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ABSTRACT

The multi-channel linear prediction framework for blind speech
dereverberation has gained increased popularity over the recent
years. While adaptive dereverberation is desirable, most multi-
channel linear prediction algorithms are based on either batch or
iterative frame-by-frame processing, where individual frames are
treated independently. In this paper, we derive a partitioned block
frequency domain Kalman filter that offers adaptive processing.
The so-called excessive whitening problem is avoided by includ-
ing an estimate of the target speech signal coloration in the filter
update. The impact of constraining the state covariance matrix is
discussed. The convergence behavior of the algorithm is evaluated
in terms of the evolution of the room acoustical parameters direct-
to-reverberant ratio, clarity index and early decay time, indicating
good dereverberation performance.

Index Terms— Dereverberation, multi-channel linear predic-
tion, Kalman filter, partitioned block frequency domain

1. INTRODUCTION

It is well known that acoustic reverberation, caused by a multitude
of reflections from room boundaries and objects, may have a dete-
riorating effect on the quality and intelligibility of speech signals
recorded by a microphone. In recent years, an array-based frame-
work known as multi-channel linear prediction (MCLP) [1-11] has
gained increased popularity for blind speech dereverberation, where
no prior knowledge on the room impulse responses (RIRs) between
the speech source and the microphone array is required. According
to the multiple input/output inverse theorem (MINT) [12], multi-
channel methods like MCLP are theoretically able to perfectly
equalize the (presumed time-invariant) transfer functions between
the speech source and the microphone array, provided that the in-
dividual transfer functions do not share common zeros. In a blind
scenario, however, an ambiguity persists between the coloration of
the clean speech signal and the room transfer functions, potentially
causing undesired equalization of the inherent speech signal col-
oration at the output of the MCLP processing [2, 3]. This effect
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is known as excessive whitening. Several MCLP approaches alle-
viating the excessive whitening problem have been proposed, e.g.,
pre-whitening of the microphone signals [1], recovery of the speech
signal coloration at the excessively whitened MCLP output (known
as the LIME algorithm) [2], or delayed MCLP exploiting the limited
autocorrelation width of speech signals [3]. Further, probabilistic
approaches modeling the speech signal using a time-varying Gaus-
sian distribution [4,5] or using sparse priors [6] have been proposed.
The majority of the proposed algorithms work in the STFT do-
main, as proposed in [7]. For the noiseless case, it has been shown
that MCLP can be interpreted as data-dependent beamforming for
speech dereverberation. [13].

In a practical scenario, adaptive filter estimation is required in order
to equalize potentially time-varying RIRs. While adaptive process-
ing is very common in data-dependent beamforming, it is rarely
found in MCLP, where most algorithms are based on either batch
processing or iterative processing of individual, independent frames.
Yet, three exceptions can be found [8-10]. In [8], the weighted RLS
algorithm has been applied in the STFT domain. In [9], an RLS im-
plementation of the so-called weighted prediction error method [11]
in the subband time domain has been proposed. In [10], a modifi-
cation of LIME has been proposed and the performance for several
standard adaptive schemes like NLMS and RLS have been compared
in the time domain. In acoustic echo cancellation, which is a system
identification problem as opposed to the system inversion problem
corresponding to dereverberation, adaptive filter estimation based on
the Kalman filter in the frequency domain has been applied success-
fully [14-17]. Hereby, the model-based formulation of the Kalman
filter is advantageous, since on the one hand it allows to explicitly
define statistical random walk models for the time-varying RIR, and
on the other hand guarantees fast convergence. As the Kalman filter
is computationally complex, it has been proposed to diagonalize the
Kalman filter, yielding an NLMS-like algorithm with inherent step
size control [14]. In order to avoid long algorithmic delays due to
large FFT-sizes, the Kalman filter in [16, 17] has been formulated in
the partitioned block frequency domain (PBFD) [18-20]. Recently,
the Kalman filter has also been used in dereverberation [21] to esti-
mate the acoustic transmission system and the clean speech signal
directly.

As a first step towards adaptive, fast converging MCLP with low al-
gorithmic delay, we propose to apply the Kalman filter to the PBFD
representation of the MCLP filter estimation problem. It is shown
that the derived PBFD Kalman filter framework in principle allows
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Fig. 1: MCLP in a reverberant but noise-free environment with a
single speech source.

to avoid excessive whitening by including information on the target
signal coloration. The PBFD Kalman filter differs from previous
frequency domain derivations [14—17] in terms of the constraints in-
cluded in the update equation. In section 2, the PBFD Kalman filter
is derived. In Section 3, simulation results confirming the validity of
the approach are presented.

2. PBFD KALMAN FILTER FOR MCLP

In order to derive the PBFD Kalman filter for MCLP, we first discuss
the time domain relations, followed by the definition of the PBFD
representation. Based on this, the Kalman filter state equations are
formulated, from which the update equations are derived.

2.1. Time Domain Relations

The MCLP framework applied in a reverberant but noise-free envi-
ronment with a single speech source is shown in Fig. 1. The micro-
phone array composed of M microphones picks up the reverberant
signals, which may be modeled as the convolution of the source sig-
nal s(n) with the unknown RIRs between speech source and micro-
phone array. In MCLP, traditionally the first microphone or the mi-
crophone closest to the source is selected to extract the linear predic-
tion residual, but a fixed beamformer (FB) may be used as well [13].
Regardless of the actual implementation, we will refer to the output
of the FB as the speech reference g(n). We distinguish two com-
ponents of this speech reference. Firstly, the target signal g:(n) to
be maintained, which is composed of the direct component of g(n)
and early reflections up to a delay d, and secondly the remaining
reverberation interference component ¢, (n) to be canceled,

q(n) = q:(n) + g-(n). ¢

Let u,,, (n) denote the m™ microphone signal delayed by d samples,
which in the MCLP framework serves as the input to the m™ predic-
tion filter with filter coefficients W,.

The difference between the speech reference g(n) and the filter
output is then given by

M-—1
e(n) = qn) = 3 (um i) (), @)

m=0

where the symbol (x) denotes convolution. For perfect reverberation
cancellation, we seek the set of filter coefficients W,, = W, that
leads to e(n) = g+(n). In this case, the prediction filter output needs
to equal g, (t), such that the target filter coefficients w,, satisfy the
relation,

M-—1

q(n) = Z (Um * wm) (n) + qi(n). 3

m=0

In order to estimate the filter coefficients, we transform (3) to the
PBFD and apply the Kalman filter. In the Kalman filter framework,

the speech reference ¢(n) corresponds to the observation, the tar-
get filter coefficients w,, to the state to be estimated, and the target
signal g;(n) to the observation noise.

2.2. PBFD Representation

In this subsection, we define the frame-based PBFD representation
of the signals involved in (3). For details on the PBFD framework,
we refer the reader to corresponding literature [18-20].

Assume that each prediction filter w,,, consists of L,, coeffi-
cients, sectioned into B partitions of length L., each, such that B =
[Luw/Luw,]. Let the vectors U, »(k) € RY and w, (k) € REwe
respectively denote the b™ partition of the m™ input channel of the
prediction filter and the prediction filter coefficients at frame k,

U b(k) = (um (kR —bLuy, — N+1) ---
(kR —bLy,)) ", 4)

Wb (k) = (W (bLwy, K) - W (b 1)L, = 1,K)", (5)
where wy, (v, k) refers to the v™ filter coefficient of w, at frame k.
In (4)—(5), the parameters N > L., and R denote the size of the
discrete Fourier transform (DFT) and the frame shift, respectively.
We further define the speech reference vector q(k) € RY at frame
k as

a(k) = (¢(kR—V +1) - q(kR))", ©)
and the target signal vector q; (k) analogously. The parameter V' =
N — Ly, +1 > R denotes the number of valid samples after fast
convolution using overlap-and-save processing. Let F € CM*¥
denote the DFT-matrix. We define the frequency domain representa-
tions Uy, b (k), Wi p(k), and Q(k) as

U (k) = diag{Fum (k) }, (7

Woslh) = F (y0) ). ®
olN-V]

= (25, )- ©)

The operation diag{-} in (7) arranges the elements of its vector ar-
gument in a diagonal matrix. The notation O in (8)—(9) refers to
a zero vector and the superscript to its dimension. The frequency
domain representation Qq (k) of the target signal vector q;(k) is de-
fined analogously to (9). To achieve a compact representation, we
stack the matrices U, (k) and vectors W, (k) over all M chan-
nels and B partitions in U(k) € CV*BMYN and W (k) € CBMY,
respectively,

U, (k) = (Uo,b(lc) UM_Lb(k:)) , (10)

U(k) = (Uo(k) Up_1(k)), (11)
Wi (k) = (WTy(k) -~ Wy ,(k)", (12)
W(k) = (WE (k) - WE_ (k)" (13)

2.3. Constraining and State Equations

The objective of the Kalman filter is to estimate the filter coefficients
W (k) that lead to the required dereverberation, i.e. resulting in the
target signal Q (k) at the MCLP output. When estimating these pa-
rameters, we need to ensure that the estimated vectors comply with



the zero-padded form defined in (8) and (9). We note that W (k) and
Q¢ (k) fulfill the relations

W(k) = GW(k), (14)
Q:(k) = GQu(k), 15)

where the matrices G € RV*" and G € CBMNXBMN gre Hermi-
tian projections, usually referred to as constraining matrices, which
are defined as

G =FgF ', 16)
g = blkdiag{ 0[N ~V>*N =V 1lVxVIY, (17)

G = blkdiag{FgF ', ..., FgF '}, (18)
g = blkdiag{TlFwy X bwpl - QIN=Luwy XN=Luwy I3 (19)

The operation blkdiag{ } in (17)—(19) arranges its matrix arguments
in a diagonal block matrix and I denotes the identity matrix.

Let us now define the so-called state and observation equation,
which form the basis for the derivation of the Kalman filter up-
date equations. The state equation is generally formulated as a ran-
dom walk model of the state W (k), while the observation equa-
tion is given as the PBFD counterpart to the time domain relation
in (3), relating the definitions (9),(11), and (13). In accordance with
(14)—(15), we derive,

W (k) = G(AW (k- 1) + Aw (k)), (20)
Q(k) = C(k)W (k) + Qu(k), 21

with the constrained input C(k),
C(k) = GU(k). 22)

The random walk model in the state equation (20) with the transition
matrix A and the random process Ay (k) with given covariance
matrix Wa, (k) may be used to include statistical assumptions on
the time variation of the target filter W (k). In order to limit the
scope of this paper, we do not discuss the choice of the random walk
parameters A and the covariance W, (k), but instead refer to cor-
responding literature, e.g. [14—17]. While a time-varying model is
certainly required in practice, we will assume the RIRs to be time-
invariant for demonstration purposes in the simulations in section 3,
i.e. we assume W (k) = W(k—1). Note that in this particular
case, the resulting Kalman filter update equations may also be inter-
preted as a regularized RLS algorithm [22].

The observation equation (21) is the PBFD counterpart to (3).
Note that the observation Q(k) in the observation equation (21) will
always be constrained, as it is constructed according to (9) from the
observed signal q(k). In order to ensure that the estimation of Q: (k)
is constrained according to (15), we therefore only need to constrain
the filter output U (k)W (k), as shown in (21-22).

2.4. Kalman Filter Update Equations

Using Kalman filter theory, we can derive a set of update equations
adaptively estimating the filter coefficients W (k) in the state space
model (20)—(21). The Kalman filter update is given by the set of
equations [23],

W(k) = GAW™ (k—1), (23)
P(k) = G(APY (k- 1)A" + @A, (k))G", (24)

E(k) = Q(k) — C(k)W(k), (25
U (k) = C(k)P(k)C (k) + ®o, (k), (26)
K(k) = P(k)C(k)" %' (k), 27
W (k) = W(k) + K(k)E(k), (28)
P* (k) = (I- K(k)C(k))P(k). (29)

The superscript ()H denotes the Hermitian transpose. Equations
(23)—(24) are called the time update of the state estimate W(k)
and the state error covariance matrix P (k) € CBMN*BMN
(25)—(27), the error signal (or, in Kalman filter terminology, the
innovation) E(k), its covariance matrix g (k), and the Kalman
gain K (k) are computed, which are then used in the so-called mea-
surement update of the state estimate and its covariance matrix in
(28)—(29). The measurement update is denoted by the superscript
(-)*. Both W* (k) and P* (k) are initialized at k = 0. In the
remainder of this subsection, we discuss a couple of aspects of the
algorithm in more detail.

Target Signal Coloration: The error signal E(k) in (25) is the
Kalman filter estimate of the target signal Q:(k), where it should be
noted that its covariance matrix ¥ g (k) in (26) depends on the target
signal covariance matrix W, (k). During convergence, the state
error covariance matrix P (k) decreases, such that ¥ g (k) converges
to W, (k) and hence E(k) converges to Q:(k). In this way, the
PBFD Kalman filter in principle allows to include information on
the coloration of the target signal Q¢ (k) in the filter update, thereby
circumventing the excessive whitening problem. Unfortunately, the
covariance W, (k) is not known and so needs to be estimated.
We assume Wq, (k) to be a diagonal matrix, where the diagonal
is proportional to the power spectral density (PSD) of g:(n). This
assumption is commonly made and justified by the decorrelation
properties of the DFT. We further note that the PSD of g¢(n) is
roughly given as a somewhat smoother version of the PSD of the
reverberant signal g(n) [24]. We therefore approximate ¥, (k) in
a simple manner as

W, (k) = diag{FAF ' (Q(k) o Q" (k) }, (30)

where the superscript (-)* and the symbol (o) respectively denote
the conjugate of a matrix and the Hadamard product. The matrix
A denotes a triangular window function applied in the time domain,
accounting for the smoothing of the PSD estimate.

Constraining: Note that the PBFD Kalman filter equations derived
in (23)—(29) slightly differ from previously presented frequency do-
main derivations as in [14—17], where the constraint G was not in-
cluded in the state equation (20), and hence was not reflected in the
time update (23-24) of W (k) and P(k). Instead, the constraint was
included in the measurement update of W+ (k) in (28), which is not
necessary in our derivation. Mathematically, it does not make a sub-
stantial difference whether the state estimate constraint of W+(k)
is applied in the measurement update (28) or in the time update (23).
The major difference between our and previous derivations therefore
consists in the application of the constraint G in the time update of
P(k) in (29). Previous derivations may hence be seen as simplifi-
cations of (23-29), where the constraint in the time update of P (k)
is dropped. In fact, we can easily verify from (23-29) that the con-
straining carries over from one update to the next, i.e. that W+ (k)
and P* (k) will be constrained if W (k—1), A, ¥a,, (k), and
P*(k — 1) are constrained. Therefore, in theory the constraint Gis
actually not needed at all during adaptation as long as the initial val-
ues W (0) and P*(0) are constrained, i.e. if they are chosen such
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Fig. 2: The signal g(n) and the evolution of the DRR, Cs0, and EDT
over time in case of ( ) constrained and (- - -) unconstrained
time update of P (k) while employing an estimate of ¥, (k) ac-
cording to (30), as well as in case of (------- ) constrained time update
while employing an estimate of ¥, (k) based on the true, instanta-
neous PSD of Q¢ (k).

that they satisfty W+ (0) = GW™(0) and PT(0) = GP*(0)G".
However, in case of error accumulation due to finite precision or
simplifications of the update equations as proposed in [14-17], the
constrained form of W (k) and P (k) is no longer perfectly main-
tained from update to update. In these cases, constraining of the time
update of both W (k) and P (k) should be included.

Complexity: The Kalman filter is computationally extremely de-
manding in case of long state vectors as required here for dereverber-
ation. For computational reasons, we therefore assume that the in-
dividual partitions W5 (k) may be estimated independently [16, 17].
Noting that K (k) € CPMN*N exhibits a vertical blockwise struc-
ture, and C(k) € CN*BMN 3 horizontal blockwise structure, with
each subblock Kj(k) € CMY*N and Cy(k) € CV*MN corre-
sponding to the b™ partition, this assumption corresponds to approx-
imating the product K(k)C(k) in (29) by a diagonal block matrix
composed of the products K;(k)Cyp(k) on the main diagonal, i.e.
we assume that the off-diagonal cross-products K (k)Cy (k) with
b # b’ may be neglected. The matrix P (k) must be initialized
accordingly, i.e. all its cross-partition sub-blocks should be zero.

3. SIMULATIONS

We assume that the RIRs and hence the set of prediction filter coeffi-
cients W (k) in the state equation (20) are time-invariant, i.e. A =1
and ¥a,, (k) = 0. For simulations purposes, we use measured
RIRs [25] with 360 ms reverberation time, downsampled to 16 kHz
and truncated after 8000 samples. The speech source is positioned
at 2m distance in the broadside direction of the microphone array
composed of M = 3 microphones spaced by 8 cm. The filter input
delay is set to d = 1 and the speech reference g(n) is computed
using a delay-and-sum beamformer. As the source signal, a 15.5s
speech signal of a male talker is chosen [26]. The DFT-size, the
frame shift and the filter partition length are set to N = 256 and
R = L, = 128, and the number of partitions to B = 16, yielding
L., = 2048 coefficients per filter channel. To illustrate the conver-
gence behavior, we compute a number of room acoustical parame-
ters of the overall impulse response of the room and MCLP at every
frame k. In particular, we employ the direct-to-reverberant energy

ratio (DRR) [27], the clarity index (Cso) [28], and the early decay
time (EDT) [28], which correlate with both the perceived amount
of reverberation and the performance of automatic speech recogni-
tion [29, 30]. For the direct component energy of the DRR, 5ms
around the maximum peak of the impulse response are considered.

In the following, we consider three different setups. The algo-
rithm in (23-30) is evaluated firstly with and secondly without appli-
cation of the constraint G in the time update of P (k) in (24), where
the latter case corresponds to previous derivations. In order to ex-
emplify the impact caused by omitting the constraint, we initialize
P* (k) as a diagonal matrix, which does not satisfy the constrained
initialization condition discussed in subsection 2.4. The state esti-
mate W (k) is initialized as a zero vector. Thirdly, we additionally
evaluate the fully constrained version of the algorithm using the true
instantaneous PSD of the target signal Q:(k), i.e. instead of es-
timating W o, (k) by (30), we employ o, (k) = diag{ (Q:(k) o
Q; (k)) }, which is obviously not possible in practice. The results of
this simulation will provide an idea of the potential gain that may be
reached by improving the estimation of the target signal PSD.

The signal ¢(n), as well as the evolution of the DRR, Csg, and
the EDT over time are shown for all three cases in Fig. 2. In the
( ) constrained case using the estimate \ith(k) as defined in
(30), the DRR and Cs respectively increase by 18.1 dB and 18.2dB
during convergence, while the EDT drops from 180 to 40 ms, indi-
cating good dereverberation performance. The algorithm still per-
forms well in the (- - - ) unconstrained case, but worse than in the
constrained case, in particular in terms of DRR, which increases by
10.8dB only, and the EDT, which decreases to 76 ms. Based on
our simulations, the unconstrained algorithm does not appear to be
able to suppress very early reflections, hence performing worse in
terms of DRR, while no significant difference between constrained
and unconstrained version is observed in the later reverberation. As
expected, the (- ) constrained version using the true instantaneous
PSD of the target signal Q¢ (k) shows the best performance, indi-
cating some room for improvement in the estimation of ¥q, (k).
The potential improvement is mostly prominent for the DRR, where
13.1 dB may be gained additionally. Further, the EDT drops to 23 ms
as opposed to 40ms when using the estimated PSD. In all three
cases, Cso behaves rather similar.

Audio files of the simulated signals are available at [31]. The
dereverberated signals show a moderate loss in the low frequency
content below about 500 Hz, caused by the diagonal approximation
errors of \ith (k) in this frequency range, where the diagonalization
assumption that neighbouring frequency bins may be considered to
be uncorrelated is less well justified due to the limited frame length.

4. CONCLUSION AND FUTURE WORK

In this paper, a PBFD Kalman filter for multi-channel linear pre-
diction based blind speech dereverberation has been derived. The
required target speech signal covariance matrix is estimated by
smoothing the PSD of the reverberant speech signal. Simulations
have compared the convergence behavior for both the constrained
and unconstrained state error covariance in terms of room acoustical
parameter improvements of the overall impulse response. The re-
sults indicate a good dereverberation performance in both cases with
advantage for the constrained version. The quality of the PSD esti-
mate has been shown to have a strong impact on the performance.
Future work will focus on improving the estimation of the target
signal PSD, the appropriate design of the random walk model for
the filter coefficients, and further complexity reduction.
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