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Abstract—In acoustic conditions with reverberation and co-
herent sources, various spatial filtering techniques, such as the
linearly constrained minimum variance (LCMV) beamformer,
require accurate estimates of the relative transfer functions
(RTFs) between the sensors with respect to the desired speech
source. However, the time-domain support of these RTFs may
affect the estimation accuracy in several ways. First, short RTFs
justify the multiplicative transfer function (MTF) assumption
when the length of the signal time frames is limited. Second, they
require fewer parameters to be estimated, hence reducing the
effect of noise and model errors. In this paper, a spherical micro-
phone array based framework for RTF estimation is presented,
where the signals are transformed to the spherical harmonics
(SH)-domain. The RTF time-domain supports are studied under
different acoustic conditions, showing that SH-domain RTFs are
shorter compared to conventional space-domain RTFs.

I. INTRODUCTION

Microphone arrays, used for speech enhancement, motivated
research of spatial filters, also known as beamformers. First,
fixed beamformers, such as the delay-and-sum beamformer
[1], were developed. Later, data-dependent beamformers that
include noise minimization, such as the linearly constrained
minimum variance (LCMV) beamformer [2] with its well-
known special case, the minimum variance distortionless
response (MVDR) beamformer [3], were introduced. The
generalized sidelobe canceler (GSC) [4] was developed as
an effective way of implementing the MVDR beamformer.
The original GSC was developed under the assumption of
a simple anechoic acoustic environment, where the received
signals are delayed versions of the desired signal. However,
in real rooms with reflections from the room boundaries this
assumption is not valid. To address degradation due to coherent
reflections, in [5] the TF-GSC was proposed by adapting the
GSC to the general acoustic transfer function (ATF) case. It
was found that the TF-GSC can be implemented using the
relative transfer functions (RTFs) within the linear constraints
of the beamformer.

Due to its importance in beamformer design, RTF estimation
has been widely explored. In [6], Cohen developed a method
based on spectral subtraction. Under stricter assumptions re-
garding time segmentation of noise and the desired sources,
Markovich et al. [8] proposed an eigenspace method for RTF
estimation in a multi-speaker problem, which was further

analyzed in [9] to demonstrate its superiority over covariance
subtraction based methods [6].

These methods estimate the space-domain RTFs. Their
performance depends on the complexity of the RTFs and, more
particularly, on the time-domain support of their corresponding
impulse responses. This support affects the required length
of the time frames employed when processing the speech
signal using the short-time Fourier transform (STFT). Standard
speech processing applications may impose limits on the frame
length, such that shorter RTFs may be desirable. Furthermore,
RTFs corresponding to short impulse responses justify the use
of the multiplicative transfer function (MTF) approximation
[10], and reduce the analytical and computational complexity
imposed by algorithms which use space-domain RTFs, as in
[11].

A noise reduction algorithm for spherical arrays, using an
LCMV framework that consists of a fixed beamformer and
a blocking matrix, based on the spherical Fourier transform
(SFT) is introduced in [12]. The spherical array enables spatial
separation of the acoustic reflections, simplifying the RTFs
and improving the noise reduction performance of the LCMV
beamformer. The current contribution provides a comprehen-
sive analysis of the RTFs in the SH-domain, comparing the
support of space-domain RTFs and SH-domain RTFs under
various acoustic conditions. It is shown that SH-domain RTFs
are significantly shorter, which motivates the application of
SH-domain array processing for improved performance.

In section II the system model is presented, and in sections
III and IV the RTFs in the SH-domain will be defined and
discussed. Section V outlines the results of a simulation study
and, finally, conclusions are drawn in section VI.

II. LCMV FRAMEWORK

The LCMV framework, developed in [12], is briefly re-
viewed in this section. This framework is an example for the
use of RTFs in the SH-domain, and the results may also be
useful for other algorithms using RTFs.

For the measurement model, consider a spherical array of
radius r, consisting of J microphones receiving a speech signal
emitted by a point source in a noisy and reverberant room.
The pressure recorded at the array elements consists of the
desired signal and its reflections from the room boundaries.
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The pressure at the jth microphone, in the frequency-domain,
can be expressed by:

pj(k) = hj(k)s(k) + uj(k) =

Q∑
q=1

vj(k, ψq)s(k) + uj(k)

j = 1, · · · , J (1)

where k denotes the frequency index, Q is the number of
reflections (including the direct path), hj(k) is the space-
domain ATF of the source to the jth microphone, vj(k, ψq) is
the ATF of the qth reflection to the jth microphone, with ψq
the direction of arrival (DOA) of the qth reflection. s(k) is the
speech signal and uj(k) represents the noise and interference
signals at the jth microphone.

Figure 1 shows a block diagram of the LCMV framework
[12] divided into several stages, detailed in the following.

A. Spherical Fourier transform (SFT)

In the first stage, the spherical functions are represented by
their SH decomposition [13]. Under the necessary condition
that J ≥ (N+1)2, the SFT up to the array order N for kr < N
can be approximated using a weighted summation over the
microphone signals [14]. Using the representation of plane
waves in the SH-domain, the spherical Fourier coefficients of
the pressure are given by:

pmn (k, r) =

Q∑
q=1

aq(k)bn(kr)Y mn (ψq)
∗s(k) + umn (k) (2)

where aq(k) is the complex amplitude of the qth reflection,
bn(kr) is determined by the array configuration [14], Y mn (ψq)
is the SH function of order n and degree m, and umn (k) are
the spherical Fourier coefficients of the noise. Equation (2)
is valid under the far-field assumption that approximates the
reflections as plane waves. Dropping k, r for brevity, the vector
of coefficients up to order N is:

pmn = BnYHas+ umn (3)

with (·)H the conjugate transpose operator and:

pmn = [p00, p
(−1)
1 , p01, p

1
1, . . . , p

N
N ]T

umn = [u00, u
(−1)
1 , u01, u

1
1, . . . , u

N
N ]T (4)

the (N+1)2×1 pressure and noise spherical Fourier coefficient
vectors, respectively. Bn = diag(b0, b1, b1, b1, ..., bN ) is an
(N + 1)2 × (N + 1)2 matrix and the amplitude vector is
a = [a1(k), · · · , aQ(k)]T . The Q× (N + 1)2 SH matrix Y is
defined as:

Y =


Y 0
0 (ψ1) Y

(−1)
1 (ψ1) Y 0

1 (ψ1) · · · Y NN (ψ1)
...

...
...

. . .
...

Y 0
0 (ψQ) Y

(−1)
1 (ψQ) Y 0

1 (ψQ) · · · Y NN (ψQ)

 .

(5)

Fig. 1. LCMV block diagram

B. Fixed Beamformer
From the spherical Fourier coefficients, the pressure field

plane wave density (PWD) function [14] is:

y = B−1n pmn = YHas+ ũmn (6)

where ũmn = B−1n umn . Circumventing the matrix Bn to
be singular at some frequencies can be achieved by using
specific array configurations, and by limiting the order at low
frequencies [14].

For the fixed beamformer stage, it is assumed that the DOAs
of Q̃ reflections are known, with Q̃ ≤ Q. While this does
not necessarily hold in practice, it enables analysis of the
algorithm building blocks. It is also assumed that the array is
capable of decomposing all known reflections, requiring that:

(N + 1)2 ≥ Q̃. (7)

The following beamformer and blocking matrix are then
applied to the PWD function:

d =

(
(ỸH)†

ΓH

)
y (8)

where (·)† denotes the Moore-Penrose pseudo-inverse opera-
tor. Ỹ is a Q̃ × (N + 1)2 matrix with a structure similar to
(5), based on the known DOAs of the Q̃ reflections.

Each row of (ỸH)† is actually a beamformer directed to
the DOA of the qth reflection, with nulls pointed at the other
Q̃ − 1 reflections [15]. The columns of the blocking matrix
Γ span the null space of Ỹ, and can be constructed from the
first (N + 1)2 − Q̃ columns of I − ỸH(ỸỸH)−1Ỹ.

C. LCMV
The final stage is to apply an LCMV beamformer to

the fixed beamformer output signals d, using as constraints
estimated RTFs in the SH-domain with respect to the desired
source. The first channel in (8) is always used as the reference
channel for the RTF estimation. A noise reference signal is
required for estimating the noise covariance matrix. The reader
is referred to [12] for more details.
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III. SPACE-DOMAIN AND SH-DOMAIN RTFS

The goal of this section is to define the RTFs in the space-
domain and the SH-domain and to define a measure for their
time-domain support.

The jth space-domain RTF can be calculated according to
the corresponding ATFs defined in (1) as:

wj(k) =
hj(k)

h1(k)
j = 2, · · · , J. (9)

In the SH-domain, we first define the corresponding ATFs
relating to the processing in (6) and (8) (i.e. PWD and fixed
beamformer) as:

g(k) =

(
(ỸH)†

ΓH

)
B−1n (k)hmn (k) (10)

with the (N + 1)2 × 1 vector of spherical Fourier coefficients
of the space-domain ATF vector h(k) = [h1(k), · · · , hJ(k)]T :

hmn (k) = [h00(k), h
(−1)
1 (k), h01(k), h11(k), . . . , hNN (k)]T . (11)

Similarly, the RTFs in the SH-domain are defined as:

wi(k) =
gi(k)

g1(k)
i = 2, · · · , (N + 1)2. (12)

The time-domain support of the RTFs is calculated using
Schroeder integration [16]. However, since the RTFs are not
necessarily causal, i.e. the non-causal parts appear at the end of
their impulse responses, the RTFs are centralized by a reverse
circular shift before applying the inverse Discrete Fourier
transform (IDFT), i.e.:

wci (m) = IDFT{wi(k)e−jkπ} i = 2, · · · , (N + 1)2

m = 0, · · · ,M − 1 (13)

where wci (m) is the centralized time-domain RTF, and M
denotes the number of STFT frequencies (and thus the length
of wci (m)). Due to the two-sided nature of the centralized
RTFs (see Figure 3), the Schroeder integral is applied twice,
i.e. once from each side. The discrete time versions of the
Schroeder integrals are given by:

S1
i (m) =

M−1∑
l=m

(wci (l))
2, m = 0, · · · ,M − 1

S2
i (m) =

M−1∑
l=m

(wci (M − 1− l))2, m = 0, · · · ,M − 1

(14)

Finally, the time-domain support of the ith RTF is defined as:

∆ti =
m25(S1

i )− (M − 1−m25(S2
i ))

fs
(15)

where fs is the sampling frequency and m25(S1
i ) and m25(S2

i )
are the sample indices for which S1

i (m) and S2
i (m) decay by

25dB relative to their value at m = 0, corresponding to the
total energy of the RTF. This measure provides the time period
during which most of the energy of the RTF resides.

IV. ANALYSIS OF SH-DOMAIN RTFS

The main purpose of this paper is to analyze the properties
of the RTFs in the SH-domain. The analysis is divided into two
cases: one in which a complete separation of the reflections
is obtained in the SH-domain (Q̃ = Q), and the other in
which the separation is only partial (Q̃ < Q). For each case,
the advantages and limitations of the analytic approach will
be examined. The separation capabilities of the array depend
on its SH order and, therefore, the number of microphones.
This is contrary to the space-domain, where the number of
microphones does not affect the RTF support.

1) Full separation (Q̃ = Q): When the DOAs of all
reflections are known with high accuracy and the array order
is high enough to enable their separation, each of the first Q
channels of d comprises a single source reflection (where the
first channel comprises the direct signal), i.e.:

di(k) =

{
ai(k)s(k) i = 1, · · · , Q
0 i = Q+ 1, · · · , (N + 1)2

. (16)

Therefore, the ATFs are given by gi(k) = ai(k) for i =
1, · · · , (N + 1)2, and the RTFs in the SH-domain are (12):

wi(k) =

{
ai(k)
a1(k)

i = 2, · · · , Q
0 i = Q+ 1, · · · , (N + 1)2

. (17)

Assuming that the direct path ATF a1(k) is constant over
frequency, the first Q RTF supports are dictated by the time-
domain support of the corresponding SH-domain ATF ai(k).

2) Partial separation (Q̃ < Q): Due to the Q−Q̃ unknown
DOAs, the fixed beamformer in (8) does not have nulls pointed
in the directions of the unknown reflections. Thus, all channels
in d will contain residual reflections. Let r be the (N+1)2×1
residual vector whose elements are:

ri(k) =

Q∑
j=1

γijaj(k) i = 1, · · · , (N + 1)2 (18)

where γij is a gain factor inserted by the fixed beamformer
for the jth reflection. Elements of d can be expressed as:

di(k) =

{
ai(k)s(k) + ri(k)s(k) i = 1, · · · , Q̃
ri(k)s(k) i = Q̃+ 1, · · · , (N + 1)2

(19)
The RTFs in the SH-domain are then given by:

wi(k) =

{
ai(k)+ri(k)
a1(k)+r1(k)

i = 2, · · · , Q̃
ri(k)

a1(k)+r1(k)
i = Q̃+ 1, · · · , (N + 1)2

. (20)

The residual reflections will typically result in a longer support
in the time-domain. However, for the first channel, obtained
from a beamformer directed to the direct path of the desired
source, it is reasonable to assume that the direct sound is
dominant, i.e. |a1(k)| >> |γ1jaj(k)| for j = 1, · · · , Q, such
that the residual term can be neglected. The RTFs in the SH-
domain can then be approximated by:

wi(k) u

{
ai(k)+ri(k)

a1(k)
i = 2, · · · , Q̃

ri(k)
a1(k)

i = Q̃+ 1, · · · , (N + 1)2
. (21)
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Under this assumption, the only influence of the denominator
is a time-shift, which is not reflected in a longer support. This
is definitely an advantage over space-domain RTFs, where
a complex ATF in the denominator results in long impulse
responses in the time-domain.

V. SIMULATION STUDY: SH-DOMAIN RTFS

The simulations in this section compare the RTFs’ time-
domain supports in the space-domain and the SH-domain for
different acoustic environments. A room with dimensions 8×
6 × 3 m was simulated by an in-house developed simulator,
implementing the image method [17], to create an environment
with various reverberation times. A spherical microphone array
with a radius of 4.2 cm was placed at (4.5, 2.5, 1.5) m and
a point source at 16 uniformly spaced positions around the
array, each at a distance of 2 m from the array center. The
sampling frequency was set to 8 kHz. In the simulations we
considered arrays of orders N = 4 and N = 10 with J = 64
and J = 242 microphones, respectively. The room boundary
reflection coefficients were chosen such that T60 ranges from
42 ms to 645 ms.

For the considered reflection coefficients, the simulated
room had many reflections, such that the given array order
does not enable full separation of the reflections, i.e. Q̃ < Q.
Since the simulation engine provided more reflection DOAs
than the analysis can handle, a DOA subset was chosen. Two
criteria were taken into account in the selection of this subset:

1) Avoiding ill-posed distributions of reflection DOAs,
manifested as a high condition number of matrix Ỹ in
(8).

2) The reflection power.
Adjacent DOAs produce linearly dependent columns in Ỹ,
such that taking the pseudo-inverse in (8) becomes a highly
non-stable operation, causing unstable beam patterns. The
chosen approach for the DOA selection was to take the
(N + 1)2 · 1.5 reflections with the highest amplitudes from
the set given by the simulation engine, and to sort them by
the corresponding condition number of Ỹ. Although the DOA
sorting is supposed to solve the robustness issue, the matrix is
still unstable when Q̃ ≈ (N + 1)2. For this reason, diagonal
loading by a factor of a tenth of the largest singular value is
used as another means to improve the robustness.

In practice, the information of multiple reflection DOAs is
not likely to be available. However, the analysis in this section
uses this information to study RTFs in the SH-domain for a
wide range of conditions, aiming to provide recommendations
and insights regarding performance under real conditions. The
following simulations also investigate scenarios where only
the source DOA is known, i.e. Q̃ = 1. Note that in this case,
all (N + 1)2 RTFs are relevant, because all channels contain
residual reflections.

For 6 different settings, Figure 2 depicts the average RTF
supports, calculated using (14), as a function of the rever-
beration time. It is evident that the SH-domain RTFs are
generally shorter than the space-domain RTFs. Furthermore,
as anticipated, the array order greatly affects the support of
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Fig. 2. RTF supports for different array configurations as a function
of the reverberation time, averaged over 16 source positions and on
the (N + 1)2 RTF supports per position.
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Fig. 3. Examples of (a) space-domain and (b) SH-domain RTFs, array
order N = 10, T60 = 153ms, Q = Q̃ = 54, after circular shift
correction.

the SH-domain RTFs, due to the improved spatial resolution
of arrays of higher order, but hardly makes any difference in
the space-domain.

Another observation regards the array separation capability.
For small reflection coefficients, where Q̃ = Q can be
achieved, all reflections are decomposed by the array, such
that the RTF support is close to 0. For Q̃ = 1, it is to be
expected that the RTFs will be longer, but they are still quite
short because the first channel contains only the direct source
(see Section IV). When the number of reflections surpasses
the array separation capability, the results for N = 4 show
that separating only the direct source and using it for RTF
estimation gives better results than separating many reflections,
such that there is no advantage in choosing Q̃ > 1. This is
a reasonable outcome, because as we try to separate a larger
number of reflections, the pseudo-inverse of the matrix Ỹ is
less stable, causing amplification of undesired reflections. As a
result, the first channel, which greatly affects the RTF support,
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contains significant reflections other than the direct signal.
An example of a space-domain and a SH-domain RTF is

depicted in Figure 3, demonstrating that, indeed, SH-domain
RTFs have a shorter support.

Figure 4 depicts the influence of the number of known
reflection DOAs, Q̃, on the RTF support. For the larger
reverberation times, the average RTF support increases as more
reflections are taken into account in the fixed beamformer.
This observation confirms the statement that for reverberant
scenarios it may be better to use only the direct source
channel to keep the fixed beamformer robust. However, if the
total number of reflections, Q, is smaller than the number of
separable reflections (N + 1)2 (in this simulation 25), or only
slightly larger, the RTF support is maintained or decreased
when a larger Q̃ is selected. This is due to the successful
separation in these low reverberation cases. However, even
in these cases the condition number of Ỹ still increases
significantly above 1, and, in practice, this might raise an issue
of noise amplification.

VI. CONCLUSION

In this paper, a previously developed framework for spher-
ical microphone arrays that transforms the space-domain sig-
nals to the SH-domain was considered. Under a set of assump-
tions, an analysis of the RTFs in the SH-domain was carried
out and tested under different acoustic environments and array
configurations. It was shown that the time-domain support
of the SH-domain RTFs, which influences the performance
of subsequent localization and beamforming algorithms, was
shorter compared to the support of conventional space-domain
RTFs. Simulations have examined the dependence on array
order, level of room reverberation, and number of known
reflections. It was shown that, when using a high order array in
low reverberation conditions, it is better to use all the known
reflections in the SH-domain. However, if the room response
consists of many reflections, Q̃ should be limited.

Future work will include the development of improved
RTF estimation methods in the SH-domain, and a comparison
of LCMV performance using these SH-domain RTFs with
LCMV with space-domain RTFs.
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