of the PEM using NLMS,
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the PEM-NLMS for both cases of the speech and music incoming
signals. These results confirm the benefit of the proposed methods
when using the tap-dependent step-size for estimating the adaptive
filter coefficients for acoustic feedback control in HAs.

4. CONCLUSION

In the paper we have implemented and evaluated different adap-
tive algorithms exploiting the shape of the estimated feedback paths
to calculate the tap-dependent step-size which is used for updat-
ing the adaptive filter coeficients for AFC using PEM in HAs. The
proposed methods significantly improve the tracking rate compared
to the PEM-NLMS for both speech and music incoming signals.
Their initial convergence outperforms the PEM-NLMS for the case
of speech incoming signal and also has slightly improvement for the
case of music incoming signal. Moreover, the proposed methods do
not require prior knowledge of the feedback paths as well as incom-
ing signal power.
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