
CONSTRAINED MULTI-CHANNEL LINEAR PREDICTION FOR ADAPTIVE SPEECH
DEREVERBERATION
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ABSTRACT

This paper presents a speech dereverberation algorithm combining
adaptive multi-channel linear prediction (MCLP) with a statistical
model for the undesired reverberation. More specifically, we pro-
pose to constrain the power of the MCLP-based late reverberation
estimate with the late reverberant power estimated using the expo-
nential decay model, thereby preventing excessive cancellation of
the speech signal. Simulation results show that incorporating the
constraint improves the performance of the adaptive dereverberation
method when the prediction filters need to adapt quickly.

Index Terms— speech dereverberation, multi-channel linear
prediction, constrained linear prediction, adaptive filtering

1. INTRODUCTION

Microphone recordings of a distant speech source in an enclosure are
typically corrupted by reverberation, caused by reflections against
boundaries and objects in the enclosure. Although a small amount
of reverberation can be beneficial, many speech communication ap-
plications suffer in highly reverberant conditions, resulting in a de-
graded speech intelligibility and speech recognition performance [1].
Hence, effective speech dereverberation is required for many appli-
cations, and several speech dereverberation methods have been pro-
posed in the literature [2].

An important class of blind multi-channel (MC) speech dere-
verberation methods is based on multi-channel linear prediction
(MCLP) [3, 4]. MCLP-based methods aim to predict the undesired
reverberant component by filtering and summing the delayed mi-
crophone signals, and dereverberation is performed by subtracting
the predicted reverberant component from the microphone signals.
The prediction filters are typically obtained by maximizing sparsity
of the output signal in the time-frequency domain [5, 6], and the
delay is introduced in the prediction to ensure that the short-time
speech correlation and early reflections are preserved [3]. Adaptive
versions of MCLP-based dereverberation methods have been pro-
posed in [7, 8], where the filter adaptation is based on a variant of a
recursive least squares (RLS) algorithm [9]. Unfortunately, in some
cases these methods may lead to a significant over-estimation of
the undesired component and hence high distortions of the desired
speech component [8].
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In this paper, we propose a constrained MCLP optimization
problem for adaptive speech dereverberation. The goal is to prevent
over-estimation of the undesired component by incorporating prior
knowledge about the undesired late reverberation into the adaptive
MCLP-based method. More specifically, we use the late reverberant
power spectral density (PSD) estimated using the exponential decay
model [10] to constrain the power of the undesired component esti-
mated using the MCLP. Simulation results show that incorporating
this constraint improves the performance of the adaptive method
when the prediction filters need to adapt quickly, e.g., for a moving
source.

2. SIGNAL MODEL

We consider a scenario with a single speech source and M micro-
phones in a reverberant room. Let s(k, n) denote the clean speech
signal in the short-time Fourier transform (STFT) domain, with k the
frequency bin index and n the frame index. We assume that them-th
reverberant microphone signal xm(k, n) can be decomposed into a
desired component dm(k, n) and an undesired component um(k, n)
as

xm(k, n) = dm(k, n) + um(k, n), (1)
where the desired component contains the direct speech and early
reflections, while the undesired component contains the late reflec-
tions. In the following, we omit the index k and use the model in (1)
in each frequency bin independently. When multiple microphones
are available, the undesired component um(k, n) can be modeled
using multi-channel linear prediction [4] as the sum of filtered (de-
layed) microphone signals, i.e.,

um(n) = gH
m(n)x̃(n− τ), (2)

where τ is the prediction delay, gm(n) ∈ CMLg is the MC predic-
tion filter, and x̃(n) ∈ CMLg is a vector of Lg coefficients for all
microphones, defined as

x̃(n) = [x1(n), . . . , x1(n− Lg + 1), . . .

. . . , xM (n), . . . , xM (n− Lg + 1)]T . (3)

The role of the delay τ is to include only the late reflections in the
undesired component, thereby preserving the early reflections and
the short-time speech correlation in the desired component [3,4]. By
combining the models in (1) and (2) for all channels, the multiple-
input multiple-output (MIMO) signal model can be written as

x(n) = d(n) + GH(n)x̃(n− τ)︸ ︷︷ ︸
u(n)

, (4)
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where x(n) = [x1(n), . . . , xM (n)]T is the MC reverberant signal,
G(n) = [g1(n), . . . ,gM (n)] ∈ CMLg×M is the MIMO prediction
filter, and d(n) and u(n) are the MC desired and undesired unde-
sired component, respectively. The goal of speech dereverberation is
then to recover the desired component d(n), which can be achieved
by estimating the prediction filter G(n) and consequently subtract-
ing the estimated undesired component from x(n) in (4).

3. MCLP FOR SPEECH DEREVERBERATION

In this section we give a brief overview of two MCLP-based speech
dereverberation methods: the batch generalized weighted prediction
error (GWPE) method and its adaptive variant (A-GWPE).

3.1. Batch processing (GWPE)
The batch GWPE method [11] assumes that the prediction filter
G(n) does not change over time, i.e., G(n) = G for all n. Assum-
ing that a batch of N time-frames is available, the prediction filter
G can be estimated by minimizing the temporal correlation of the
desired component [11], which is equivalent to maximizing sparsity
across time [12]. The corresponding optimization problem can be
formulated as [11]

Ĝ = arg min
G

N∑
n=1

log ‖d(n)‖22, (5)

where ‖.‖2 denotes the `2-norm of a vector, and the logarithmic
function promotes sparsity across time. This optimization problem
can be solved using the iteratively reweighted least squares (IRLS)
algorithm [13], leading to the following iterative updates [11, 12]

ŵi(n) =

(
1

M
‖d̂i−1(n)‖22 + ε

)−1

, ∀n ∈ {1, . . . , N} , (6)

Ĝi = arg min
G

N∑
n=1

ŵi(n)‖x(n)−GHx̃(n− τ)‖22, (7)

d̂i(n) = x(n)−
(
Ĝi
)H

x̃(n− τ), ∀n ∈ {1, . . . , N} , (8)

with i the iteration index, and ε a small constant for regularization.
Intuitively, the weights ŵ(n) put more emphasis on time frames
where the desired component is expected to have small power, corre-
sponding to the sparsity-promoting behavior of the logarithmic func-
tion in (5) [5, 8].

The least-squares (LS) optimization problem for estimating the
prediction filter G in (7) can be written as

min
G

tr
[
GHQ̂iG

]
− 2<

{
tr
[
GHR̂i

]}
, (9)

with the matrices Q̂i and R̂i defined as

Q̂i =

N∑
n=1

ŵi(n)x̃(n− τ)x̃H(n− τ), (10)

R̂i =
N∑
n=1

ŵi(n)x̃(n− τ)xH(n). (11)

The closed-form solution for the prediction filter is given with

Ĝi =
(
Q̂i
)−1

R̂i. (12)

The GWPE method is typically initialized with the reverberant sig-
nals, i.e., d̂0(n) = x(n), or equivalently with Ĝ0 = 0, after which
a number of reweighting iterations in (6)-(8) are performed.

3.2. Adaptive processing (A-GWPE)
An adaptive version of the GWPE method (A-GWPE) has been pro-
posed in [8]. The A-GWPE method estimates the prediction filter
G(n) at each frame n by applying the RLS algorithm on the LS
problem in (9) [9]. Assuming that the weights are fixed, the predic-
tion filter G(n) can be estimated, similarly as in (9), by solving the
following LS problem

min
G(n)

tr
[
GH(n)Q̂(n)G(n)

]
− 2<

{
tr
[
GH(n)R̂(n)

]}
, (13)

with the matrices Q̂(n) and R̂(n) defined as

Q̂(n) =

n∑
t=1

γn−tŵ(t)x̃(t− τ)x̃H(t− τ), (14)

R̂(n) =

n∑
t=1

γn−tŵ(t)x̃(t− τ)xH(t), (15)

where γ ∈ (0, 1) is a forgetting factor typically used in RLS algo-
rithms. The closed-form solution for the prediction filter in (13) is
given by

Ĝ(n) = Q̂−1(n)R̂(n), (16)

and dereverberation is performed by subtracting the estimated unde-
sired component û(n) = ĜH(n)x̃(n− τ) from x(n).

By observing that the matrices Q̂(n) and R̂(n) in (14)-(15) are
obtained by adding rank-1 perturbations to γQ̂(n− 1) and γR̂(n−
1), the Woodbury matrix inversion lemma can be used to compute
the inverse Q̂−1(n) recursively as

Q̂−1(n) =
1

γ

[
Q̂−1(n− 1)− k̂(n)x̃H(n− τ)Q̂−1(n− 1)

]
,

(17)
with the gain vector defined as

k̂(n) =
Q̂−1(n− 1)x̃(n− τ)

γ
ŵ(n)

+ x̃H(n− τ)Q̂−1(n− 1)x̃(n− τ)
, (18)

consequently leading to a recursive update for the prediction filter
Ĝ(n) as

Ĝ(n) = Ĝ(n−1)+k̂(n)
[
x(n)− ĜH(n− 1)x̃(n− τ)

]H
. (19)

The effective forgetting factor in (18) is equal to γ/ŵ(n), and there-
fore related to the expected power of the desired component in the
n-th frame through the weight ŵ(n).

As opposed to the batch method, where the weights are itera-
tively updated, in the adaptive method it is assumed that the weights
are fixed at each frame. Since the weights are related to the ex-
pected power of the desired component, cf. (6), in [11] it has been
proposed to compute them using a statistical model of the late rever-
beration [10]. The PSD of the desired component in the m-th mi-
crophone σ̂2

d,m(n) can be estimated using recursive smoothing and
assuming the exponential decay model [10] for the late reverberant
PSD, i.e.,

σ̂2
x,m(n) = α σ̂2

x,m(n− 1) + (1− α)|xm(n)|2, (20)

σ̂2
u,m(n) = e−2∆ σ̂2

x,m(n− nd), (21)

σ̂2
d,m(n) = α σ̂2

d,m(n− 1)

+ (1− α) max
{
|xm(n)|2 − σ̂2

u,m(n), 0
}
, (22)



where α is a smoothing parameter, ∆ = 3 ln 10
T60/Td

is the decay param-
eter, T60 is the reverberation time, Td is the duration of the direct
path and early reflections (typically around 50 ms), and nd is the
number of frames corresponding to Td. The weight ŵ(n) is then
computed, similarly as in (6), based on the average estimated PSD
of the desired component, as

ŵ(n) =

(
1

M
‖σ̂d(n)‖22 + ε

)−1

(23)

where σ̂d(n) = [σ̂d,1(n), . . . , σ̂d,M (n)]T.

4. CONSTRAINED MCLP FOR ADAPTIVE SPEECH
DEREVERBERATION

As previously mentioned, in some cases the presented batch and
adaptive speech dereverberation methods may result in high distor-
tions of the desired speech component [8]. This can, for example, be
illustrated using the cost function for the batch GWPE method in (7).
Assuming that N = MLg , i.e., having either a relatively short ut-
terance or relatively long filters, the minimum of the cost function
in (7) is equal to zero, resulting in the estimated desired component
equal to zero. For the adaptive version a similar situation occurs
when the forgetting factor is relatively small, reducing the effective
window length in (14)-(15). In both cases the undesired component
is significantly over-estimated due to the available data being small
compared to the number of free parameters MLg .

Aiming to obtain a more robust method, we therefore propose to
directly incorporate knowledge about the expected undesired com-
ponent in the adaptive MCLP-based method. More specifically, we
propose to add a constraint to (13), forcing the power of the esti-
mated undesired component u(n) not to exceed the late reverberant
PSD estimate σ̂u(n) based on the exponential decay model in (21),
leading to the following optimization problem

min
G(n)

tr
[
GH(n)Q̂(n)G(n)

]
− 2<

{
tr
[
GH(n)R̂(n)

]}
subject to |GH(n)x̃(n− τ)|2 ≤ σ̂2

u(n), (24)

with σ̂u(n) = [σ̂u,1(n), . . . , σ̂u,M (n)]T. It is expected that this
will reduce the undesired speech cancellation for small values of the
forgetting factor γ, while not deteriorating the performance for large
values of the forgetting factor γ.

The optimization problem in (24) can be efficiently solved using
the alternating direction method of multipliers (ADMM) [14]. The
problem in (24) can be rewritten in a form that is suitable for ADMM
by introducing a splitting variable z as

min
G(n)

tr
[
GH(n)Q̂(n)G(n)

]
− 2<

{
tr
[
GH(n)R̂(n)

]}
+ c (z)

subject to z = GH(n)x̃(n− τ), (25)

where c : CM → R is a convex function enforcing the constraint,
i.e.,

c (z) =

{
0, if |zm| ≤ σ̂u,m(n), ∀m,
+∞, otherwise

. (26)

The augmented Lagrangian for the problem in (25) can be written as

L (G(n), z,µ) = tr
[
G(n)HQ̌(n)G(n)

]
−

− 2<
{

tr
[
GH(n)Ř(n)

]}
+ c (z)− ρ

2
‖µ‖22, (27)

with the matrices Q̌(n) and Ř(n) defined as

Q̌(n) = Q̂(n) +
ρ

2
x̃(n− τ)x̃H(n− τ), (28)

Ř(n) = R̂(n) +
ρ

2
x̃(n− τ) (z + µ)H , (29)

where ρ is a penalty parameter and µ is the dual variable. Following
the ADMM algorithm [14], alternating minimization of L in (27)
with respect to the prediction filter and the splitting variable followed
by a dual ascent results in the following iterative updates

Ǧi(n)← Ĝ(n) + ǩ(n)
[
zi−1 + µi−1 − û(n)

]H
, (30)

ǔi(n)←
(
Ǧi(n)

)H
x̃(n− τ), (31)

zi ← arg min
z

c(z) +
ρ

2
‖z− ǔi(n) + µi−1‖22, (32)

µi ← µi−1 + zi − ǔi(n), (33)

where Ĝ(n) is the unconstrained filter computed in (19), û(n) =

ĜH(n)x̃(n − τ) is the undesired component estimated using the
unconstrained filter Ĝ(n), and

ǩ(n) =
Q̂−1(n)x̃(n− τ)

2
ρ

+ x̃H(n− τ)Q̂−1(n)x̃(n− τ)
, (34)

is the gain vector for the ADMM iterations. The update for z in (32)
is a projection step, which can be computed element-wise as

zim ← min

{
σ̂u,m(n)∣∣ǔim(n)− µi−1

m

∣∣ , 1
}
·
(
ǔim(n)− µi−1

m

)
. (35)

The obtained iterative updates in (30)-(33) can be interpreted as an
iterative correction of the unconstrained filter Ĝ(n) to obtain the
constrained filter Ǧ(n) which satisfies the constraint in (24).

5. SIMULATIONS

We consider an acoustic scenario with a single speech source and
M = 2 microphones. The reverberation time was T60 ≈ 700 ms,
the distance between the microphones was approximately 14 cm,
and the distance between the speech source and the microphones
was approximately 2 m. The microphone signals were obtained by
convolving the clean speech signal with measured RIRs [15]. The
speech signal was constructed by concatenating a set of 4 utterances
(2 male and 2 female) with a total length of approximately 11 s,
sampled at fs = 16 kHz.

We evaluate the speech dereverberation performance of the fol-
lowing methods: the batch GWPE with 1 and with 5 reweighting it-
erations (GWPE(1) and GWPE(5)), the adaptive GWPE (A-GWPE),
and the proposed constrained adaptive GWPE (CA-GWPE). For all
methods, the STFT is computed using a 64 ms Hann window with
16 ms shift. The prediction delay is set to τ = 2 and the length
of the prediction filter is set to Lg = 20. The value of the forget-
ting factor γ for the adaptive methods is selected between 0.75 and
0.999, the prediction filters are initialized with zeros, and the inverse
matrices are initialized with a scaled identity matrix. The parameters
required for the PSD estimation in (20)-(22) are set to α = 0.3 and
Td = 50 ms. The ADMM iterations in (30)-(33) are performed 20
times. To reduce the initialization effects, we first processed an ad-
ditional 5 s speech signal before processing the test signal described
above. The dereverberation performance is evaluated in terms of



frequency-weighted segmental signal-to-noise ratio (FWSSNR) and
PESQ [15]. We evaluate the performance using the first output sig-
nal (although the methods generate M = 2 output channels) and the
clean speech signal as the reference.

In the first experiment, we consider a scenario with the speech
source positioned at 45◦ left of the broadside direction of the ar-
ray. Fig. 1a depicts the obtained instrumental measures for the re-
verberant first microphone signal and the output signals obtained
using the considered dereverberation methods. It can be observed
that the batch methods result in significant improvements compared
to the microphone signal, with GWPE(5) performing better than
GWPE(1). As expected, the performance of the adaptive methods
highly depends on the forgetting factor γ. For relatively large values
of the forgetting factor γ, the adaptive A-GWPE and CA-GWPE re-
sult in a similar performance as the batch method. In terms of PESQ,
the performance of the CA-GWPE method is somewhat lower than
the A-GWPE method, since the proposed constraint may result in
a lower suppression of reverberation. For relatively small values of
the forgetting factor γ, the performance of both adaptive methods
is significantly decreased. On the one hand, the A-GWPE method
results in a significantly worse performance than the microphone
signal due to the significant cancellation of the desired signal. On
the other hand, the CA-GWPE method still results in some improve-
ments over the microphone signal due to the proposed constraint,
which prevents excessive signal cancellation.

In the second experiment, we consider a scenario with the
speech source switching between two positions at 45◦ left and 45◦

right of the broadside direction of the array. The test signal is ob-
tained by alternating the source position per utterance, without any
overlap between successive utterances. Fig. 1b depicts the obtained
instrumental measures for the reverberant microphone signal and the
output signals obtained using the considered speech dereverberation
methods. As expected, it can be observed that the improvements
with the batch method are much smaller than for the static case, with
GWPE(1) and GWPE(5) resulting in almost the same performance.
For relatively large values of the forgetting factor γ, the adaptive
methods again achieve a very similar performance as the batch meth-
ods. By slightly decreasing the forgetting factor, both the A-GWPE
and CA-GWPE methods outperform the batch method. By further
decreasing the forgetting factor, the performance of the adaptive
methods is in general decreased. On the one hand, the A-GWPE
method again results in a significantly worse performance than the
microphone signal. On the other hand, the CA-GWPE method still
results in some improvements over the microphone signal due to
the proposed constraint. To better illustrate the effect of the pro-
posed constraint, Fig. 2 depicts the spectrograms of the clean speech
signal, the reverberant microphone signal, and the output signals
obtained using the A-GWPE and CA-GWPE for two exemplary
values of the forgetting factor γ. Comparing the spectrograms of the
output signals obtained using the smaller γ, it can be observed that
the A-GWPE method results in almost complete cancellation of the
desired speech signal at the output, while the CA-GWPE preserves
the desired speech much better. Comparing the spectrograms with
the larger γ it can be seen that A-GWPE and CA-GWPE result in
a very similar output signal, with CA-GWPE resulting in a slightly
reduced dereverberation.

In summary, the simulations confirm that the constrained linear
prediction for adaptive MC speech dereverberation results in a sig-
nificant increase in the performance for small values of the forget-
ting factor, i.e., when the prediction filters adapt quickly, while at the
same time not having a large influence on the performance for large
values of the forgetting factor, i.e., when the prediction filters change

(a) Static speech source.

(b) Switching between two speech sources.

Fig. 1. Instrumental measures vs. forgetting factor γ for the consid-
ered experimental scenarios.

Fig. 2. Spectrograms of the clean speech signal and the microphone
signal (top), and the output signals obtained using γ = 0.91 (middle)
and γ = 0.98 (bottom).

slowly. Therefore, the proposed constraint improves robust the ro-
bustness of the dereverberation method with respect to the selection
of the forgetting factor.

6. CONCLUSION

In this paper we have presented a multi-channel speech dereverbera-
tion method based on constrained linear prediction. We have pro-
posed to use a statistical model of the undesired reverberation to
constrain the power of the estimated undesired component, aiming
to increase the robustness of adaptive MCLP-based speech derever-
beration with respect to the forgetting factor, making it more usable
in scenarios when the prediction filters need to quickly adapt. The
constrained prediction filter has been iteratively computed using the
alternating direction method of multipliers. Simulation results have
shown that the proposed constrained method significantly improves
the performance for small values of the forgetting factor, while not
having a large influence on the performance for large values of the
forgetting factor, and therefore improves robustness with respect to
the selection of the forgetting factor.
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