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This article presents a new algorithm to classify whether each one-second long frame
of an audio recording contains impulsive disturbances or not. The developed classification
algorithm is based on supervised learning and appropriate prewhitening of the input signal. It
is shown that existing impulse restoration algorithms suffer from degradation of the desired
signal if the input SNR is high and if no manual parameter adjustment is possible, which
makes automatic restoration of large amounts of diverse archive audio material infeasible.
The proposed classification algorithm can be used as a supplement to an existing impulse
restoration algorithm to alleviate this drawback. An evaluation with a large number of test
signals shows that a high classification accuracy can be achieved, making fully automatic
impulse restoration possible.

0 INTRODUCTION

The number of audio documents that are stored in
archives around the globe is immense. Since the devel-
opment and widespread introduction of the phonograph at
the end of the 19th century, all kinds of music recordings,
speeches, interviews, film sound tracks, and other audio
documents have accumulated and represent the world’s
audio heritage. Due to age, improper storage, and short-
comings of the original storage media, the degradation of
audio signal quality is a common problem, especially in
historic recordings. Impulsive disturbances are one of the
most prominent types of disturbance, besides broadband
hiss and hum. These so-called click and crackle phenom-
ena are caused by deficiencies of grooved recording media,
e.g., wax cylinders, shellac, and vinyl discs. After digital-
ization and storage in archives, these defects remain in the
digital version of the signal.

To improve the listening experience, recordings that suf-
fer from impulsive disturbances can be processed by im-
pulse restoration algorithms that aim at removing the dis-
turbance impulses and obtaining an estimate of the original
clean signal. For these restoration algorithms to achieve op-
timum results, however, their parameters have to be adjusted
for each recording individually, in order to make the algo-
rithm detect and remove most of the disturbance impulses
while leaving the desired signal unimpaired. In doing so,
the optimum choice of parameters depends substantially on

the relative level of the disturbance impulses compared to
the level of the desired signal. Existing impulse restoration
algorithms are typically not able to distinguish between
actual disturbance impulses and certain impulse-like ele-
ments of the desired signal with a similar level, e.g., drum
transients, guitar pickings or sharp synthesizer attacks.

In the specific context of audio archive restoration, indi-
vidual parameter adjustment for each recording is usually
not feasible. This is due to the sheer amount of audio ma-
terial that is currently stored in archives around the globe:
The Library of Congress, e.g., reports about more than 3.5
million audio media in 2014 [1]. Millions of further record-
ings are stored in a multitude of archives in the United
States alone [26]. Due to the fact that grooved record-
ing media were superseded by media that inherently are
not subject to impulsive disturbances (e.g., tape, compact
disc), only a subset of the recordings that are stored in
an archive are prone to contain this type of disturbance.
Unfortunately, in many cases the original type of medium
of a digitally stored recording is unknown. Therefore, the
decision whether a recording should be processed with an
impulse restoration algorithm often can only be based on an
analysis of the signal itself. As a consequence, the overall
restoration quality for a full archive depends on the ro-
bustness of the restoration algorithm against a large range
of input SNRs—in many cases the majority of recordings
may even be undisturbed while some recordings contain
severe impulsive disturbances. And while existing impulse
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restoration algorithms achieve high quality restoration re-
sults for the class of signals that contain typical impulsive
disturbances, e.g., in a recording copied from a vinyl disc,
we show in Sec. 3.4.3 that degradation of the desired signal
can occur if a recording does not contain impulsive dis-
turbances at all. Therefore, the main challenge in archive
restoration comes down to the diversity of the material. Ex-
amples for especially challenging recordings, in this regard,
are radio documentaries or live recordings of the program
that had been broadcast by a radio station, containing a
sequence of music pieces from differing original media,
alternating with voice-overs from a studio speaker.

0.1 Main Idea
The main idea of this paper is to alleviate the robust-

ness problems of existing impulse restoration algorithms
by classifying whether a recording contains impulsive dis-
turbance or not. Specifically, we propose a classification
algorithm that determines for each frame of 1 s duration of
the input signal whether impulsive disturbances are present
or not. This information can then be used, for example,
to control an existing impulse restoration algorithm and
only restore those frames that actually contain impulsive
disturbances.1 In order to achieve accurate classification,
the input signal is preprocessed in a prewhitening step.
This is done in a blockwise manner using blocks of ≈ 23 ms
length.

As the classification algorithm provides a confidence
measure for the disturbance of a frame, it is possible to
adjust the classification behavior either in the conservative
or progressive direction.

An overview of the proposed classification algorithm,
consisting of the prewhitening and classification stages, is
shown in Fig. 1, each stage with its associated signals and
notation.

0.2 Related Work
For quite a number of years, attempts have been made to

detect and suppress impulsive disturbances from wax cylin-
ders, gramophone, and vinyl records. As a consequence, a
number of algorithms have been developed that are able
to yield high quality restored signals if their parameters
are adjusted properly to a signal at hand. Most of these
algorithms consist of two steps: after detecting the affected
signal portions, impulses are removed by extrapolating the
known signal surrounding the affected portions. Early de-
tection schemes were typically based on first enhancing
impulsive elements in the input signal and then applying
cleverly devised threshold criteria to detect the individual
disturbance impulses. Enhancing impulsive elements in the
input signal was, for example, based on high-frequency pre-
emphasis [22] or on subtracting the median filtered version
from the input signal [37]. Early interpolators consisted in

1The presented classification algorithm that works with 1 s
frames is not a replacement for detection stages working on the
sample-by-sample level that are part of typical impulse restoration
algorithms.

Fig. 1. Schematic overview of the classification algorithm. The
prewhitening and classification stages are shown with associated
signal notation, block, and frame lengths.

replacing the damaged part of the signal with silence or
linear interpolation of the neighboring sample values [37].
Restoration methods based on linear prediction, introduced
in [18, 47, 45, 43], constituted a big leap forward con-
cerning the quality of restoration and are now state of the
art in commercially available solutions. More recent inter-
polation approaches based on true linear prediction [21]
or frequency-warped prediction achieve high audio quality
even for gap lengths of around 45 ms [20, 11]. Different
approaches have been developed that aim at improving the
impulse detection accuracy on the one hand, and the re-
placement of affected samples on the other hand. E.g., the
two-channel approach proposed in [14] gains advantage
from using two signals obtained with a stereo replay car-
tridge, compared to only single-channel processing. Other
recent methods use bidirectional processing [29] or click
templates [30] to increase the detection accuracy. In [8, 6,
7] detection (and interpolation) schemes based on machine
learning techniques have been proposed. Detection meth-
ods that are based on the Bayesian philosophy, developed in
[39], are shown to have advantages in critical applications
but with high computational requirements.

In recent years, classification algorithms based on deep
learning have shown remarkable results for a variety of
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audio signal processing tasks, e.g., audio tagging [51], or
acoustic event detection [25]. In this paper, however, we
use a traditional classifier, due to the fact that deep learning
based approaches are known to often suffer from limited
generalization capabilities to unknown data and that their
training is computationally expensive. The proposed algo-
rithm achieves high classification performance with com-
paratively low computational requirements.

0.3 Paper Structure
The structure of this paper is as follows. In Sec. 1 the

characteristics of the signals to be processed are described.
A thorough explanation of the proposed classification algo-
rithm is given in Sec. 2. To analyze the performance of the
proposed algorithm, the evaluation method and the results
for a large number of test signals are given in Sec. 3.

1 SIGNAL MODEL

In the context of audio restoration, disturbing impulses
are usually assumed to be localized degradations of the sig-
nal that are of short duration—ranging from 20 μs to 4
ms [39], corresponding to about 1–200 samples at a typ-
ical sampling rate of 44100 Hz. For wax cylinders, shel-
lac or vinyl records, the disturbing impulses are usually
caused by scratches and dust particles in the grooves of the
medium.

Depending on the severity of the damage, clicks can be
assumed to be either additive to the clean signal or—in the
case of severe damage—fully replacing the original signal
(cf., [39, p. 100]). In this article we will assume that the
impulsive disturbances are additive, i.e.,

x [n] = s [n] + d [n] for 0 ≤ n < L, (1)

with the sample index n, L the length of the signals, the
disturbed signal x[n], the clean (unobservable) signal s[n]
and the sparse disturbance d[n] (with d[n] = 0 for most n).

To evaluate the proposed algorithm and to determine
optimum model parameters we use artificial disturbances.
This has the major advantage of obtaining a fully controlled
environment—i.e., the location of the clicks and the SNR
of the disturbed signal are known. Furthermore, our prelim-
inary experiments have shown that the manual annotation
of real-world signals is too time-consuming to be feasi-
ble for large amounts of audio recordings and the obtained
accuracy is not sufficient to yield meaningful evaluation
results. In addition, it is very difficult to obtain a recording
of a real impulsive disturbance signal, without any desired
signal, that can be used as an additive disturbance. This
is due to the fact that real recordings of, e.g., the blank
groove of a vinyl record, always contain additional distur-
bances, for example hiss or low frequency mains hum. On
the one hand, processing such a real recording to remove
everything except the impulsive disturbances would lead
to a change in the waveform of the impulses, for example
caused by the response of the hum removal filter. On the
other hand, using the unprocessed recording, including hiss
and hum, makes it very difficult to properly set the SNR

of the artificially disturbed signals to allow for a precise
evaluation. However, we have found in informal experi-
ments that the performance of autoregressive (AR) model
based impulse restoration algorithms when used with sig-
nals containing these artificial disturbances is comparable
to the performance for real disturbed signals. For the rea-
sons explained above, we did not include signals containing
real disturbances in the evaluation. However, on the web-
site that accompanies the manuscript [4] we demonstrate
the performance of the proposed classification algorithm
when used with real disturbances (i.e., the recording of
blank grooves of shellac and vinyl discs).

In Sec. 1.1 the used model for the artificially generated
disturbances will be reviewed, while in Sec. 1.2 two ways
to set the SNR will be discussed.

1.1 Artificial Impulsive Disturbance Generation
Impulsive disturbances are often modeled in a proba-

bilistic way as the output of a filter that is excited by
amplitude-modulated impulses with random time of occur-
rence (see [44]). Different distributions for the time between
impulses and for their amplitudes can be used. To gener-
ate the artificial impulsive disturbances we used a method
based on [49, Sec. 3.1]. The underlying probabilistic pro-
cess and its parameters were selected to fit real-world dis-
turbed signals. More specifically, the inter-occurrence time
τ (in samples) of the impulses is modeled with a gamma
distribution, i.e.,

f (τ; k,�) = 1

�k · � (k)
· τk−1e− τ

�

for τ > 0 and k, � > 0, (2)

with shape parameter k, scale parameter � and �(·) the
gamma function (see [32]). The magnitude A of the im-
pulses is modeled with a log-normal distribution, i.e.,

f (A; μ, σ) = 1

Aσ
√

2π
exp

(
− (ln (A) − μ)2

2σ2

)

for A > 0 and σ > 0, (3)

with location parameter μ, scale parameter σ, and ln (·) the
natural logarithm.

The impulsive disturbance signal is constructed by first
placing unit impulses with inter-occurrence times accord-
ing to the gamma distribution in Eq. (2). The individual im-
pulses are scaled according to the log-normal distribution
in Eq. (3) and multiplied by 1 or −1 with equal probability.
To take the response of the pickup system and variations
in the click-generation process into account, this interme-
diate signal is then filtered with a third-order Butterworth
low-pass filter with time-varying cut-off frequency. Each
block of 25 ms is filtered with a random cut-off frequency
according to a uniform distribution between ≈ 2.2 kHz and
≈ 11 kHz. For simplicity, we did not model the duration
of the impulses explicitly as in [49]. Besides, the applica-
tion of the low-pass filter leads to a varying duration of
the generated impulses as the length of the filter’s impulse
response changes in dependence on its cut-off frequency.
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Table 1. Default parameters of the impulsive disturbance
generation method from [49]. The values related to the

inter-occurrence time hold for a sampling rate of
fs = 44100 Hz.

Parameter

Symbol Description Value

Gamma distribution
(inter-occurrence time)

k Shape 0.2
� Scale 2433.8

Log-normal distribution
(impulse magnitude)

μ Location -3.63
σ Scale 0.74

1.2 Two SNR Concepts
Since the disturbance signal is modeled as localized im-

pulses with gaps between occurrences, defining an appro-
priate measure rating the perceptual amount of disturbance
is not straightforward. Obviously, the average magnitude of
the disturbance impulses comes into consideration as a sig-
nal sounds more disturbed as the disturbance gets louder.
However, in practice the interval between impulses, i.e.,
the impulse density, is a second characteristic of the dis-
turbance signal that is at least of equal importance. This
is motivated by the fact that a large proportion of typical
vinyl and shellac degradations are caused by dust and dirt
particles in the grooves of the disc. The size of these par-
ticles (corresponding to the energy of the impulses) can be
expected to change only little [40] compared to the number
of dust particles (corresponding to the impulse density) that
are distributed on the disc surface.

For this reason, throughout the article we will consider
two ways to set the SNR, either by adjusting the gain of
the disturbance signal, or by adjusting the impulse density.
In the first case, the disturbance signal is generated with
the default parameters given in [49] (see Table 1), where
only the gain is adjusted to obtain the desired SNR. In the
second case, the scale parameter of the gamma distribution
in Eq. (2) is adjusted to obtain the desired SNR. Changing
the scale parameter has the effect of changing the aver-
age time between impulses. Signals demonstrating the two
characteristics of the disturbances are available online on
the website accompanying this article [4].

1.2.1 SNR via Gain Factor
In this case the default disturbance signal, ddef[n], gener-

ated with the default parameters from [49], is scaled with a
gain factor, i.e.,

d [n] = ddef [n] ·
√√√√ ∑L−1

i=0 s2 [i]∑L−1
i=0 d2

def [i]
· 10−SNR/20,

and added to the clean signal s[n].

1.2.2 SNR via Impulse Density
Setting the desired SNR via the impulse density is based

on an iterative approach. First, the scaling factor is deter-
mined for the default disturbance signal to yield an SNR
of SNRdef = 30 dB, as informal listening tests have shown

that this represents a medium disturbance, corresponding
well with real-world audio material, i.e.,

fscale =
√√√√ ∑L−1

i=0 s2 [i]∑L−1
i=0 d2

def [i]
· 10−SNRdef/20 .

Second, the scale parameter � of the gamma distribution
in Eq. (2) that corresponds to the desired SNR is determined
in an iterative manner.

If the SNR is too small, the scale parameter is increased,
leading to a higher mean inter-impulse time. If the SNR is
too large, the scale parameter is reduced, lowering the mean
inter-impulse time. This iteration is repeated until the devi-
ation from the desired SNR is smaller than �SNR = 0.1 dB.
The appendix at the end of this paper contains a table of the
mean shape parameters required to obtain different SNRs.

2 CLASSIFICATION ALGORITHM

The complete impulsive disturbance classification algo-
rithm is shown in Fig. 2. In the training stage a model is
trained based on artificially disturbed data to distinguish
between clean and disturbed one-second long input frames
using a supervised learning approach. To enhance impulses
in the input signal the signal is prewhitened in a first step
(cf., Sec. 2.1). To do so, much shorter block lengths are
used in the order of 23 ms. From the prewhitened signal,
a number of features are computed that have been selected
to efficiently separate between the two classes clean and
disturbed (cf., Sec. 2.2). Using these features as input data,
a classifier is trained to determine the class of each frame of
the input signal (cf., Sec. 2.3). In an application scenario,
the resulting classification model is then used to classify
whether the frames of an unknown input signal contain
impulsive disturbances or not. The output of this model is
not a hard binary decision but rather a probability for each
frame to belong to the clean and disturbed class, respec-
tively. This can be viewed as a confidence measure and is
important information that in principle allows for deciding
about the overall desired behavior of the classification al-
gorithm. One option is to decide for a conservative strategy,
which would be to classify frames to be disturbed only if the
disturbance probability is very high. Another option is to
reduce the number of missed impulses and accept a certain
number of false alarms by classifying frames to be dis-
turbed even if the disturbance probability is comparatively
low. In conjunction with an impulse restoration algorithm, it
is then possible to choose a compromise between removing
all impulsive disturbances and accepting a certain amount
of desired signal degradation or rather avoiding desired
signal degradation with the risk of leaving some impulsive
disturbances unremoved. In our experiments the threshold
for assuming a frame to be disturbed is set to 0.5, making
no assumptions about preferred weighting of the classes, to
allow for an evaluation as general as possible.

2.1 Prewhitening
In many cases impulsive disturbances are audible even if

their amplitude is very low. As a consequence, it may be a
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Fig. 2. Flow diagram of the impulsive disturbance classification system.

difficult task to automatically find impulses in the input sig-
nal. Therefore, existing approaches for impulse detection
employ different types of prewhitening to make the disturb-
ing impulses stand out from the desired signal (see, e.g., [44,
Ch. 13]). The most common type of prewhitening is to use
the prediction error signal of a linear predictor, which is
briefly reviewed in Sec. 2.1.1. However, since for impul-
sive disturbance classification we found that prewhitening
based on linear prediction performs only suboptimally (see
the evaluation results in Sec. 3.4.1), we also investigated
phase-only transform (PHOT) prewhitening, which is de-
scribed in Sec. 2.1.2.

2.1.1 Prediction Error of a Linear Predictor
The use of the prediction error of a linear predictor has

proven to be an effective prewhitening step to reduce the
energy of the desired signal s[n] and make the disturbance
stand out more clearly [45, 46, 36].

In forward linear prediction (see, e.g., [35]) the current
sample is modeled as a linear combination of previous sam-
ples, i.e.,

x̂ [n] = −
PLP∑
i=1

a [i] x [n − i] + e [n] , (4)

where x̂[n] is an approximation of x[n], e[n] is the predic-
tion error, a[i] are the predictor coefficients, and PLP is the
prediction order. The predictor coefficients for the pth input
signal block of length N are determined by minimizing the
least squares prediction error:

E(p) = 1

N

N−1∑
i=0

(e[i + pN ])2

= 1

N

N−1∑
i=0

(x[i + pN ] − x̂ [i + pN ])2 ,

where the superscript •(p) denotes values of the pth block
(of length N) of the input signal. The block length N is

typically chosen to correspond to a block length in the order
of 23 ms because of the assumed short-time stationarity of
the desired signal.

Depending on the prediction order and the block length,
slowly-varying deterministic elements can be predicted
with high accuracy, compared to stochastic elements and
quickly changing parts of the signal. This has the desired
effect of reducing the energy of the desired signal and thus
enhancing the impulsive disturbances in the prediction error
signal.

2.1.2 Phase Only Transform
The phase only transform (PHOT), also known as the

phase transform (PHAT), has been successfully employed
to increase the robustness of sound source localization sys-
tems in noisy and reverberant environments [23, 9] and for
surface defect detection in images [2]. It is computed for
the pth block of the input signal x defined in Eq. (1) as
follows:

X (p)[k] =
N−1∑
i=0

x[i + pN ] · e− j2πki/N (5a)

X (p)
PHOT[k] = X (p)[k]∣∣X (p)[k]

∣∣ (5b)

xPHOT[n + pN ] = 1

N

N−1∑
i=0

X (p)
PHOT[i] · e j2πni/N (5c)

with N both the DFT length and block length. The PHOT
of the full-length input signal x is computed by using a
weighted overlap-add method as described in [5].

The reason why the PHOT enhances transients can be
illustrated intuitively. The spectral magnitude of music sig-
nals usually decays with higher frequencies [48]—Fig. 3
shows the mean power spectral density of music signals
from several decades of the 20th century. The PHOT in
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Fig. 3. Mean power spectral density of music signals from several
decades of the 20th century. This figure has been generated from
the database described in Sec. 3.1. The PSDs were estimated
using the Welch method and were normalized such that the overall
maximum value is 0 dB. The PSD axis is clipped at –40 dB for
reasons of clarity.

Eq. (5) can be interpreted as filtering the input signal with a
filter that emphasizes high-frequency content of the signal:

H [k] = 1

|X [k]| .

As impulsive disturbances usually contain much more
high-frequency energy than the target audio signal, the ef-
fect of this filter is a relative enhancement of the impulses
compared to the audio signal. A more thorough examina-
tion of why the phase only transform makes irregularities
stand out is given in [2].

2.2 Feature Computation
After prewhitening the signals (using the prediction er-

ror of a linear predictor or the PHOT), the features are
computed for each frame of the prewhitened signal:

x (q)
pre[n] = xpre[n + q M] for 0 ≤ n < M,

with M the frame length of the feature computation. •(q)

denotes values of the qth frame (of length M) of the
prewhitened signal. As mentioned before, we use frames
of 1 s duration, corresponding to a frame length of
M = 44100 samples at a sampling rate of fs = 44100 Hz.
Informal analyses have shown that this choice represents a
good compromise between classification accuracy and time
resolution.

To make the feature values independent of the energy
the input frames are normalized. To reduce the influence
of potentially existing impulses on the level scaling, this
is done in a robust way using the 5 %-truncated standard
deviation [17]:

x ′(q)
pre [n] = x (q)

pre[n]/σx (q)
pre , 5%,

where σx (q)
pre , 5% is the standard deviation of x (q)

pre whose 5 %
smallest and greatest elements have been removed. By us-
ing the truncated standard deviation instead of the regular

standard deviation, the salience of impulses possibly con-
tained in a frame is not reduced by the normalization which
is desirable to allow for good separability between clean
and disturbed input frames.

For classification we have considered a variety of features
(see Sec. A.2). Using recursive feature elimination [13], we
found that good performance can be achieved using the
crest factor, i.e.,

C (q) =
max

0≤i<M

∣∣∣x ′(q)
pre [n]

∣∣∣√
1
M

∑M−1
i=0

(
x ′(q)

pre [i]
)2

, (6)

and the sample kurtosis,

Kurt(q) =
1
M

∑M−1
i=0

(
x ′(q)

pre [i] − x ′(q)
pre

)4

(
1
M

∑M−1
i=0

(
x ′(q)

pre [i] − x ′(q)
pre

)2
)2 , (7)

which are both relatively easy to compute.

2.3 Classifier Training
After computing the features as described in the previous

section, they are used to train a binary classifier that labels
each input frame either as clean or disturbed. The training
happens in form of a supervised learning approach, using
artificially disturbed signals (cf., Sec. 1.1) and the corre-
sponding information whether a frame contains impulsive
disturbances or not as training labels. As classifiers we
considered L2-regularized logistic regression and a support
vector machine (SVM) with radial basis function kernels,
both in the implementation from [33]. The optimal hyper-
parameters (amount of regularization for logistic regression
and SVM and kernel coefficient for SVM) were determined
via 5-fold cross-validation [3]. Depending on the specific
evaluation goal (cf., Sec. 3.4) either the complete data set
was used for training and testing or the available data was
split into training and test subsets. Details will be given in
the respective sections.

3 EVALUATION METHOD AND RESULTS

To determine the classification performance of the de-
veloped algorithm and to find optimum values for its pa-
rameters we use an evaluation based on a database of test
signals and different error measures. In a first experiment,
cf., Sec. 3.4.1, we optimize the parameters of the prewhiten-
ing stage, i.e., block length N, and prediction order PLP for
the linear predictor, and investigate the classification per-
formance for different classifiers. In a second experiment,
cf., Sec. 3.4.2, we analyze the classification performance,
based on the optimized parameters, for a large database
of signals unknown to the classification algorithm. A third
experiment, cf., Sec. 3.4.3, investigates the audio quality
improvement of three existing impulse restoration algo-
rithms. The aim of that section is to assess the ability of
these restoration algorithms to deal with a wide variety of
input signals when no individual parameter adjustment is
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performed. A final fourth experiment investigates the audio
quality improvement that is obtained when using the clas-
sification algorithm in conjunction with a standard impulse
restoration algorithm based on an AR model of the clean
signal [39, Ch. 5]. In all cases, the tests are performed for
different SNRs and both SNR concepts. The frame length
for feature computation is set to M = 44100 samples, cor-
responding to a frame duration of 1 s at the used sampling
rate of fs = 44100 Hz.

In Sec. 3.1 we describe the database of test signals. After
that, Sec. 3.2 presents different error measures that are used
to rate the classification performance in the first two exper-
iments on the one hand and the perceptual audio quality
improvement obtained in the third and fourth experiments
on the other hand. In Sec. 3.3 we briefly describe the three
reference impulse restoration algorithms that are used for
the evaluation. Sec. 3.4, finally, presents and discusses the
results of the four experiments.

3.1 Test Signals
For the development and evaluation of the classification

algorithm, we used a database of clean music recordings
[42] that contains 20 recordings from each of the years
1955–1985, resulting in 620 clean signals. This time span
was chosen since this is the main targeted period of applica-
tion for the impulsive disturbance classification algorithm.
Before around 1955 most commercial music recordings
were distributed on wax cylinders or shellac discs, and
thus can be assumed to generally contain impulsive dis-
turbances. In contrast, recordings that have been produced
after around 1985 are available in digital format and can
be assumed impulsive disturbance free. Starting at the end
of the 1940s, magnetic tape recordings gained widespread
popularity and coexisted with the hill-and-dale recording
technologies for several decades, until the introduction of
digital recording and the compact disc (cf., e.g., [28]). As a
consequence, no assumptions concerning impulsive distur-
bances can be made for recordings from this time span and
we show that it is beneficial to use an impulsive disturbance
classifier.

Each test signal was a randomly selected 20 s long
monaural segment of the corresponding recording from
the clean music database. As the database consists of two-
channel CD recordings the monaural test signals were ob-
tained by extracting the left channels of the original record-
ings.

As already mentioned, we used artificial additive distur-
bances that were generated using the method described in
Sec. 1. As we used four different SNRs plus undisturbed sig-
nals (SNR = ∞), and used the two SNR concepts explained
above, the overall amount of test data consisted of 620 · 5
· 2 = 6200 signals, corresponding to an overall duration
of 6200 · 20s � 34h. However, due to the random nature
of the disturbance signal generation, not all frames of the
disturbance signal actually contain disturbance impulses.
This is caused by high inter-occurrence times between the
individual impulses that may exceed the frame length of
1 s. Therefore, all frames from the disturbed class that did

not contain any impulses were removed from the training
set to prevent two identical disturbance-free signal frames
being used for classifier training.

3.2 Error Measures
This section describes both the measures that are used

to evaluate the classification performance of the proposed
algorithm and an instrumental measure to evaluate the audio
quality of three existing impulse restoration algorithms and
also a full restoration chain where only those frames that
have been classified to contain impulsive disturbances are
processed by an impulse restoration algorithm.

3.2.1 Classification Performance
The performance of a classification system is typically

rated based on three measures: accuracy, precision, and
recall [12, 34]. The accuracy is simply the proportion of
correctly identified instances:

Accuracy = TPos + TNeg

Pos + Neg
,

with TPos and TNeg the number of true positive and true
negative instances, respectively—in our context this trans-
lates to disturbance present & correctly classified as dis-
turbed and no disturbance present & correctly classified as
disturbance-free, respectively. Pos and Neg are the over-
all number of positive (disturbed) and negative (clean)
instances, respectively. In our context, an instance corre-
sponds to a frame of the input signal, and all frames of all
test signals considered in each experiment are combined to
determine the values of TPos, TNeg, Pos, and Neg.

If the classes (clean and disturbed) are skewed, i.e., the
number of instances in each class differ, the accuracy mea-
sure may not be very useful. The most extreme example
would be when all instances are disturbed. In that case, a
classifier always assuming an instance to be disturbed will
yield an accuracy of 100%. Obviously, such a classifier
would perform very poorly in real-world scenarios as no
clean instance would be classified as such.

Additional performance measures can be used that take
the number of positive (disturbed) and negative (clean) in-
stances into account. The precision specifies the number of
disturbed instances compared to the number of instances
assumed to be disturbed:

Precision = TPos

TPos + FPos
,

with FPos the number of undisturbed instances erroneously
assumed to be disturbed (false alarm). The recall value is the
proportion of disturbed instances that have been classified
as disturbed:

Recall = TPos

Pos
.

3.2.2 Instrumental Measures for Audio Quality
In order to rate the quality improvement of existing im-

pulse restoration algorithms and also to determine the ben-
efit of the proposed impulsive disturbance classification al-
gorithm when integrating it with an impulse restoration al-
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Table 2. The ODG scale.

ODG Impairment Description

0 Imperceptible
–1 Perceptible but not annoying
–2 Slightly annoying
–3 Annoying
–4 Very annoying

gorithm, we will rate the perceived audio quality of the pro-
cessed signal using an intrusive instrumental audio quality
measure. In this context, “intrusive” means that the quality
is determined by computing a similarity measure between
the processed signal and a (clean) reference signal. More
specifically, the instrumental measure used in this article
is the “Perceptual Evaluation of Audio Quality” (PEAQ)
measure [16, 19, 41]. It yields a so-called Objective Differ-
ence Grade (ODG) describing the perceptual difference to
a reference signal that ranges from −4 (“very annoying”)
to 0 (“imperceptible”), cf., Table 2.2

Although PEAQ was originally developed to assess arti-
facts of audio coders, we still decided to use this measure to
evaluate the performance of impulse restoration algorithms,
since this measure has also been used to evaluate other au-
dio enhancement algorithms [38] and informal listening
experiments showed that the obtained ODG scores gener-
ally correspond well with subjective auditory impression
(cf., demonstration signals on the website accompanying
this article [4]).

3.3 Reference Impulse Restoration Algorithms
One reasonable application of the proposed impulsive

disturbance classification algorithm is in combination with
an impulse restoration algorithm. A straightforward way to
make automatic restoration possible without compromising
the quality of undisturbed signal portions is to only process
those 1 s frames of the input signal with an impulse restora-
tion algorithm that have been classified to contain impulsive
disturbances. These processed frames can be concatenated
with undisturbed, unprocessed frames. To do so, of course,
possible processing delay of the restoration algorithm has
to be taken into account.

We use three impulse restoration algorithms for refer-
ence. All of them are based on an AR model of the clean
signal for impulse detection and interpolation [39, Ch. 5]:

• LSAR – A standard least squares AR algorithm that
combines the AR model with a sinusoidal model for
the input signal to increase the detection and interpo-
lation performance [39, Ch. 5.2.3.2]. In addition, the
AR model parameters and clean signal are estimated
iteratively [39, Ch. 5.3.1] as informal listening tests
have shown that the achieved restoration quality ben-
efits greatly from doing so. We use this algorithm in

2As the PEAQ algorithm requires its input signals to have a
sampling rate of 48 kHz, the processed and reference signals were
resampled accordingly before running the PEAQ algorithm.

the implementation and with parameter values from
[31].

• DT-LSAR – An impulse restoration algorithm that
uses an improved detection stage by using a double-
threshold based approach [10]. Specifically, the al-
gorithm is able to merge closely spaced impulses
and processes each block of the input signal multi-
ple times to reduce the number of missed disturbance
impulses.

• Auto-LSAR – A recently published algorithm that
incorporates ideas from [10] and is reported to
achieve good restoration performance for a wide
range of input material without manual parameter
adjustment [24].

3.4 Results
In this section we present results of four experiments to

determine the optimum prewhitening, the classification per-
formance of the proposed algorithm with unknown signals,
the restoration performance of the three reference impulse
restoration algorithms with no parameter adjustment, and
the perceptual audio quality improvement of a fully auto-
matic impulsive disturbance restoration chain.

3.4.1 Optimum Prewhitening
It is expected that the prewhitening method and the

prewhitening parameters (e.g., block length N, prediction
order PLP) have a major influence on the performance of
the classification algorithm. Based on a subset of 31 clean
signals (one randomly selected from each year, cf., Sec.
3.1) from the signal database, the disturbed signals were
generated with SNRs ranging from 20 dB to 50 dB, us-
ing both SNR concepts. As mentioned above, those frames
from the disturbed class that, due to the random nature of
the disturbance signal generation, did not contain any im-
pulses were removed from the corrupted class of the data
set. The classification algorithm was trained per condition,
i.e., per combination of block length N, choice of prewhiten-
ing (none, PHOT or linear prediction), classifier (logistic
regression or SVM), SNR concept and, for prewhitening
based on linear prediction, also prediction order PLP. For
each condition, 31 · 20 = 620 clean frames were used with
an equal number of disturbed frames that were randomly
selected from the available 31 · 4 · 20 = 2480 frames.
This was done in order to find an optimal prewhitening
working well both at high and low SNR conditions. We did
not use separate training and test data sets as the aim was to
determine the specific prewhitening that allows for the best
classification performance for all data; in this experiment
we were not interested in the generalization performance of
the classification algorithm, i.e., how accurately it classifies
unknown data. In this section we will rate the classification
quality solely based on the accuracy. Despite what was
said about the disadvantages of the accuracy measure in
Sec. 3.2.1, these results are still meaningful as we selected
an equal number of clean and disturbed instances for our
experiments. The fraction of disturbed frames in an actual
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Fig. 4. Classification accuracy for all analyzed types of prewhitening with varying block lengths. The two figures show classification
results averaged over all SNRs (20, 30, 40, and 50 dB). For the linear predictor, for each block length the optimum prediction order was
selected. To enhance the clarity, plots have been separated in terms of the SNR concept. The length of the error bars is twice the standard
deviation of the five cross-validation runs.

archive restoration application scenario may differ from our
assumptions, but as we were not able to find more detailed
information on this topic, we think that this approach allows
for an evaluation as general as possible.

Fig. 4 shows the classification accuracy for several
prewhitening algorithms, for different classifiers and for
both SNR concepts. The accuracy values are averaged over
all SNRs per condition. The two columns of Fig. 4 con-
tain the results for the two SNR concepts. The results for
prewhitening based on linear prediction are those obtained
with the optimum prediction order PLP. The optimum pre-
diction order was determined beforehand as that PLP that
allows for the highest accuracy, individually for each block
length N. As can be observed the choice of classifier seems
to be of minor importance, as the curves for logistic regres-
sion and SVM lie almost on top of each other. However, the
choice of prewhitening has a large influence on the classi-
fication performance. Although employing no prewhiten-
ing at all allows for a classification accuracy that is above
chance level, the use of linear prediction and PHOT yields a
much better classification accuracy, with PHOT clearly out-
performing linear prediction. Fig. 4 shows that the achieved
overall accuracy is higher if the SNR is set by modifying
the impulse density (cf., Sec. 1.2.2). This is plausible as
the amplitude—which corresponds to the detectability—
remains the same independent of the SNR. Although there
is no clear optimum choice for all conditions, we chose the
combination of PHOT prewhitening with a block length of
N = 1024 samples and the logistic regression classifier for
all further experiments.

3.4.2 Classification Performance in Dependence
on the SNR

Using the optimal prewhitening parameters determined
in the previous section we evaluate the classification per-
formance of the proposed algorithm using the complete
test signal database based on 620 clean recordings. As in
the last experiment, the disturbed signals were obtained
using artificial disturbances, SNRs of 20 dB to 50 dB

using both SNR concepts. Only those frames of the dis-
turbed class that actually contain any impulses are used
for training, supplemented by an equal number of clean
signal frames. To determine the generalization capabilities
of the classifier, the available data was split into training
and test sets, comprising 60% and 40% of the data, respec-
tively. Classifier training and hyperparameter optimization
was performed with only the training data as described in
Sec. 2.3. The classification performance was then evaluated
based only on the test data. Table 3 lists the classification
error measures in dependence on the SNR and the SNR
concept.

As expected, the classification performance improves as
the SNR decreases; at an SNR of 20 dB approximately 92%
of all frames are classified correctly (“Accuracy” columns
in Table 3). At an SNR of 40 dB the accuracy decreases
to ≈67%, however note the precision and recall values:
The recall value drops to ≈45% for both SNR concepts
whereas the precision value indicates that ≈76% − 78% of
the frames that have been classified to be disturbed actually
contain impulses. The relatively low recall values in high
SNR scenarios will in many cases not pose a severe prob-
lem as the disturbance is inaudible anyway (compare the
demonstration signals on the article website). Furthermore,
the classification performance is similar for both SNR con-
cepts except at 50 dB.

3.4.3 Impulse Reduction Performance of
Existing Restoration Algorithms

The goal of this section is to determine a baseline for
the performance of existing impulse restoration algorithms
when used with very diverse audio material in an automatic
manner, i.e., with no parameter adjustment. Therefore, we
processed our test signal database (cf., Sec. 3.1) with the
LSAR, DT-LSAR, and Auto-LSAR algorithms (cf., Sec.
3.3) and rated the restoration capabilities in terms of the
perceptual quality of the restored signal. As described in
Sec. 3.2.2 the perceived quality is determined using an
instrumental measure, namely the PEAQ algorithm. This
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Table 3. Classification performance in dependence on the SNR. All accuracy, precision and recall values are in percent.

SNR Concept

Gain Impulse Density

SNR Accuracy Precision Recall Accuracy Precision Recall

20 dB 93.2 88.7 99.1 92.2 88.4 97.1
30 dB 85.9 86.9 84.4 86 87 84.6
40 dB 66 77.9 44.7 68.2 75.5 46.3
50 dB 53.1 59.9 19 76.1 33.8 27.8

algorithm compares two signals, the reference and the test
signal, and computes a single number indicating the per-
ceptual similarity of both. The results were obtained using
the clean signal for reference.

The box plots [27] in Fig. 5 display the distribution of the
ODG scores obtained using PEAQ: The lower and upper
edges of each box correspond to the first and third quartiles
of the data, respectively. Consequently, the height of each
box represents the inter-quartile range (IQR). The horizon-
tal line inside each box represents the median value and the
lines extending vertically from each box indicate the small-
est and largest data point, respectively, that is still within
1.5 · IQR distance from the lower, or upper, edge of the box,
respectively. All data outside of this interval are considered
outliers and represented by dots.

As can be seen in the figure, considering the leftmost
group (“None”) which represents the results for the unre-
stored, disturbed input signals, the perceptual audio quality
is severely impaired by impulsive disturbances at low SNRs
(compare Table 2). For SNRs above 40 dB the ODG attains
median scores around zero, indicating mostly unnoticeable
signal quality degradation. For most SNRs, a number of
outliers extend to low ODG scores around −4. Informal
listening tests have shown that these results correspond to
test signals whose desired signal exhibits certain peculiari-
ties. For example, low ODG scores for unprocessed signals
at SNRs of 40 dB and 50 dB are caused by signals that have
very low high-frequency content or that contain very quiet
sections. In both cases, even soft impulses are perceptually
striking, resulting in low ODG scores.

Higher ODG scores for the signals processed by the im-
pulse restoration algorithms (“LSAR,” “DT-LSAR,” and
“Auto-LSAR”) compared to the disturbed signals (“None”)
for SNR values of 20 dB and 30 dB indicate that impulse
restoration processing leads to an improvement of audio
quality for heavily disturbed signals. For severe degra-
dations at an SNR of 20 dB and especially for the SNR
concept “Gain” the “DT-LSAR” algorithm yields a severe
increase in audio quality, outperforming the other two algo-
rithms. This is likely to be caused by its improved detection
stage featuring less missed detections (compare [10]). The
“LSAR” algorithm yields less quality improvement for very
low SNRs, but is able to increase the audio quality up to an
SNR of 40 dB. However, note that for SNRs above 40 dB the
uninformed processing with any of the evaluated impulse
restoration algorithms leads to a median decrease in quality,
compared to the unprocessed input signal. This is especially

evident in the results for undisturbed signals (represented
here with an SNR of ∞ dB). This observation suggests
that in these cases all three impulse restoration algorithms
produce a high number of erroneous detections, with the
consequence of removing parts of the desired signal.

3.4.4 Restoration Performance with the
Classification Algorithm

The last experiment evaluates the gain in audio quality
that can be obtained when combining the presented im-
pulsive disturbance classification algorithm with the LSAR
impulse restoration algorithm. We decided to use the LSAR
algorithm for this experiment as the results in Fig. 5 indi-
cate that the LSAR algorithm, of all three analyzed im-
pulse restoration algorithms, performs best when used with
a wide variety of input signals. The improvement in per-
ceived audio quality, as in the last section, is determined via
the PEAQ algorithm, using the clean signal for reference.
Fig. 6 shows three groups of data, subdivided by the type of
impulse restoration processing: “None,” “Classified,” and
“All.” The first group, “None” represents the ODG scores
for the disturbed, unprocessed input signal. The “All” group
displays the ODG scores for the signals with all frames pro-
cessed with the LSAR impulse restoration algorithm and
corresponds to the “LSAR” boxes in Fig. 5.3 The “Classi-
fied” group represents the results obtained for signals where
only frames indicated by the classifier to actually contain
impulsive disturbances were processed by the restoration
algorithm. The “Classified” group in the figure reveals that
for SNR values of ≥ 40 dB the ODG benefits from the
application of the impulsive disturbance classification al-
gorithm, saving (mostly) clean signal frames from being
distorted by the impulse restoration algorithm. The ODG
scores in these cases are significantly higher than the scores
of the fully processed signals, becoming more evident with
increasing SNR values and yielding the largest gains with
clean signals. For low SNR values, the application of the im-
pulsive disturbance classification algorithm has practically
no drawbacks as the classification accuracy is very high in
these cases—compare the classification performance mea-
sures in the bottom of the plot. Hence, for SNRs of 20 dB
and 30 dB almost all frames are correctly classified to

3However, note that in this section, only the 248 signals from
the test set were used for the evaluation, while all 620 test signals
were used in the last section.
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Fig. 5. Results of the instrumental audio quality evaluation of the three impulse restoration algorithms described in Sec. 3.3. The ODG
scores were obtained with the PEAQ algorithm, and for each SNR concept (“Gain” or “Impulse Density”) and SNR all 620 signals from
the test signal database were used. The reference signal for the PEAQ algorithm is the clean signal in all cases. The leftmost boxes
(“None”) represent the results for the disturbed signal that has not been processed by a restoration algorithm, the other boxes (“LSAR,”
“DT-LSAR,” and “Auto-LSAR”) represent the results obtained when the complete signal is processed by the respective restoration
algorithm. Refer to Sec. 3.4.3 for the interpretation of this box plot.

contain impulsive disturbances, yielding almost identical
results to the fully processed signals.

In summary, we find that for signals that only contain
marginal disturbances or that are completely clean, the
presented impulsive disturbance classification algorithm
shows its main improvement: Prevent clean signals from
being processed unnecessarily and avoid a reduction of au-
dio quality.

4 CONCLUSIONS

In this article we presented a novel classification algo-
rithm to automatically determine whether an audio record-
ing contains impulsive disturbances or not. The proposed
algorithm is based on a supervised learning approach. Using
a large clean music database and artificially generated but
plausible disturbances we could show that the algorithm is
capable of classifying most audible disturbances correctly
while featuring a small false alarm rate. Compared to ex-
isting impulse detection schemes, which exhibit a time res-
olution in the order of the sampling interval, our approach
yields classification results for input signal frames of 1 s

duration. Hence, it is able to take advantage from the addi-
tional information, however at the cost of a decreased time
resolution. Furthermore, our results show that prewhitening
the input signal by means of the phase only transform is an
important step to increase the detectability of disturbance
impulses which can also be used as a detection enhance-
ment method for impulse restoration algorithms.

Based on an instrumental audio quality measure, we have
presented evaluation results that suggest that well-known,
AR model based impulse restoration algorithms suffer from
a significant number of false alarms, especially for high
input SNRs. Thus, it is important to determine whether
a restoration is actually required. The developed classifi-
cation algorithm can be used in conjunction with legacy
impulse restoration algorithms to reduce the number of er-
roneous detection results and, as a consequence, to increase
the audio quality of the restored signal.

We conclude that the presented method constitutes a
crucial step towards fully automatic restoration of media
archives.

The website accompanying the article [4] makes a num-
ber of disturbed and restored signals available for listening,
including their ODG scores.
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Fig. 6. Results of the instrumental audio quality evaluation of the full restoration processing chain. The ODG scores were obtained with
the PEAQ algorithm, and for each SNR concept (“Gain” or “Impulse Density”), SNR, and type of processing only the 248 signals from
the test set, previously unknown to the classification algorithm, were used. The reference signal for the PEAQ algorithm is the clean
signal in all cases. The leftmost boxes (processing “None”) represent the results for the disturbed signal that has not been processed
by the restoration algorithm, the rightmost box (“All”) represent the results obtained when all frames of the signal are processed by
the restoration algorithm. The middle boxes (“Classified”) show the results with the classification algorithm applied: only the frames
classified to contain impulsive disturbances are processed by the restoration algorithm. The tables on the bottom of the figure copy the
classification performance measures from Table 3 for convenience.
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APPENDIX

A.1 Shape Parameter Values of the Gamma
Distribution

The mean shape parameters of the gamma distribution,
�̄, that are required to obtain specific SNR values are given
in Table 4, including the standard deviation σ� over all of
the test signals. The standard deviation is zero for an SNR
of 30 dB because this is the default case and the standard
parameters for the impulsive disturbance generator are used
for all signals. For all other SNRs, the shape parameter
depends on the individual clean input signals.

A.2 List of Features
Table 5 lists all statistical measures that have been in-

vestigated as features of the prewhitened and normalized
signal x ′(q)

pre [n]. As described in Sec. 2.2, recursive feature

Table 4. Mean and standard deviation of the shape
parameter of the gamma distribution for different SNRs.

SNR �̄ σθ

20 dB 230 23
30 dB 2434 0 (default)
40 dB 24083 6374
50 dB 227976 99481

Table 5. Features of the prewhitened signal that have been
investigated.

Feature Computation

Crest factor See (6)

Crest factor –
l% trimmed
mean, (l ∈
{1, 2, 5, 10}
(see [50, Ch.
3.3])

C (q)
l% =

max
0≤i<M

∣∣∣x ′(q)
pre [i]

∣∣∣√
Trimmeanl%

{(
x ′(q)

pre [n]
)2

}

Peak-to-Root-
Median-
Squared
ratio

PRMedS(q) =
max

0≤i<M

∣∣∣x ′(q)
pre [i]

∣∣∣√
Med

{(
x ′(q)

pre [n]
)2

}

Kurtosis See (7)

Kurtosis of
absolute
value

Kurt(q)
abs =

1
M

∑M−1
i=0

(∣∣∣x ′(q)
pre [i]

∣∣∣−∣∣∣x ′(q)
pre

∣∣∣)4

(
1
M

∑M−1
i=0

(∣∣∣x ′(q)
pre [i]

∣∣∣−∣∣∣x ′(q)
pre

∣∣∣)2
)2

Skewness Skew(q) =
1
M

∑M−1
i=0

(
x ′(q)

pre [i]−x ′(q)
pre

)3

(
1
M

∑M−1
i=0

(
x ′(q)

pre [i]−x ′(q)
pre

)2
)3/2

Sparseness
(see [15])

Sparseness(q) =
√

M−∑M−1
i=0

∣∣∣x ′(q)
pre [i]

∣∣∣/
√∑M−1

i=0

(
x ′(q)

pre [i]
)2

√
M−1
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elimination was used to determine a set of two features
that provide good classification results while reducing the
computational requirements.

For the computation of the crest factor with trimmed
mean, Trimmeani% {·} is the i % trimmed mean as described
in [50, Ch. 3.3].
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