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Abstract

Many signal processing methods have been proposed to
improve the quality of speech recorded in the presence of
noise and reverberation. The evaluation of these methods
either requires the use of perceptual measures, i.e. listen-
ing tests, or instrumental measures. Perceptual measures
are typically more reliable but are quite costly and time-
consuming. On the other hand, instrumental measures
may correlate poorly with the perceived speech quality. In
this paper we propose to train an instrumental measure,
combining modulation-based features and model trees, on
the basis of perceptual scores obtained on a small corpus
of speech data that has been processed by a combination
of beamforming and spectral postfiltering. For evaluation
purposes the resulting measure is then applied to a larger
corpus. Results show that the use of model trees to train the
predicting function of an instrumental measure increases
its correlation with perceptual scores.

1 Introduction

In many speech communication applications, the speech
of a distant user is recorded by a single or by multiple mi-
crophones. In such conditions, the recorded speech sig-
nal is typically corrupted by both noise and reverberation,
which may severely degrade the perceived speech quality
and speech intelligibility. To overcome these effects, many
speech enhancement methods have been proposed [1–3].
Although many methods are able to substantially reduce
the amount of noise and reverberation in the recorded sig-
nal, processing artefacts frequently result in a degraded
speech quality [4], requiring the developed signal process-
ing algorithms to be thoroughly evaluated.

Perceptual measures are generally considered the most
reliable method for assessing the quality of processed
speech. These measures require a group of human asses-
sors to evaluate speech signals with respect to predefined
attributes, such as overall quality, level of reverberation,
coloration, etc. The evaluation is usually performed by
grading each attribute on a scale which either consists of a
few values, e.g., for the mean opinion score (MOS) [5], or
continuous values, as in the multiple stimuli test with hid-
den reference and anchor (MUSHRA) [6]. However, such
a procedure is quite costly and time-consuming and can
therefore only be applied for a handful of stimuli. Con-
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sequently, many speech enhancement approaches are of-
ten only evaluated using instrumental measures, which can
be applied to large corpora of processed signals. Instru-
mental measures can be broadly classified as either intru-
sive [7–11], i.e. requiring a (clean) reference signal, or
non-intrusive [12–15], i.e. not requiring a reference sig-
nal [16]. Unfortunately, in the presence of processing arte-
facts, instrumental measures have been shown to corre-
late poorly with perceptual scores [4, 16, 17]. The non-
intrusiveness property is particularly valuable for evalua-
tion of real-life recordings, for which no reference is avail-
able, and hence this paper focuses on the development of
non-intrusive measures to predict the perceived quality of
processed speech.

Non-intrusive measures predict the value of an attribute
by applying a predicting function to a feature vector ex-
tracted from the processed signal. The non-intrusive mea-
sures proposed in the literature differ in both the consid-
ered features and in the predicting function. In the case
of ANIQUE+ [12], four features are used, which repre-
sent different types of distortions, namely, signal distor-
tion, overall frame distortion, mute distortion and non-
speech distortion. The predicted speech quality is ob-
tained as a linear combination of these features. In the
case of P.563 [13], several features are used, which rep-
resent parameters of the speech signal under test and
several types of distortions, such as temporal clipping,
“robotization” and noise. The predicted speech quality
is obtained by applying a predicting function which com-
bines decision rules as well as linear combination of fea-
tures. In the case of both the speech-to-reverberation
modulation ratio (SRMR) [14] and the normalized SRMR
(SRMRnorm) [15], the used features comprise the modu-
lation energy in a few modulation frequency bands, aver-
aged over the whole length of the signal under test. The
difference between SRMR and SRMRnorm lies in the com-
putation of these energies, where for SRMRnorm the fre-
quency range of the modulation filters was reduced and a
per-frame energy treshold was implemented in order to re-
duce variability caused by pitch and speech content. How-
ever, both SRMR and SRMRnorm use the same predicting
function which is equal to the ratio between the energy in
the lower and higher modulation frequencies.

Of all mentioned non-intrusive measures, SRMRnorm

has been shown to be the most reliable measure to pre-
dict the speech quality of speech processed by a combi-
nation of beamforming and spectral postfiltering [18]. The
non-intrusive measure proposed in this paper uses the same
features as SRMRnorm but aims at an higher reliability by
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using a different predicting function, trained on a small
corpus of signals for which perceptual scores are avail-
able. The predicting function is a model tree [19], therefore
combining classification rules and regression in a similar
fashion as in the predicting functions used, in, e.g., [12]
or [13]. Results on a large number of speech utterances
show that the proposed measure yields higher correlation
with perceptual scores than SRMRnorm, hence indicating
that the proposed approach could be used to reliably eval-
uate algorithms by training the predicting function on a
small corpus before applying the resulting measure to large
corpora.

2 Proposed method

2.1 Considered features

The measure proposed in this paper considers the same
features as SRMRnorm, i.e. the energy of the modulation
spectra averaged over time and acoustic frequencies. The
computation of these features is briefly summarized in this
section. The signal under test x[n], with n denoting the
sample index, is filtered by a gammatone filterbank with J
channels, resulting in J filtered signals xj [n], with j de-
noting the frequency index. The temporal envelope ej [n]
is extracted from xj [n] as

ej [n] =
√

x2
j [n]+H {xj [n]}

2, (1)

with H {·} denoting the Hilbert transform. The temporal
envelopes are divided into windowed overlapping frames
of length L. The modulation spectral energy Ej [k,�] is
computed as the squared magnitude of the Fourier trans-
form of the �-th frame in the k-th modulation frequency
bin. The modulation spectral energies Ej [k,�] are only
considered for frequency bins in the interval kmin to kmax,
before being reduced to B bands by grouping the modu-
lation frequency bins. After applying energy tresholding
as proposed in [15, 20] and averaging over all frames, the
signal x[n] is represented by J ×B coefficients εj [b], with
b denoting the modulation frequency index. Finally, the
feature vector x of length B can be constructed as

x =
[

x[0] x[1] . . . x[B−1]
]T
, (2)

where the b-th element x[b] is computed as

x[b] =
∑

J−1
j=0 εj [b]

max
b

{

∑
J−1
j=0 εj [b]

} . (3)

In this paper, the different parameters of the feature ex-
traction have been set as in [15], which is an extension
of [14]. The gammatone filterbank uses J = 23 channels
with center frequencies ranging from 125 Hz to 4 kHz. The
temporal envelope ej [n] is divided in frames using a Ham-
ming window of length L corresponding to 256 ms and us-
ing shifts of 32 ms. The indices kmin and kmax correspond
to the range of modulation frequencies between 4 Hz and
40 Hz. These values have been shown to reduce the sen-
sitivity of the extracted features to the pitch content [15]
compared to the SRMR features proposed in [14]. The
modulation frequency bins are grouped into B = 8 bands,
resulting in a feature vector x with B = 8 elements.

2.2 Predicting function

The predicted value v of the perceived speech quality is
obtained by applying a predicting function f(·) to the fea-
ture vector x, i.e. v = f(x). In the case of both SRMR [14]
and SRMRnorm [15], this predicting function is equal to
the energy ratio between the lower and upper modulation
frequencies, i.e.

vSRMR = fSRMR(x) =
∑

blow−1
b=0 x[b]

∑
bhigh−1

b=blow
x[b]

, (4)

with blow and and bhigh denoting the lowest and highest
considered modulation frequency index, respectively. As
in [15], blow = 4 and bhigh is determined as the index for
which 90% of the modulation energy is accounted for, as
proposed in [14]. It should be noted that the denominator
in (3) has no influence on the output of (4). However, it is
still used here, as having features bounded between 0 and
1 is convenient to define decision rules.

Instead of using the energy ratio in (4) as the predicting
function, we propose to train the predicting function based
on a small corpus of (processed) speech data. It is hence
assumed that a set of T signals are available for training,
where for the t-th signal a perceptual score pt of speech
quality is available, e.g., from a previous perceptual mea-
surement. Additionally, a set of M signals are available
for testing, where for the m-th signal, the perceived speech
quality p̃m would in practice be unknown. Using the train-
ing set, we aim to determine the predicting function f(·)
which maximizes the Pearson correlation coefficient be-
tween predicted and perceived speech quality, i.e.

f(·) = argmax
f(·)

∑
M
m=1(p̃m−p)(ṽm− v)

√

∑
M
m=1(p̃m−p)2

√

∑
M
m=1(ṽm− v)2

, (5)

with
ṽm = f(x̃m), (6)

with x̃m denoting the feature vector extracted from the m-
th signal of the testing set, cf. (2), and

p=
1

M

M

∑
m=1

p̃m, v =
1

M

M

∑
m=1

ṽm. (7)

In this paper, we will use a model tree as the predicting
function built using the so-called M5' algorithm [19], i.e.,
each leaf node of the decision tree consists of a linear
model which predicts a value from the input features. The
construction of the model tree requires a set of observa-
tions which are all associated with a feature vector and a
target value. The set of observations here consists of the
signals available in the training set, which are all associ-
ated with a feature vector xt and a perceptual score pt. The
model tree is built in two stages. In the first stage, a con-
ventional binary decision tree is built by recursively split-
ting the set of observations into subsets in which the vari-
ation of the perceptual scores is maximal. This results in
a large binary decision tree which can be used to predict a
value for each observation. In the second stage, each node,
starting from the top of the constructed decision tree, is re-
placed by a linear model if the application of this model
results in a lower prediction error than the binary classifi-
cation. The resulting model tree is finally simplified using
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pruning and smoothing as described in [19], and contains
D binary decision nodes.

Although small values of D may result in underfitting,
D << T is necessary to avoid overfitting, which would
make the resulting predicting function unapplicable to sig-
nals not included in the training set. Additionally, it should
be noted that the predicting function f(·) resulting from the
model tree is actually not designed to maximize the corre-
lation in (5) but rather to minimize the mean squared error
obtained on the training set, i.e.,

f(·) = argmin
f(·)

1

T

T

∑
t=1

(f(xt)−pt)
2
. (8)

The effectiveness of the resulting predicting function to
maximize the correlation is discussed in Section 3.2.

3 Experiment

3.1 Corpus

For our evaluation, we used a subset of the evaluation set
of the REVERB challenge [21], which consists of a large
corpus of speech signals, corrupted by reverberation and
noise, sampled at 16 kHz. As described in detail in [22],
we obtained perceptual ratings for our subset by conduct-
ing a MUSHRA test. This corpus is divided into simu-
lated and real data. The simulated data is composed of
clean speech signals from the WSJCAM0 corpus [23],
which have been convolved with recorded room impulse
responses (RIRs) and to which measured noise at a signal-
to-noise ratio (SNR) of 20 dB has been added. The real
data is composed of utterances from the MC-WSJ-AV cor-
pus [24] and contains speech recorded in a room in the
presence of noise. For each room, two distances (denoted
by “near” and “far”) between the target speaker and the
center of the circular array of 8 microphones have been
considered. The combination of a room and a particu-
lar distance will be refered to as “condition” in the re-
mainder of this paper. Four acoustic conditions have been
tested, namely “S2, near”, “S2, far”, “R1, near” and “R1,
far”. The characteristics of these conditions are summa-
rized in Table 1. The stimuli presented to the assessors
consisted of unprocessed speech, an hidden reference, an
anchor and the recorded signal processed using 3 process-
ing schemes, namely single-channel spectral enhancement
(SE3), an MVDR beamformer (MVDR) and their combi-
nation (MVDR+SE3). Detailed descriptions of the per-
ceptual test and of the processing schemes can be found
in [22].

A total of 21 self-reported normal-hearing listeners
participated in the perceptual evaluation. The listening test
was conducted in a soundproof booth and the assessors lis-
tened to diotic signals through headphones. Each assessor
evaluated the “overall quality” of 3 utterances per condi-
tion and algorithm (i.e. 12 uterances per assessor) on a

Set Room T60 [ms] Distance [cm] Label

Simulated medium 500
50 S2, near

200 S2, far

Real large 700
100 R1, near

250 R1, far

Table 1: Summary of the considered acoustic conditions.

S2, near S2, far R1, near R1, far
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Figure 1: MUSHRA scores for the different acoustic con-
ditions and processing schemes as well as for the reference,
the unprocessed signal and the anchor. The means over all
files and assessors are displayed by circles.

scale ranging from 0 to 100. For each assessor, the ut-
terances to be evaluated were randomly picked from the
REVERB challenge database, in order to reduce potential
bias due to the choice of speech stimuli. The obtained
MUSHRA scores are summarized in Fig. 1. It should
be noted that the test was designed to evaluate the per-
formance of processing schemes, i.e. only signals within
the same acoustic condition were compared. Therefore,
the evaluation described in the next section will assess the
ability of the proposed method to improve the reliability of
speech quality prediction when the predicting function is
trained for each particular acoustic condition.

3.2 Evaluation procedure

As the method described in Section 2.2 requires a training
set to train the predicting function, we used 3-fold cross-
validation to assess its performance. The 21 assessors have
been randomly divided into 3 equally sized disjoint subsets
of 7 assessors. For each fold, the signals and correspond-
ing perceptual scores contained in 2 of these subsets were
considered as the test set, while the data corresponding to
the remaining subset was used for training the predicting
function. Using this folding, assessors, speech stimuli and
noise segments always differ between training and testing
and for each fold, the training and test sets contain T = 126
and M = 252 signals, respectively. For each recording in
either training or test set, the true value of the perceived
speech quality has been considered to be the mean of the
perceptual scores attributed to signals in this set that have
been processed by the same processing scheme. For each
fold, results are obtained separately for each of the 4 con-
sidered acoustic conditions.

This evaluation procedure is used to compare the
prediction of the perceived speech quality obtained by
using the modulation-based features described in Sec-
tion 2.1 as input to either the predicting function from (4),
i.e. SRMRnorm, or the predicting function based on the
model tree built using the training set and implemented
using [25]. These predicting functions are evaluated us-
ing two figures of merits: 1) the Pearson correlation co-
efficient ρ between the true value of the perceived speech
quality and the value estimated by the predicting function,
2) the standard deviation σ across different signals within
the same processing schemes and acoustic conditions. For
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Figure 2: Scatterplot of the predicted value of the speech
quality as a function of the true perceived speech quality,
with values normalized between 0 and 1. The vertical bars
represent the standard deviations of the predicted values
for each algorithm in the considered corpus. The dashed
lines repesent linear functions fitted to the mean of the pre-
dicted values.

each condition, we present the average σ, obtained as the
root of the sum of the squared standard deviations for each
processing scheme. Therefore, large values of ρ indicate
the ability of the predicting function to predict the quality
of the processed speech averaged over a large number of
signals, while small values of σ indicate that the function
is able to consistently predict between recordings.

3.3 Results

Fig. 2 depicts the scores predicted by SRMRnorm and the
proposed method as a function of the true perceived speech
quality. Since the same conclusions can be drawn for all
folds, only the results obtained for one fold are displayed.
It can be observed that for all four acoustic conditions, both
predicting functions result in predicted values increasing
with the perceived speech quality. Additionally, in the case
of the proposed method, the linear function fitted to the
mean of the predicted values is closer to a proportional
function than in the case of SRMRnorm. However, the
spread of the predicted values is larger in the case of the
proposed approach than in the case of SRMRnorm. These
observations suggest that the proposed method might lead
to higher correlations but larger standard deviations.

The observations from Fig. 2 seem to be confirmed by
Fig. 3, in which the obtained values of the Pearson cor-
relation coefficient ρ and the average standard deviation σ
are depicted for the three folds and the four acoustic condi-
tions. First, it appears that ρ and σ yield very similar values
over the three folds, suggesting that the model tree used as
a predicting function in the proposed method avoids over-
fitting and can be applied in the case of M > T , i.e., using
a test set larger than the training set. This is partly the
consequence of the number of decision rules being low,
as, over all rules and conditions, the built model trees con-
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Figure 3: Pearson correlation coefficient ρ (left) and aver-
aged standard deviation σ(right) of SRMRnorm and of the
proposed approach. Each row represents one of the 3 folds
considered in the evaluation setup. ∗ and ∗∗ denote signifi-
cance at the 5% and 1% level, respectively.

tain D <= 28 decisions while the number of signals in the
training set is always T = 126. In addition, it appears that
the Pearson correlation coefficient between SRMRnorm and
the perceived speech quality varies between acoustic con-
ditions, namely from 0.85 to 0.98 in the first fold, suggest-
ing that the reliability of SRMRnorm depends on the envi-
ronment in which the signals have been recorded. On the
other hand, the Pearson correlation coefficient of the pro-
posed method with the perceptual scores does not vary be-
tween acoustic conditions, which suggests that the model
tree used as predicting function does generalize to signals
recorded in the conditions under test, as expected. No-
tably, for all folds and acoustic conditions, the correlations
are higher for the proposed approach. On the other hand,
the standard deviation σ is larger for the proposed method,
most notably for the condition “S2, near”. These results
suggest that the proposed method is the most effective in
predicting the quality of the speech processed by particular
algorithms over a large number of signals, but may not be
the most effective when considering signals in isolation.

4 Conclusion

This paper proposed to use a model tree as a predicting
function for the quality of speech processed by speech en-
hancement algorithms. We used modulation-based fea-
tures, similarly as used in SRMRnorm [15], which has
been shown to be a promising non-intrusive measure to
assess speech quality. Experimental results have shown
that the proposed approach yields higher correlations than
SRMRnorm, illustrating the ability of the proposed non-
intrusive measure to predict ratings of speech quality.
These results also showed that the proposed measure can
be trained on a small training set and predict the speech
quality of signals within a larger test set.
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