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Abstract
For single-microphone noise reduction, a minimum variance dis-
tortionless response (MVDR) filter has been recently proposed
based on speech correlations of consecutive time frames. This fil-
ter is able to keep speech distortion low but compared to conven-
tional approaches achieves less noise reduction. Further, when
only having access to the noisy speech, more artifacts in the back-
ground noise are audible due to estimation errors of the speech in-
terframe correlations, especially in time-frequency regions where
speech is not dominant. Therefore, in this paper we propose to
apply the MVDR filter where speech is dominant and the single-
channel Wiener filter otherwise, using a weighting based on the
speech presence probability. In addition, we modify the decision-
directed approach to estimate the a priori SNR in a more robust
way for short analysis frames. Experimental results show that the
proposed scheme achieves a better speech quality compared to
the MVDR filter and the single-channel Wiener filter.

1 Introduction
In many speech communication applications, clean speech is af-
fected by additive noise. As a consequence, the speech quality
and intelligibility of the target signal decreases with decreasing
signal-to-noise ratio (SNR), such that noise reduction algorithms
are required. Commonly, single-microphone noise reduction al-
gorithms operate in the short-time Fourier transform (STFT) do-
main. To obtain an estimate of the clean speech STFT coeffi-
cients, typically a multiplicative gain function is applied to the
noisy speech signal at each time-frequency point. The most pop-
ular examples are the single-channel Wiener filter (WF) [1], the
minimum-mean-square error (MMSE) based amplitude estima-
tor [2] and the MMSE log-amplitude estimator [3]. All these ap-
proaches assume that consecutive time frames are uncorrelated,
such that each time-frequency point can be processed indepen-
dently. However, it is well known that speech is highly corre-
lated over time and frequency. To incorporate these correlations,
Benesty and Huang [4] [5] proposed a single-microphone multi-
frame MVDR (MFMVDR) filter exploiting the temporal speech
interframe correlations (IFC). For this, the current time frame as
well as previous frames are considered. Conceptually, this frame
array is similar to a multimicrophone system when interpreting
the considered frames as microphone inputs.

The MFMVDR filter achieves impressive results in terms of
speech distortions if the speech IFC is perfectly known [4] [5].
Even in a blind implementation where we only have access to
the noisy speech signal, the MFMVDR introduces less speech
distortion than conventional single-channel algorithms like the
Wiener filter [6]. To increase the amount of noise reduction, we
recently proposed to combine the MFMVDR with a Wiener post-
filter [7], similar to spectral post-filtering for multi-microphone
techniques [8]. However, it has been reported that the blindly
implemented MFMVDR filter introduces unpleasant artifacts in
the background noise [7]. This effect can be mainly observed in
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time-frequency regions where speech is not dominant, since the
estimation of the speech IFC becomes inaccurate and highly vari-
ant. To reduce this effect, in this paper we propose to use the WF
where speech is not dominant and the MFMVDR where speech is
dominant. For this, we apply a soft frequency dependent weight-
ing between the MFMVDR and WF estimates based on the (lo-
cal) speech presence probability (SPP). With this approach, we
are able to benefit both from the good noise reduction perfor-
mance and the small amount of produced musical tones of the WF
while during speech activity the speech distortions can be kept
low using the MFMVDR. Furthermore, to reduce the fluctuation
of the speech IFC estimation, we propose a modified decision-
directed approach (DDA) for short time frames to estimate the a
priori SNR. It is well-known that the DDA [2] is able to reduce
the background noise and musical tones more strongly [9] than
other a priori SNR estimators like the maximum likelihood (ML)
estimator [10]. The evaluation of the proposed algorithm takes
place in terms of PESQ [11], where we show that the predicted
speech quality performance can be improved with the proposed
combination of MFMVDR and Wiener filtering compared to the
WF and MFMVDR alone.

The paper is structured as follows. In Section 2 and 3 we de-
fine the interframe signal model and briefly review the MFMVDR
filter proposed in [4]. In Section 4, we describe the proposed al-
gorithm. We evaluate and conclude our work in section 5 and 6.

2 Signal Model
We consider a single microphone capturing a speech signal that
is corrupted by additive noise. In the STFT domain, the noisy
complex-valued spectral observation Y (k,m) is given by

Y (k,m) =X(k,m)+V (k,m), (1)

where X(k,m) denotes the desired speech and V (k,m) the addi-
tive noise signal. The indexes k and m denote the frequency bin
and time frame, respectively. It is assumed that the speech and
noise processes are uncorrelated and that X(k,m) and V (k,m)
are complex-valued, zero-mean Gaussian random variables.

The clean speech spectral component X(k,m) is estimated
by applying an FIR filter of order L − 1 with coefficients
H(k,m,l) to the noisy speech signal at each time-frequency
point as

X̂(k,m) =
L−1

∑
l=0

H∗(k,m,l)Y (k,m− l) (2)

= hH(k,m)y(k,m). (3)

Here, L is the number of consecutive time-frames, ∗ indicates
the complex-conjugate operator and H the Hermitian operator.
The vectors h(k,m) and y(k,m) contain the time-varying filter
coefficients and the last L−1 noisy speech samples, respectively
(see Figure 1), i.e.,

h(k,m) = [H(k,m,0), H(k,m,1), . . . , H(k,m,L−1)]T ,
(4)

y(k,m) = [Y (k,m), Y (k,m−1), . . . , Y (k,m−L+1)]T .
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Figure 1: Illustration of the time frames that are taken into ac-
count to create the input signal vector y(k,m)

According to (1), the L-dimensional vector y(k,m) can be
formulated as

y(k,m) = x(k,m)+v(k,m), (5)

where the clean speech vector x(k,m) and the noise vector
v(k,m) are similarly defined as y(k,m) in (4). To take the
speech interframe correlations into account, the vector x(k,m)
is decomposed into correlated and uncorrelated speech compo-
nents with respect to the desired signal X(k,m) [4]. Thus, we
can define the interframe signal model by rewriting (5) as

y(k,m) = ρx(k,m)X(k,m)+x′(k,m)+v(k,m), (6)

= ρx(k,m)X(k,m)+n(k,m), (7)

where, x′(k,m) represents the speech components uncorrelated
to the local speech coefficient X(k,m). Since we consider
x′(k,m) as an interference, we replaced x′(k,m)+v(k,m) by
n(k,m) as the undesired signal vector in (7). The speech inter-
frame coefficient vector ρx(k,m), is defined as

ρx(k,m) =
E [x(k,m)X∗(k,m)]

E
[

|X(k,m)|2
] =

ΦxX(k,m)

φX(k,m)
, (8)

with the speech correlation vector ΦxX(k,m) =
E [x(k,m)X∗(k,m)], the speech power spectral density
(PSD) φX = E

[

|X(k,m)|2
]

and the operator E[·] denoting the
expectation operator. Due to the normalization, the first element
of ρx(k,m) is always equal to 1 as X(k,m) is obviously fully
correlated with itself.Consequently, the first element of the
uncorrelated speech vector x′(k,m) is equal to 0.

3 Multi-Frame MVDR
In this section, we recap the MFMVDR filter presented in [4].
Based on the definition of (3) and (7) the MFMVDR filter can
be derived by minimizing the variance of the filtered undesired
signal n(k,m) under the constraint that correlated speech com-
ponents are not distorted, i.e.,

argmin
h(k,m)

hH(k,m)Φnn(k,m)h(k,m)

subject to hH(k,m)ρx(k,m) = 1. (9)

Here, Φnn(k,m) = E[n(k,m)nH(k,m)] denotes the correla-
tion matrix of the undesired signal n(k,m). Solving the problem
in (9) leads to the MFMVDR solution [4]

hMFMVDR(k,m) =
Φ−1
yy(k,m)ρx(k,m)

ρH
x (k,m)Φ−1

yy(k,m)ρx(k,m)
. (10)

Applying the MFMVDR filter in (10) to the noisy speech vector
y(k,m), the estimated clean speech spectrum X̂MFMVDR(k,m) is
obtained as

X̂MFMVDR(k,m) = hH
MFMVDR(k,m)y(k,m). (11)

In [4] [5] it has been shown that this filter achieves impres-
sive results in terms of speech distortions if the speech correlation
coefficient ρx(k,m) is perfectly known. Even in a blind imple-
mentation where we only have access to the noisy speech sig-
nal, it has been shown that the MFMVDR introduces less speech
distortions than conventional single-channel algorithms like the
Wiener filter [6]. However, applying the MFMVDR filter more
artifacts in the background noise are introduced due to inaccurate
estimations of ρx(k,m) [7].

4 Proposed Algorithm
To reduce the background noise while keeping the musical tones
and the speech distortions low, we present a soft frequency
weighting of the single-channel WF and MFMVDR filter based
on the SPP. Further, we propose a modified DDA for short time
frames to reduce fluctuation of the speech IFC estimation and to
suppress the background noise and musical noise more strongly.
Since we assume to have only access to the noisy speech signal,
we need to blindly estimate all required quantities.

4.1 Noisy correlation matrix estimation
The noisy correlation matrix Φyy(k,m) is estimated by recursive
smoothing [4], i.e.,

Φ̂yy(k,m) = λΦ̂yy(k,m−1)+(1−λ)y(k,m)yH (k,m),
(12)

where λ is the smoothing factor. The first element of the ma-
trix Φ̂yy(k,m) corresponds to the noisy speech PSD φ̂Y (k,m),
i.e., φ̂Y (k,m) =

[

Φ̂yy(k,m)
]

1,1. Before computing the inverse

of Φ̂yy(k,m), we first perform a matrix regularization [4][6] to
improve the robustness of the filter computation, i.e.,

Φ̂−1
yy(k,m) =

(

Φ̂yy(k,m)+
δregtr

[

Φ̂yy(k,m)
]

L
IL×L

)−1

(13)
with a regularization parameter δreg = 0.04 as in [4][6]. The op-
erator tr[·] denotes the trace of a matrix and IL×L is the identity
matrix of size L×L.

4.2 Speech IFC estimation
To estimate the clean speech IFC we employ the ML estimator
for ρx(k,m) proposed in [6], based on the assumption that the
noise and speech IFC vectors follow multivariate Gaussian distri-
butions. This ML estimator is given by

ρ̂xML
(k,m) =

ξ̂(k,m)+1

ξ̂(k,m)
ρ̂y(k,m)−

1

ξ̂(k,m)
μρv

. (14)

Here, we express the estimated speech IFC ρ̂xML
(k,m) in terms

of the a-priori SNR ξ(k,m) = φX (k,m)
φV (k,m)

with φX(k,m) and

φV (k,m) the speech and noise PSDs, respectively. The vec-
tor ρ̂y(k,m) denotes the noisy IFC and is defined similar to
the speech IFC in (8). Note that ΦyY (k,m) =

[

Φ̂yy(k,m)
]

:,1,

where [·]:,1 denotes the first column of a matrix. The parameter
μρv

is the mean of the noise IFC. It is assumed to be given by the
frame overlap and the analysis window function [6]. The quantity
is fixed for all time-frequency points.

4.3 Proposed a priori SNR estimation
It is well known that the DDA [2] is able to efficiently reduce
background noise and musical tones [9], by providing smoother
estimates than for instance the positively constrained ML esti-
mator of the speech PSD φX(k,m) used in [6] [7]. This ML
estimator is given by [10]

φ̂XML(k,m) = max
[

φ̂Y (k,m)− φ̂V (k,m),0
]

. (15)
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However, due to the use of short analysis frames (4 ms),
which are typically used in MFMVDR filters, and the nonsta-
tionarity of speech, outliers in φ̂XML(k,m) and the a priori SNR
ξ(k,m) negatively affect the speech IFC estimate and may result
in annoying artifacts in the processed speech [6] [7]. Thus, to
estimate ξ(k,m), we propose a modified DDA. For this, we pro-
pose to use temporally smoothed observations and estimates in
the DDA, as

ξ̂(k,m) = α
Ā(k,m−1)

φ̂V (k,m−1)
+(1−α)max [γ̄(k,m)−1,0] (16)

where α is a weighting factor. The higher α is set, the more
noise reduction and less musical noise are obtained, but the more
speech distortions are introduced. The smoothed a-posteriori
SNR γ̄(k,m) and the smoothed estimated speech periodogram
Ā(k,m−1) are defined as

γ̄(k,m) =
1
T

T−1

∑
t=0

|Y (k,m− t)|2

φ̂V (k,m)
, (17)

and

Ā(k,m) =
1
T

T−1

∑
t=0

|X̂(k,m− t)|2, (18)

where T is the length of the smoothing window. The larger T , the
less musical noise is produced but the more speech distortions are
introduced. Note that for T = 1, the equation (16) reduces to the
traditional DDA in [2].

For estimating the noise PSD φV (k,m), we apply the simple
noise PSD estimator proposed in [12], i.e.,

φ̂V (k,m) = min
[

φ̂Y (k,m), φ̂V (k,m−1)
]

(1+ ε). (19)

The parameter ε controls the maximum speed and is set to 5 dB/s
as in [6] [7].

4.4 Proposed speech spectrum estimation
In [7], we reported that the single-channel WF achieves less arti-
facts in the background noise than the MFMVDR filter. This is
due to estimation errors of the speech IFC, especially in speech
pauses. In practice, i.e. when parameters are estimated blindly,
the ML estimator of ρx in (14) fluctuates strongly in time-
frequency regions where speech is not dominant. These fluc-
tuations may result in annoying musical noise in the processed
speech. To reduce this effects, we propose to use the MFMVDR
where speech is dominant and the single-channel WF otherwise.
For this, we apply a frequency dependent SPP to achieve a soft
transition between the MFMVDR and the WF. The estimated
clean speech spectrum X̂(k,m) is obtained as

X̂(k,m) = p(k,m)X̂MFMVDR(k,m)+

(1−p(k,m))X̂WF(k,m), (20)

where p(k,m) is the SPP P (H1(k,m)|γ̄(k,m)) with H1(k,m)

as the hypothesis of speech presence. Here, X̂MFMVDR(k,m) is
given by (11) and X̂WF(k,m) is the processed speech spectrum
given by

X̂WF(k,m) =HWF(k,m)Y (k,m), (21)

with the Wiener gain HWF(k,m) defined as

HWF(k,m) = max

(

ξ̂(k,m)

1+ ξ̂(k,m)
,Hmin

)

. (22)

Note that in this case L is equal to 1. The parameter Hmin is
a lower limit of the Wiener gain to reduce the effect of speech
distortions. Further, if the SPP p(k,m) is 1 in (20) the WF
will not be considered just like the MFMVDR is neglected when
p(k,m) = 0 for all k,m.

4.5 SPP estimation
To estimate the speech spectrum X̂(k,m) using (20), we need to
estimate the a posteriori SPP p(k,m) = P (H1(k,m)|γ̄(k,m)).
For this, we employ the SPP estimator based on a smoothed ob-
servation γ̄ proposed in [13], i.e.,

p(k,m) = P (H1(k,m)|γ̄(k,m)) =
Λ(k,m)

1+Λ(k,m)
, (23)

where Λ is the generalized likelihood ratio (GLR). The GLR is
defined as the weighted ratio of the likelihoods of speech pres-
ence and speech absence, i.e.,

Λ(k,m) =
q

1−q

(

1
1+ξH1

)
r̄

2

exp

{

ξH1

1+ξH1

r̄

2
γ̄(k,m)

}

.

(24)
In [13], the smoothed a posteriori SNR γ̄ is modeled by a chi-
square distribution parameterized by the degrees-of-freedom r̄,
where for a larger r̄ the more smoothing is applied to γ̄. The
parameter ξH1 denotes a fixed a priori SNR which reflects the
SNR that is typical if speech were present and q = P (H1) is the
a priori SPP. It can be used to bias the GLR to speech presence
(q > 0.5) or to speech absence (q < 0.5). Here, we set q = 0.5.

5 Evaluation
In this section, we compare the performance of the proposed SPP-
based combination of the MFMVDR filter and the single-channel
WF to only applying the MFMVDR filter (p(k,m) = 1) and the
WF (p(k,m) = 0), as well as to the MFMVDR according to [6]
and the classical WF with a larger frame length, corresponding
to a higher frequency resolution. The main difference between
both considered MFMVDR filters is way of the a priori SNR is
estimated. For the MFMVDR according to [6], the ML estimator
of the speech in PSD (15) is used, whereas for the MFMVDR
(p(k,m) = 1) the proposed modified DDA in (16) is applied.

For all considered techniques (except for the classical WF),
we employ a high temporal resolution with a frame length of 4 ms
with a frame shift of 1 ms to increase the exploitable IFC. For the
classical WF, we use a frame length of 19 ms, an overlap of 50 %
and the traditional DDA (T = 1) with α= 0.97. The lower limit
hmin of the WF in (22) is set to -17 dB. The sampling rate is
fs = 16 kHz. For spectral analysis and synthesis, we employ a
square-root Hann window.

For the SPP-based combination of the MFMVDR and WF,
the required parameters L,λ,T and α were experimentally op-
timized. For several parameter combinations the PESQ [11]
scores were averaged over 30 TIMIT sentences corrupted by
white Gaussian noise at 0 dB SNR. The parameter settings with a
good compromise between PESQ performance and informal lis-
tening impression can be found in Table 1a. For the SPP esti-
mator we used the parameters according to [13] (see Table 1b).
However, in contrast to [13], we only considered the local SPP
and averaged the speech over 19 ms since this corresponds to the
largest considered time window for both the MFMVDR and WF
(see Table 1a).

Filter L λ T α

MFMVDR 18 (21 ms) 0.88 16 (19 ms) 0.65
WF 1 (4 ms) 0.88 16 (19 ms) 0.65

(a)
Δk Δl +1 N r̄ ξH1

1 16 (19 ms) 48 2.11 15 dB

(b)

Table 1: Parameter settings for (a) the proposed SPP-based com-
bination and (b) the (local) SPP estimator based on [13] with a
time averaging window of 19 ms.
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(e) X̂MFMVDR(k,m)
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(f) Proposed SPP-based combination

Figure 2: Spectrograms of the (a) clean speech, (b) noisy speech, (c) the SPP mask and (d)-(f) the resulting processed speech from a
female speaker corrupted by modulated white Gaussian noise at 5 dB SNR.

We first present results for a female speech signal corrupted
with modulated white Gaussian noise at 5 dB SNR. Figure 2
depicts the spectrograms of the clean speech, noisy speech and
the processed speech of the proposed algorithm, the MFMVDR
(p(k,m) = 1) and the WF (p(k,m) = 0). It can be clearly
seen that the WF decreases the background noise but attenu-
ates the speech components resulting in speech distortion. The
MFMVDR yields less speech distortion, but also less noise reduc-
tion. The proposed SPP-based weighted combination results in a
bit less noise reduction than the WF, especially at high frequency
bins, but less speech distortions than the WF alone. Informal
listening tests confirm the results. Applying the proposed SPP-
based combination, clearly less artifacts are audible than with
the MFMVDR but slightly more than with the WF. However, the
speech sounds less distorted and more natural with the proposed
combination than with the WF.

For further analysis, we compare the PESQ [11] improve-
ments of the proposed SPP-based combination to only applying
the MFMVDR (p(k,m) = 1) and the WF (p(k,m) = 0), as well
as to the MFMVDR in [6] and the classical WF. Average PESQ
improvements were computed over 60 sentences from the TIMIT
database [14] spoken by different speakers (5 male, 5 female),
corrupted by modulated white Gaussian noise with a modulation
frequency of 0.5 Hz, pink and traffic noise.

In Figure 3, the averaged PESQ scores over all evaluated
speech and noise files are shown for different SNRs. It can be
seen that for a wide range of SNRs the proposed SPP-based com-
bination outperforms only applying the MFMVDR (p(k,m) = 1)
and the WF (p(k,m) = 0). Comparing both MFMVDR imple-
mentations, the MFMVDR with p(k,m) = 1 exhibits larger im-
provements than the MFMVDR in [6] where both are consider-
ably worse than the proposed algorithm. The WF with higher
frequency resolution performs almost identical to the WF with a
lower frequency resolution for SNRs over 0 dB. Considering the
average performance at 0 dB SNR, the proposed approach per-
forms 0.04 MOS better than the WF (p(k,m) = 0) and 0.02 MOS
better than the classical WF, as well as 0.09 and 0.14 MOS better
than the MFMVDR [6] and MFMVDR (p(k,m) = 1), respec-
tively.

Since the WF is designed to minimize the mean-squared er-
ror between the clean speech signal and the estimated speech, the
WF reduces noise well but also results in speech distortions (see
Figure 2). The MFMVDR is designed to avoid speech distortion,
it leads to less noise reduction than the WF. Applying the pro-
posed combination of both the WF and MFMVDR leads to a bit
less noise reduction than the WF (see Figure 2) while the speech
quality predicted by PESQ can be improved (see Figure 3). Fur-
ther, comparing both considered MFMVDR implementations, the
MFMVDR (p(k,m) = 1) results in a bit better predicted speech
quality than the MFMVDR in [6]. Consequently, the proposed a
priori SNR estimator leads to a smoother estimate of the speech
IFC than the ML estimator of the speech PSD. Thus, estimation
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Proposed
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Figure 3: Averaged noise reduction performance of the WF
(p(k,m) = 0), the MFMVDR (p(k,m) = 1) and the proposed
SPP-based combination of both as well as the MFMVDR accord-
ing to [6] an the classical WF with 19 ms analysis frames.

errors of the speech IFC can be reduced and a better speech qual-
ity predicted by PESQ can be achieved. In addition, increasing
the frequency resolution for the WF leads to a comparable per-
formance as for the WF with lower frequency resolution and the
modified DDA. Moreover, combining the WF and MFMVDR es-
timates with a soft frequency dependent SPP leads to clearly less
musical tones and more noise reduction than the MFMVDR and
the speech is less distorted and sounds more natural than with
the WF.

6 Conclusions
In this paper we consider multi-frame MVDR (MFMVDR) filter-
ing for single-microphone speech enhancement. Recently, it has
been shown that the blindly implemented MFMVDR filter intro-
duces less speech distortions than the WF but achieves a lower
noise reduction performance and more musical noise [6] [7]. Fur-
thermore, typically the musical noise artifacts in the MFMVDR
filtering result from erroneous estimates of the interframe speech
correlations in speech absence. To reduce this effect, in this pa-
per we proposed to use the MFMVDR where speech is dominant
and the WF otherwise, controlled by an estimate of the speech
presence probability. Further, for estimating the a priori SNR we
modified the decision-directed approach to work robustly with
the short signal segments typically used in MFMVDR filtering.
The proposed combination of MFMVDR and Wiener filtering
achieves a better PESQ score as the WF and MFMVDR alone.
Furthermore, with the proposed combination and a priori SNR
estimation, we achieved clearly less musical tones and more noise
reduction than with the MFMVDR alone.
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