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In many applications in which speech is played back via a sound reinforcement system such as pub-

lic address systems and mobile phones, speech intelligibility is degraded by additive environmental

noise. A possible solution to maintain high intelligibility in noise is to pre-process the speech signal

based on the estimated noise power at the position of the listener. The previously proposed

AdaptDRC algorithm [Schepker, Rennies, and Doclo (2015). J. Acoust. Soc. Am. 138, 2692–2706]

applies both frequency shaping and dynamic range compression under an equal-power constraint,

where the processing is adaptively controlled by short-term estimates of the speech intelligibility

index. Previous evaluations of the algorithm have focused on normal-hearing listeners. In this

study, the algorithm was extended with an adaptive gain stage under an equal-peak-power con-

straint, and evaluated with eleven normal-hearing and ten mildly to moderately hearing-impaired

listeners. For normal-hearing listeners, average improvements in speech reception thresholds of

about 4 and 8 dB compared to the unprocessed reference condition were measured for the original

algorithm and its extension, respectively. For hearing-impaired listeners, the average improvements

were about 2 and 6 dB, indicating that the relative improvement due to the proposed adaptive gain

stage was larger for these listeners than the benefit of the original processing stages.
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I. INTRODUCTION

In many situations in which speech is played back via

sound reinforcement systems (e.g., announcements of

public-address systems in train stations or mobile telephony

in crowded rooms), speech intelligibility is degraded due to

ambient noise at the position of the listener. In such condi-

tions, intelligibility may be improved by so-called near-end

listening enhancement (NELE) algorithms, which pre-

process the speech signal aiming to remain intelligible in

noise. Most previous studies, however, have exclusively

focused on normal-hearing listeners. The goal of the present

study is (1) to extend a NELE algorithm previously proposed

by Schepker et al. (2013, 2015) and (2) to evaluate the origi-

nal and the extended algorithm with both normal-hearing

and unaided hearing-impaired listeners.

Several recent studies have proposed NELE algorithms

and have investigated their effectiveness in different back-

ground noise conditions (e.g., Kleijn et al., 2015; Taal et al.,
2014; Zorila and Stylianou, 2014; Taal and Jensen, 2013;

Sauert and Vary, 2012; Zorila et al., 2012; Tang and Cooke,

2011; Sauert and Vary, 2010). A comprehensive comparison

of different NELE algorithms was conducted in the Hurricane

Challenge 2013 (Cooke et al., 2013a,b), which included 14

different algorithms and two different masker types [stationary

speech-shaped noise (SSN) and an interfering talker], each at

three different signal-to-noise ratios (SNRs). The tested algo-

rithms employed different types and combinations of time-

frequency energy reallocation, frequency-shaping, dynamic

range compression (DRC), and time-stretching. As a general

result, Cooke et al. (2013b) concluded that the speech intelligi-

bility benefit compared to the unprocessed reference condition

was generally largest for algorithms applying DRC, especially

for the interfering talker. One of the algorithms applying DRC

was the AdaptDRC algorithm proposed by Schepker et al.
(2013, 2015), which combines a time-dependent frequency-

shaping stage with a time- and frequency-dependent DRC

stage. Both the frequency-shaping and the DRC stage are

adaptively controlled based on the estimated speech intelligi-

bility. In conditions with high intelligibility the algorithm

applies no changes to the original speech signal, while in con-

ditions with low intelligibility the speech signal is modified.

The degree of signal modification depends on a short-term

estimate of the speech intelligibility index (SII) (ANSI, 1997).

Like all algorithms included in the study of Cooke et al.
(2013b), the AdaptDRC algorithm works under the con-

straint that the root-mean square (rms) power of the modified
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speech signal should not exceed the rms power of the origi-

nal speech signal. This is a very reasonable constraint when

comparing different algorithms, since simply increasing the

speech power in a constant-noise environment would imme-

diately improve speech intelligibility. For practical applica-

tions, however, this constraint may not always be realistic

since many technical systems are limited with respect to

their peak power rather than their rms power. Consequently,

an increase in speech power may be applicable in adverse

listening conditions if the playback system allows for a cer-

tain headroom. Even if no headroom is available, increasing

the speech power may still be beneficial, namely, when dis-

tortions introduced by amplification (e.g., due to peak clip-

ping) are outweighed by the increased speech power.

To which extent this compromise between speech dis-

tortions and an increased speech power affects speech intelli-

gibility for NELE algorithms has not been investigated for

the AdaptDRC algorithm or other NELE algorithms before.

The first goal of the present study was therefore to extend

the AdaptDRC algorithm to include an adaptive gain stage

working under an equal-peak-power constraint. The underly-

ing research hypothesis was that normal-hearing listeners

benefit from additional amplification of the speech signal

even at the cost of distortions caused by peak clipping.

The extended algorithm developed in this study com-

prises DRC (as the original AdaptDRC algorithm) and SNR

enhancement (due to the additional adaptive gain stage),

which are also two main processing stages applied in hearing

aids to restore intelligibility. The second goal of this study

was to investigate if a benefit for speech intelligibility in

noise using NELE algorithms incorporating these stages can

also be achieved for hearing-impaired listeners, even when

the processing stages are not tuned to the individual hearing

loss. This is particularly relevant because the large majority

of the hearing impaired are not treated with hearing aids,

especially in the groups of mild and moderate hearing loss.

For example, Kochkin (2012) summarized that 60% of peo-

ple with moderate to severe hearing loss and 81% of people

with mild hearing loss do not own hearing aids. To the best

of our knowledge, NELE algorithms for improving speech

intelligibility in noise have not been evaluated with hearing-

impaired listeners before. One exception is the study of Ben

Jemaa et al. (2015), who tested different versions of non-

adaptive, linear frequency-shaping derived from hearing-aid

fitting rules, but did not find remarkable improvements (or

even reduced intelligibility). Arai et al. (2010) tested a

NELE approach for speech in reverberation, but not in noise.

They showed that intelligibility could be improved for both

normal-hearing and hearing-impaired listeners by attenuat-

ing high-energy vowel components to reduce overlap mask-

ing caused by reverberation. Azarov et al. (2015) proposed a

NELE algorithm which may, in principle, be applicable for

hearing-impaired listeners. However, their algorithm

requires tuning to the individual hearing loss, and no valida-

tion using speech intelligibility tests was conducted. In the

present study, we therefore measured speech intelligibility in

both normal-hearing and hearing-impaired listeners. The

research hypothesis was that the original and extended

AdaptDRC algorithm are also effective for listeners with

sensorineural hearing impairment, even without individual-

ized tuning. Especially the SNR increase enabled by the new

equal-peak-power constraint was expected to benefit

hearing-impaired listeners.

II. EXTENSION OF THE ADAPTDRC ALGORITHM

This section first briefly reviews the AdaptDRC algo-

rithm of Schepker et al. (2015), followed by a description of

the algorithm extensions proposed in this study. Finally, the

role of several algorithm parameters is analyzed.

A. AdaptDRC algorithm

The AdaptDRC algorithm was described in detail by

Schepker et al. (2015), and in the present study the same nota-

tion is used to describe the proposed extensions. Figure 1

depicts the considered acoustic scenario. The general concept

of the AdaptDRC algorithm is to process a clean speech signal

s[k] at discrete time index k using a processing stage Wf�g to

obtain the modified speech signal ~s½k�. For a given additive

background noise r[k] at the position of the listener, the goal

is to increase the intelligibility of ~s½k� þ r½k� compared to s[k]

þ r[k] under an equal-power constraint, i.e., the power of ~s½k�
should be equal to the power of s[k]. For the algorithm to

adapt to time-varying background noises, an estimate of the

noise r̂½k� has to be obtained from the microphone signal

y½k� ¼ ~s½k� � h½k� þ r½k�, where the asterisk denotes convolu-

tion and h is the room impulse response between the loud-

speaker and the microphone. Several methods exist to obtain

a noise estimate in such conditions by using, e.g., adaptive fil-

tering techniques to model the room impulse response ĥ½k�
(e.g., Haensler and Schmidt, 2008). The modified speech sig-

nal is computed as

~s k½ � ¼ Wfs k½ �; r̂ k½ �; ĥ k½ �g: (1)

Schepker et al. (2015) assumed perfect knowledge of

r[k] (i.e., r̂½k� ¼ r½k�) and no reverberation to be present (i.e.,

ĥ½k� ¼ h½k� ¼ d½k�). It was further assumed that the subband

powers of both the speech and the noise recorded by the

microphone are the same as perceived by the listener, which

will generally not be fulfilled in real systems. The same

assumptions are made in the present study. The processing

Wf�g consists of two stages: a frequency-shaping stage and a

DRC stage, both of which depend on a short-term SII

estimate.

FIG. 1. Considered acoustic scenario (taken from Schepker et al., 2015).
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The signal s[k] is split into N¼ 8 octave-band signals

sn½k�; n ¼ 1;…;N using a real-valued non-decimated filter-

bank, with center frequencies ranging from 125 Hz to

16 kHz. Each subband signal sn[k] is framed into non-

overlapping blocks of length M with the lth block denoted as

sl
n½m� ¼ sn½lM þ m�; m ¼ 0;…;M � 1. Correspondingly, the

lth block of the time-domain broadband signal is denoted

sl½m� ¼ s½lM þ m�; m ¼ 0;…;M � 1. For adaptively control-

ling the subsequent processing stages, an estimate of the

short-term SII in each block, ŜII½l�, is calculated from sl
n½m�

and r̂ l
n½m�, where r̂ l

n½m� has been defined similarly as sl
n½m�.

(1) In the linear frequency-shaping stage, the subband signals

sl
n½m� are weighted depending on the value of ŜII½l�. For

ŜII½l� close to 1, the subband weighting factors approach

unity, i.e., the spectral shape of the speech signal is not

modified. For ŜII½l� close to 0, Schepker et al. (2015)

designed the subband weighting factors to result in the

same power in each octave band, which effectively corre-

sponds to a high-frequency amplification since speech

signals generally contain more energy in lower frequency

subbands. For intermediate values of ŜII½l�, a continuous

transition between an unmodified and a flat spectral shape

is applied (for details, see Schepker et al., 2015).

(2) In the subsequent DRC stage a transition between no

DRC (compression ratio 1:1) and a maximum degree of

DRC (compression ratio 1:8) is realized for each sub-

band signal depending on the subband SNR used for the

short-term SII estimate. The compressive gain according

to the current input-output-characteristics of each band is

derived from a smoothed short-term input level estima-

tion (see Table I). To avoid noticeable artifacts due to

large gain changes over time, especially at block bound-

aries, the gain for each subband derived from the

frequency-shaping and DRC stages is smoothed recur-

sively. The processed subband signal ~sn½k� is then

obtained by applying the smoothed gain to the input sub-

band signal sn[k]. All subband signals are then recom-

bined using an inverse filter bank to yield the time-

domain broadband signal ~s½k�. To meet the equal-power

constraint, a broadband normalization gain is applied to

the time-domain signal to yield approximately equal rms

powers (see Schepker et al., 2015, for details).

In the present study, the parameters of the AdaptDRC
algorithm were the same as used by Schepker et al. (2015),

except for the smoothing time constants. Schepker et al.
(2015) applied temporal smoothing at several stages of the

AdaptDRC algorithm to reduce audible artifacts. In general,

rather small time constants were used. In the present study,

larger time constants were used because informal listening

tests indicated that larger time constants lead to slightly

improved sound quality of the processed speech signal. Table I

provides an overview of the time constants used by Schepker

et al. (2015) and those used in the present study. The possible

influence of these parameter changes is discussed in Sec. IV A.

B. AdaptDRCplus algorithm

In the extended algorithm, referred to as AdaptDRCplus,

the AdaptDRC algorithm was extended with an adaptive

gain stage. The equal-rms-power constraint was replaced by

an equal-peak-power constraint, i.e., the rms power of each

block sl[m] was allowed to be increased, while keeping the

maximum amplitude constant. This boundary condition was

selected in order to avoid the need for any assumptions about

the incoming speech signal and the application scenario

(such as technical headroom of the playback system).

Practical implications and alternative formulations of the

gain stage are discussed in Sec. IV.

A schematic block diagram of the proposed

AdaptDRCplus algorithm is shown in Fig. 2. The input speech

signal sl[m] is first processed by the AdaptDRC algorithm,

including the blockwise broadband normalization to meet the

equal-rms-power constraint. The processed block ~sl½m� at the

output of the AdaptDRC algorithm is then linearly amplified

according to

~s0l m½ � ¼ g l½ �~sl m½ �; m ¼ 0; …; M � 1; (2)

where the gain function g[l] is derived as follows: First, the

maximum amplitude of the lth block is calculated as

~smax l½ � ¼ max
m
ðj~sl m½ �jÞ: (3)

The gain function g[l] is then calculated as

g l½ � ¼ ~smax l½ �
~sq l½ �

; (4)

where ~sq½l� is the amplitude of the sample which just exceeds

the amplitude of (100� q[l])% of the samples in the lth
block ~sl½m�. Applying the gain in Eq. (4) to ~sl½m� leads to a

linearly amplified block signal of which q[l]% of the samples

exceed ~smax½l�. The degree of amplification is controlled by

the estimated short-term SII calculated in the AdaptDRC
stage according to

q l½ � ¼ ð1� ŜII l½ �Þqmax; (5)

where qmax is a constant with 0%� qmax� 100%. This corre-

sponds to a linear mapping of the estimated short-term SII to

the variable q[l], resulting in q[l] ! 0 for ŜII½l� ! 1, and

TABLE I. Comparison of AdaptDRC time constants used by Schepker et al.

(2015) and used in the present study. sa and sr denote the attack and release

time constants of the short-term level estimation, respectively [see Eq. (19)

of Schepker et al., 2015]. sb denotes the time constant used to smooth input-

output-characteristics of the DRC stage [see Eq. (25) of Schepker et al.,
2015]. sp denotes the time constant for smoothing broadband level changes

of successive blocks [see Eq. (26) of Schepker et al., 2015], and sL denotes

the time constant used in the final normalization stage of the AdaptDRC
algorithm.

Parameter Schepker et al. (2015) Present study

sa/ms 5 25

sr/ms 1 500

sb/ms 250 500

sp/ms 250 500

sL/ms 250 500
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q[l] ! qmax for ŜII½l� ! 0, i.e., Eq. (5) provides a transition

between no gain and a maximum gain depending on the esti-

mated SII in the lth block. This processing scheme results in

an amplification for all blocks with ŜII½l� < 1.

To avoid noticeable artifacts at block boundaries, the

gain function g[l] is smoothed recursively to obtain

�g l½ � ¼ ag �g l� 1½ � þ ð1� agÞg l½ �; (6)

where ag is a smoothing constant. The smoothed gain func-

tion �g½l� is then applied in Eq. (2) instead of g[l].
To avoid amplification in blocks with extremely low

energy such as speech pauses, a voice activity detection

(VAD) has been implemented based on the active speech

level as defined in ITU (2011) and proposed by Kabal

(1999). The VAD accounts for the fact that speech contains

embedded pauses, i.e., so-called structural pauses shorter

than 100 ms are considered to be part of the active speech

segment, whereas pauses longer than 350 ms, e.g., grammati-

cal pauses between phrases or before emphasis of specific

words, are not counted as active speech. The samplewise

VAD decisions are concatenated for the length of one block,

where the block is defined to contain speech (i.e.,

VAD[l]¼ 1) if more than half of the samples in this block

have been detected as active speech and otherwise

VAD[l]¼ 0. In the AdaptDRCplus algorithm the gain for the

lth block is set to unity for all blocks with VAD[l]¼ 0, other-

wise it is calculated according to Eq. (6).

Since the energy of each block ~s0l½m� is larger than or

equal to the energy of ~sl½m�, it is natural to assume that, in a

given noise condition, the intelligibility of ~s0½k� þ r½k� is

enhanced compared to ~s½k� þ r½k�. However, since practical

sound playback systems may not allow for an increase in

amplitude due to technical limitations, the peak amplitude of

each block was again reduced to its original range. In the

present study, this was realized by peak clipping, i.e., all

samples with amplitudes exceeding ~smax½l� were set equal to

~smax½l�, i.e., the output block ~s00
l½m� was computed as

~s00
l

m½ � ¼ maxðminð~s0l m½ �; ~smax l½ �Þ;�~smax l½ �Þ;
m ¼ 0; …; M � 1: (7)

Effectively, this means that whenever additional gain is

applied, the rms power of a block is increased and peak

clipping is applied to fulfill the equal-peak-power constraint.

Although peak clipping introduces nonlinear distortions of

the speech signal, it was applied in this study to investigate

the compromise between speech distortions and increased

rms power on speech intelligibility. Alternative ways of

introducing peak-power constraints and boundary conditions

are discussed in Sec. IV.

C. Role of algorithm parameters

The AdaptDRCplus algorithm described above introdu-

ces two additional parameters: the constant qmax, determin-

ing the maximum percentage of samples in each block

which are amplified beyond the peak amplitude (and which

are then clipped), and the smoothing constant ag. For

qmax¼ 0, the gain stage of the AdaptDRCplus algorithm is

disabled and the processing reduces to the AdaptDRC algo-

rithm (i.e., q[l]¼ 0 and hence ~sq½l� ¼ ~smax½l�, resulting in

g[l]¼ 1). The smoothing constant ag can be considered more

intuitively in terms of a time constant sg, related to the

smoothing constant by ag ¼ exp ð�sm=sgÞ, where sm is the

block length (20 ms in this case, i.e., the same block length

as used by Schepker et al., 2015).

For all analyses described in the following, speech and

noise stimuli were taken from the Oldenburg sentence test

(Wagener et al., 1999a,b; Wagener et al., 1999c), which was

also used in the listening tests of the present study (see Sec.

III B). A concatenation of ten randomly selected sentences

from the test was used as speech signal. As described above,

for qmax¼ 0%, the AdaptDRC and AdaptDRCplus algorithms

are equivalent. For qmax> 0%, the gain stage of the

AdaptDRCplus algorithm results in an increased speech rms

power when ŜII < 1, corresponding to an increased SNR at

the algorithm output compared to the algorithm input. Figure 3

illustrates the SNR increase as a function of input SNR for

the three noise types used in this study (cafeteria noise,

speech-shaped noise, and car noise). For qmax¼ 0% (dashed

black line) the SNR increase was always equal to 0 dB due

to the equal-power constraint of the AdaptDRC algorithm.

Increasing qmax to values between 2% and 50% (solid lines

in different gray scales) resulted in a monotonous increase in

SNR. At the lowest input SNR, the SNR increase was

between about 2.5 dB (qmax¼ 2%) and 9 dB (qmax¼ 50%)

for each noise type. The change in SNR decreased with

increasing input SNRs due to the adaptive control of the gain

FIG. 2. Schematic diagram of the processing stages of the AdaptDRCplus algorithm. Equation numbers are indicated in parentheses.
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stage. This decrease was similar for speech-shaped noise and

car noise, and somewhat less steep for cafeteria noise.

To estimate how much the signal modifications intro-

duced by the proposed algorithm affect speech intelligibility,

model predictions were computed using the SII (ANSI,

1997), the extended SII (ESII) (Rehbergen and Versfeld,

2005), and the short-time objective intelligibility measure

(STOI) (Taal et al., 2011). Speech-shaped noise was used as

interferer. Each of the models computes an index between 0

and 1, where values of 0 and 1 indicate lowest and highest

possible extraction of speech information, respectively. For

the present evaluation, the predicted improvements of speech

intelligibility relative to unprocessed speech were calculated

for both the AdaptDRC and the AdaptDRCplus algorithm.

Figure 4 depicts the differences in model index as a function

of (input) SNR, where each panel shows predictions of one

model. An index difference of 0 indicates no predicted

improvement in speech intelligibility. Solid black lines in

each panel represent data of the AdaptDRC algorithm. In

agreement with the results of Schepker et al. (2015), an

increase in speech intelligibility was predicted by all models.

The increase was largest at SNRs between about �15 and

�5 dB, and decreased towards lower and higher SNRs. Solid

lines in different gray scales represent predictions for the

AdaptDRCplus algorithm with values of qmax ranging between

2% and 50% and a fixed value of sg¼ 150 ms. For all models,

increasing qmax resulted in an increased speech intelligibility.

The SII and the ESII did not show any noticeable saturation

effect, indicating that a further increase of qmax may have

resulted in a further increase of predicted speech intelligibil-

ity. The STOI model indicated that improvements were larg-

est when qmax was increased from 0% to 2% and from 2% to

5%, while a further increase in qmax resulted only in smaller

improvements. Even though the model predictions showed

reasonable correlation with subjective data in the study of

Schepker et al. (2015), they cannot be considered reliable

enough to fully guide a selection of a good value of qmax,

especially since SII and ESII are largely spectral measures

which tend to consider high-frequency speech distortions as

useful speech energy irrespective of their detrimental nature,

because frequency bands between 1 and 4 kHz are given

FIG. 3. SNR increase as a function of input SNR for different values of

qmax. The dashed black curve represents the AdaptDRC algorithm

(qmax¼ 0%), the other curves represent data for the AdaptDRCplus algo-

rithm for different values of qmax> 0%.

FIG. 4. Increase in speech intelligibility compared to unprocessed speech in

speech-shaped noise as predicted by the SII (top panel), the ESII (mid panel),

and the STOI measure (bottom panel) as a function of input SNR. Solid black

curves represent predictions for the AdaptDRC algorithm (qmax¼ 0%), the

other solid curves represent predictions for the AdaptDRCplus algorithm for

different values of qmax> 0%. Dashed lines show predictions when only using

the adaptive gain stage, i.e., without the AdaptDRC algorithm. sg was 150 ms.
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more weight than lower frequency bands (ANSI, 1997). To

set qmax in this study, informal listening tests were carried out

by three experienced listeners using the same speech material

and noise type as used for the model predictions. The listeners

listened to speech in noise mixed at various SNRs for the

same values of qmax as used for the model predictions, and

ranked the benefit of qmax with respect to speech intelligibility

and speech quality. The informal listening confirmed that a

benefit from the gain stage may be expected, but that the ben-

efit is not likely to increase further for very large values of

qmax due to the increased amount of distortion. As a compro-

mise, a value of qmax¼ 20% was selected and used in the for-

mal listening tests.

Using the same models to evaluate the influence of the

time constant sg showed that model predictions were largely

insensitive to changes in sg between 0 and 500 ms for a fixed

value of qmax¼ 20% (not shown). Only predictions with the

STOI model tended to favor larger time constants over very

small ones. In informal listening tests the preference for

larger time constants was confirmed, since too small values

of sg resulted in an increased audibility of artifacts.

Therefore, a value of sg¼ 100 ms was used in the following

formal listening tests.

III. EXPERIMENTAL ASSESSMENT OF SPEECH
INTELLIGIBILITY

Three experiments were conducted in this study. In

experiment 1, speech intelligibility was measured in normal-

hearing listeners. In experiments 2 and 3, the possible benefit

of the AdaptDRC and AdaptDRCplus algorithms was evalu-

ated in hearing-impaired listeners.

A. Subjects

The speech intelligibility measurements were conducted

with eleven normal-hearing listeners (three female, eight

male) and ten listeners with mild to moderate hearing

impairment (six female, four male). The normal-hearing sub-

jects were between 20 and 58 years old (median age 26.0

years). The hearing-impaired listeners were between 46 and

78 years old (median age 73.5 years) and had typical age-

related high-frequency hearing loss with better-ear pure-

tone-averages between 34 and 51 dB hearing level (HL).

Their average audiogram is shown as black lines in Fig. 5.

Individual audiograms are shown in gray. Subjects were paid

an hourly compensation for their participation.

B. Stimuli and equipment

As in the previous evaluation of the AdaptDRC algo-

rithm (Schepker et al., 2015), the speech material of the

Oldenburg sentence test (Wagener et al., 1999a,b; Wagener

et al., 1999c) was used in this study. This material consists

of five-word sentences with the fixed syntactical structure

name verb numeral adjective object. For each of the five

words ten alternatives are available, which can be randomly

combined to result in grammatically correct, but semanti-

cally unpredictable sentences.

For the group of normal-hearing listeners (experiment 1)

the speech material was scaled to 60 dB sound pressure level

(SPL). Three processing conditions of the speech material

were used in this study, i.e., unprocessed speech (reference)

as well as speech processed by AdaptDRC and its proposed

extension AdaptDRCplus. For speech processed by

AdaptDRCplus, the speech level typically differs from the

input level of 60 dB SPL, depending on the SNR and the

noise type. Different types of interfering noise were mixed

with the speech material, and the level of the noise was var-

ied to achieve the desired SNRs (see below). For experiment

1 the same noise types as used by Schepker et al. (2015)

were used, i.e., a nonstationary noise mimicking a cafeteria

environment, a stationary speech-shaped noise with a long-

term spectrum matching that of the speech material, and a

stationary car noise. For each noise three different SNRs

were selected based on the results of Schepker et al. (2015)

(see Table II for an overview). The SNR corresponding to a

word recognition rate of about 50% in the unprocessed refer-

ence condition was included and measured without process-

ing (top row of each noise) to facilitate the comparison

of the present data to the data of the previous study. The

selection of the other SNRs was motivated by the expected

speech intelligibility for the speech material processed by

FIG. 5. Average (black) and individual (gray) audiograms of the hearing-

impaired listeners.

TABLE II. SNRs used for normal-hearing listeners in the different condi-

tions (experiment 1).

Noise type Input SNR/dB Algorithm

Cafeteria �10 Unprocessed

noise �14 AdaptDRC

�14 AdaptDRCplus

�18a AdaptDRC

�18a AdaptDRCplus

Speech-shaped �9 Unprocessed

noise �17 AdaptDRC

�17 AdaptDRCplus

�21a AdaptDRC

�21a AdaptDRCplus

Car noise �16 Unprocessed

�24 AdaptDRC

�24 AdaptDRCplus

�28a AdaptDRC

�28a AdaptDRCplus

aConditions in which the overall level was reduced by 4 dB.
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the algorithms. Schepker et al. (2015) found that intelligi-

bility of speech processed by the AdaptDRC algorithm was

quite high for SNRs corresponding to 50% recognition rate

in the unprocessed condition. To allow for a differentiation

between processing conditions (i.e., to avoid ceiling

effects), one of the lower SNRs used by Schepker et al.
(2015) as well as another SNR 4 dB lower was included in

the present study. The goal was to allow for a direct com-

parison to the previous data as well as to test the novel

AdaptDRCplus algorithm at even lower SNRs. However,

since this would have resulted in noise levels of up to 88 dB

SPL (e.g., for car noise), the overall level of the mixed

speech and noise stimuli was reduced by 4 dB for the low-

est SNRs for each noise type.

For the hearing-impaired listeners (experiments 2 and 3),

the speech material was presented at a fixed level of 65 dB

SPL. Only cafeteria noise was used to avoid an overly long

measurement duration. This noise type was selected, because

the benefit of the AdaptDRC algorithm as measured by

Schepker et al. (2015) was smaller than for the other types of

noise, i.e., this interferer provided the most challenging back-

ground noise for this algorithm (and also for another NELE

algorithm included in the study of Schepker et al., 2015).

Since no reference data existed to estimate intelligibility of

speech processed by NELE algorithms at different SNRs for

this group of listeners, and because a larger interindividual

variability was expected, the measurements were divided into

two experiments. In experiment 2 the speech recognition

threshold (SRT), i.e., the SNR corresponding to a word recog-

nition rate of 50%, was measured for each subject and algo-

rithm (see below for procedural details). These results were

then used in experiment 3, in which speech intelligibility was

measured at three fixed SNRs corresponding to the individual

SRT and the SRT 6 4 dB, respectively. The difference of

64 dB was chosen because it roughly corresponded to intelli-

gibility scores of 80% and 20%, respectively, in the study of

Schepker et al. (2015). This way a reasonably accurate sam-

pling of the individual psychometric functions was expected,

allowing for a quantitative comparison of the three processing

schemes for hearing-impaired listeners.

Speech and noise were digitally processed using

MATLAB. The stimuli were preprocessed at the desired SNRs

and stored on a hard-drive prior to the listening test. An

RME Fireface UC soundcard was used and the stimuli were

presented diotically to the subjects via Sennheiser HD650

headphones in a sound-attenuated booth.

C. Procedure

For each experiment and condition, the speech material

was presented to the subjects in lists of 20 sentences. After

the presentation of each sentence, the task of the subjects

was to repeat the words they had recognized and an instruc-

tor marked the correctly recognized words on a touch screen.

After confirming the input, the presentation of the next sen-

tence started automatically. In experiments 1 and 3, during

which the SNR was constant for each list, speech intelligibil-

ity was quantified as the percentage of correctly understood

words. In experiment 2 to determine individual SRTs for

hearing-impaired listeners, an adaptive procedure was

applied, i.e., the speech level was fixed at 65 dB SPL and the

noise level was adjusted after each sentence depending on

the response of the subject to converge to the threshold of

50% word intelligibility. The initial SNR was 0 dB, and the

step size of each level change depended on the number of

correctly repeated words of the previous sentence and on a

convergence factor that decreased exponentially after each

reversal of presentation level. The smallest level change was

1 dB. The intelligibility function was represented by a logis-

tic function which was fitted to the data using a maximum

likelihood method resulting in an estimated SRT (for details,

see Brand and Kollmeier, 2002). These SRTs were then

rounded to full dB values and the signals in experiment 3

were selected from stored preprocessed stimuli accordingly.

Prior to the measurements all subjects received at least three

lists of training using the unprocessed speech material. The

data of these lists were discarded to minimize training

effects, which are typical to occur for this kind of speech

material (see Wagener et al., 1999b).

D. Results

1. Experiment 1: Normal-hearing listeners

Mean speech intelligibility data as a function of input

SNR measured with normal-hearing listeners are shown as

black symbols in Fig. 6. Error bars represent interindividual

standard deviations. Each panel contains data for one noise

type. Comparing data for unprocessed speech (triangles) and

speech processed by the AdaptDRC algorithm (squares) indi-

cated a considerable benefit in speech intelligibility due to

the processing. This benefit depended on the noise type: for

cafeteria noise, speech intelligibility in the unprocessed ref-

erence condition was between that measured for the

AdaptDRC algorithm at 4 and 8 dB lower SNRs. For speech-

shaped noise and car noise, intelligibility of unprocessed

speech was similar to or even lower than intelligibility of

speech processed by the AdaptDRC algorithm at 12 dB lower

SNRs.

Comparing speech intelligibility for the AdaptDRC
algorithm and its extension AdaptDRCplus at the same input

SNR (vertical distance between squares and circles) showed

a benefit due to the extension proposed in this study. For a

given noise type, the increase in speech intelligibility was

similar for both measured SNRs, and was about 35% (cafete-

ria noise), 39% (speech-shaped noise), and 23% (car noise).

T-tests conducted for each SNR and noise type showed that

the differences between the two algorithms were always sig-

nificant at a confidence level of 5% (p< 0.001 for cafeteria

noise, p� 0.002 for speech-shaped noise, and p� 0.01 for

car noise).

2. Experiment 2: SRTs of hearing-impaired listeners

Table III shows the results of experiment 2. In the

unprocessed condition, mean SRTs (last column) were

�4.0 dB, but a large intersubject variability was observed

with SRTs ranging from �8.5 dB (subject #9) to �0.8 dB

(subject #4). For the AdaptDRC and AdaptDRCplus
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algorithm, mean SRTs were 1.5 and 6.8 dB lower, respec-

tively. The difference between SRTs for processed and

unprocessed speech was termed equivalent intensity changes

(EIC) by Cooke et al. (2013b) and represents the change in

SNR that can be applied to maintain a constant intelligibility

score (i.e., 50% speech intelligibility in this experiment).

With a single exception (subject #1), all subjects showed a

benefit due to processing by the AdaptDRC algorithm (i.e.,

negative EICs), but again EICs varied substantially across

subjects ranging from less than �1 dB (subjects #4, #8, and

#9) to more than �2 dB (subjects #2, #3, #7, and #10). The

largest EIC of �3.6 dB was observed for subject #2. The

EICs for the AdaptDRCplus algorithm were much larger for

all subjects, ranging from �4.2 dB (subject #1) to �9.6 dB

(subject #2).

These observations were supported by an analysis of vari-

ance (ANOVA) with the factor processing (three levels:

unprocessed, AdaptDRC, and AdaptDRCplus) after verifying

that the data were normally distributed (according to Shapiro-

Wilk tests). The ANOVA showed that the processing condi-

tion had a significant effect on measured SRTs [F(2,18)

¼ 169.37, p< 0.001]. A post hoc analysis using Bonferroni

corrections for multiple comparisons showed that both the

AdaptDRC algorithm (p¼ 0.021) and the AdaptDRCplus
algorithm (p< 0.001) significantly improved SRTs compared

to unprocessed speech, and that the difference between

AdaptDRC and AdaptDRCplus was significant (p< 0.001).

3. Experiment 3: Psychometric functions of
hearing-impaired listeners

Individual results of experiment 3 are shown in Fig. 7.

Symbols represent intelligibility measured at the individual

SRTs (rounded to full dB values) and at SRTs 6 4 dB. Lines

represent individual psychometric functions, which were

obtained by fitting the model function (Brand and Kollmeier,

2002)

SI SNRð Þ ¼ 100

1þ e�4s50� SNR�SRT50ð Þ (8)

to the data. The two degrees of freedom, SRT50 and s50, rep-

resent the SNR at an intelligibility score of 50% and the

slope of the function at this point, respectively. The observa-

tions from experiment 2 were generally also valid for this

experiment. In particular, all subjects showed a benefit due

to processing by AdaptDRCplus (corresponding to a leftward

shift of the psychometric function), while the benefit due to

processing by AdaptDRC was smaller or even absent (sub-

ject #1).

This is also reflected in the average psychometric func-

tions shown as lines in Fig. 8, which were obtained by para-

metrically averaging the individual psychometric functions.

To obtain a visual illustration of the interindividual spread of

these average functions, Eq. (8) was calculated four times,

employing all combinations of the mean SRT50 6 1 standard

error and the mean s50 6 1 standard error. The minimum and

FIG. 6. Results of the speech intelligibility measurements with normal-

hearing listeners for cafeteria noise (top panel), speech-shaped noise (mid

panel), and car noise (bottom panel). Speech intelligibility is shown as a

function of input SNR for the reference condition (black triangles),

AdaptDRC (black squares), and AdaptDRCplus (black circles). Gray curves

and symbols represent speech intelligibility data and psychometric functions

as measured by Schepker et al. (2015) for the reference condition and

AdaptDRC. Note that these data have been shifted to the right by 0.2 dB.

TABLE III. Adaptively measured SRTs in dB SNR for the group of hearing-impaired subjects. The last column contains mean SRTs 6 1 standard deviation

(Std).

Subject #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean 6 Std

Unprocessed �6.3 �1.5 �3.1 �0.8 �7.0 �4.3 �3.0 �1.9 �8.5 �3.9 �4.0 6 2.4

AdaptDRC �5.4 �5.1 �5.4 �1.6 �8.3 �5.8 �5.3 �2.4 �8.9 �6.5 �5.5 6 2.1

AdaptDRCplus �10.5 �11.1 �10.1 �6.6 �15.2 �11.1 �9.4 �7.7 �15.0 �11.2 �10.8 6 2.6
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maximum values of these four functions at each SNR are

highlighted as shaded areas in Fig. 8. The curves indicate a

considerable benefit due to the AdaptDRCplus algorithm,

while the benefit due to the AdaptDRC algorithm is smaller or

even absent at lower SNRs. To explore the statistical signifi-

cance of these observations, three intelligibility scores were

defined as representatives for low (20%), medium (50%), and

high speech intelligibility scores (80%). The SNRs required to

achieve these scores were derived from the individual psycho-

metric functions and subjected as independent variable to a

two-way ANOVA with factors processing condition (three

levels: unprocessed, AdaptDRC, AdaptDRCplus) and intelligi-
bility score (three levels: 20%, 50%, and 80%). The analysis

revealed that both main effects of processing condition
[F(2,18)¼ 146.458, p< 0.001] and intelligibility score
[F(2,18)¼ 224.163, p< 0.001] as well as their interaction

[F(4,36)¼ 7.519, p< 0.001] were significant. To further

explore the sources of significance, a separate one-way

ANOVA was conducted for each intelligibility score. In each

case, the influence of processing condition was significant

[p< 0.001, F(2,18)¼ 33.482, F(2,18)¼ 146.443, and

F(2,18)¼ 121.914 for the low, medium, and high intelligibil-

ity score, respectively]. Post hoc comparisons showed that, at

an intelligibility score of 20%, the difference between

AdaptDRCplus and both AdaptDRC and unprocessed speech

was significant (p� 0.001 for both cases), but the difference

between AdaptDRC and unprocessed was not significant

(p¼ 1.000). At medium and high intelligibility scores (i.e.,

50% and 80%), all differences were significant with

p� 0.001, i.e., AdaptDRCplus increased speech intelligibility

significantly over both AdaptDRC and unprocessed, and

AdaptDRC increased speech intelligibility significantly over

unprocessed speech. An overview of the EICs determined at

the considered intelligibility scores is provided in Table IV.

IV. DISCUSSION

A. Near-end listening enhancement for normal-hearing
subjects

The present study confirmed the results of Schepker

et al. (2015) in that a considerable benefit in speech intelligi-

bility could be achieved by the AdaptDRC algorithm com-

pared to unprocessed speech for normal-hearing subjects.

Gray curves and symbols in Fig. 6 represent data measured

by Schepker et al. (2015). The EICs (i.e., the leftward shifts

of the data points in Fig. 6 compared to unprocessed speech)

were very similar to the previous study. In contrast, the abso-

lute intelligibility scores showed a consistently lower perfor-

mance compared to the study of Schepker et al. (2015) for

the same speech and noise material and SNRs. This intelligi-

bility offset was very similar for all comparable conditions.

In particular, it was also similar for unprocessed speech and

speech processed by the AdaptDRC algorithm (between 14%

and 22%). It is therefore likely that the observed differences

represent an effect of subject group rather than an impact of

the modified smoothing time constants, which could only

FIG. 7. Individual speech intelligibility scores for unprocessed speech (gray

triangles) and speech processed by the AdaptDRC algorithm (black squares)

and the AdaptDRCplus algorithm (black circles). Curves represent psycho-

metric functions fitted to the data. Subject numbers are indicated in each

panel.

FIG. 8. Average psychometric functions showing speech intelligibility as a

function of input SNR for the group of hearing-impaired subjects. Shaded

areas provide a visual reference for the standard errors resulting from the

parametric averaging of individual psychometric functions.
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have affected processed speech. However, an influence of

the time constants cannot be excluded based on the present

data since no direct comparison was made within the same

subjects.

Compared to the AdaptDRC algorithm, a further

increase in intelligibility by between 22% and 45% was

observed for speech processed by the AdaptDRCplus algo-

rithm at the same input SNRs. This shows that the increase

in rms power at the cost of introducing distortions caused by

peak clipping was beneficial in terms of speech intelligibil-

ity. In other words, the speech degradation was outweighed

by the increase in SNR. This is not surprising since the audi-

tory system is known to be highly robust against peak clip-

ping in terms of speech intelligibility (e.g., Young et al.,
1978).

The observed benefit is generally in line with the trends

predicted by the speech intelligibility models presented in

Sec. II C. In addition to predictions for the AdaptDRCplus
algorithm (shown as solid lines in Fig. 4), dashed lines show

the predicted speech intelligibility increase if the adaptive

gain stage of the AdaptDRCplus algorithm is considered in

isolation, i.e., without prior processing with the AdaptDRC
algorithm. Different gray scales represent different values of

qmax. One general observation is that model predictions for

the AdaptDRCplus algorithm are always above those for the

isolated gain stage. Although no subjective data were col-

lected for speech processed by the isolated gain stage, these

model predictions suggest that the combination of AdaptDRC
preprocessing and gain stage would always be superior to

only using the gain stage. Even if one assumes that the intro-

duced distortions due to the peak clipping do not negatively

affect speech intelligibility, the maximum theoretically

achievable EIC of the isolated gain stage at the selected value

of qmax¼ 20% is about �7 dB at very low SNRs (Fig. 3). In

contrast, Schepker et al. (2015) reported EICs of up to

�12 dB for the AdaptDRC algorithm alone for speech-shaped

noise and car noise. The present study showed that further

improvements (which would correspond to even larger EICs)

could be achieved by the AdaptDRCplus algorithm if they

were measured directly. In conclusion, the combination of

AdaptDRC processing and the proposed adaptive gain stage is

considerably more beneficial than an adaptive gain stage

alone.

The relative benefit of gain stage and AdaptDRC or

AdaptDRCplus processing is not predicted correctly by the

models considered in this study. Although the predicted rela-

tive benefit differs somewhat between models, all models

predict that the maximum speech intelligibility improve-

ments should be similar for the AdaptDRC algorithm (black

solid line, qmax¼ 0%) and an isolated gain stage with qmax

values of about 10% (STOI), 15% (ESII), or 20% (SII). For

the gain stage alone, this would correspond to SNR increases

between about 4.5 and 6 dB at an input SNR of �10 dB for

speech-shaped noise (Fig. 3). As discussed above, these

SNR increases correspond to the maximum theoretically

achievable EICs for the isolated gain stage. This is consider-

ably smaller than the EIC of �12 dB reported by Schepker

et al. (2015) for the AdaptDRC algorithm, indicating that the

relative benefit of the gain stage is overestimated by the

models. This also illustrates that predictions of the tested

models are not reliable enough serve as the only source for

parameter optimizations, even though their predictions were

in reasonable agreement with measured speech intelligibility

in the previous study (Schepker et al., 2015).

B. Near-end listening enhancement for
hearing-impaired subjects

To the best of our knowledge, the benefit of NELE algo-

rithms including DRC has not been evaluated with unaided

hearing-impaired listeners before. The present study showed

that this group of subjects could also benefit from preprocess-

ing of speech. In experiment 2, a significant decrease in SRT

was found for both the AdaptDRC and the AdaptDRCplus
algorithm. The mean SRT decrease of 1.5 dB (AdaptDRC,

Table III) was considerably smaller than the SRT decrease of

about 5 dB reported for normal-hearing listeners using the

same background noise. For the group of hearing-impaired

listeners, the average EIC measured for the AdaptDRCplus
algorithm was �6.8 dB, which is slightly more than the theo-

retically achievable benefit from the gain stage alone at the

employed input SNRs [even for the subject with the lowest

SRT for unprocessed speech of �8.5 dB (see Table III), the

SNR increase was below 6 dB, see Fig. 3]. This indicates that

there was also a benefit of the combined processing of the

AdaptDRC algorithm and the gain stage. While not all sub-

jects benefited from AdaptDRC processing, all showed con-

siderable benefit from the additional gain stage of the

AdaptDRCplus algorithm. The reasons underlying the large

interindividual variations remain unclear. It is not evident

from the data of experiment 2 that the baseline performance

of the hearing-impaired listeners was related to the benefit

due to AdaptDRC processing. In fact, the largest EIC was

measured for subject #2, who had a comparatively poor SRT

for unprocessed speech (Table III). Vice versa, subject #1 had

TABLE IV. EICs in dB for processed speech compared to unprocessed speech derived from the individual psychometric functions shown in Fig. 7 for speech

intelligibility scores of 20% (SI20), 50% (SI50), and 80% (SI80). The last column contains mean EICs 6 1 standard deviation.

Subject #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean 6 Std

AdaptDRC SI20 þ0.3 þ5.0 �3.1 �2.0 þ1.0 �0.4 �0.8 þ0.1 þ0.3 �0.1 0.0 6 2.0

SI50 �0.2 �0.7 �3.4 �1.8 �1.5 �2.1 �2.0 �1.1 �0.8 �2.4 �1.6 6 0.9

SI80 �0.7 �6.4 �3.6 �1.6 �3.9 �3.8 �3.2 �2.3 �1.8 �4.6 �3.2 6 1.6

AdaptDRCplus SI20 �4.7 �0.4 �9.4 �3.9 �3.6 �6.3 �6.9 �5.9 �1.8 �5.5 �4.8 6 2.5

SI50 �5.0 �5.8 �9.2 �4.4 �6.8 �7.2 �7.1 �6.4 �3.9 �7.3 �6.3 6 1.5

SI80 �5.3 �11.2 �8.9 �5.0 �10.0 �8.0 �7.3 �6.9 �6.0 �9.2 �7.8 6 2.0
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a relatively good SRT for unprocessed speech, but did not

benefit from AdaptDRC processing at all. Across all listeners,

the baseline performance for unprocessed speech was not sig-

nificantly correlated with the benefit from AdaptDRC process-

ing (Pearson’s R¼ 0.46, p¼ 0.18), nor with the benefit from

AdaptDRCplus processing (R¼ 0.14, p¼ 0.79). Similarly, the

degree of hearing loss as expressed by the PTA was not sig-

nificantly correlated with any of the measured SRTs or any of

the EICs (all p-values> 0.10).

C. Possible extensions of the proposed algorithm

Since the focus of the present study was on speech intel-

ligibility, possible effects of the proposed processing on per-

ceived speech quality cannot be assessed based on the

current data. Although the SNR-dependent nature of the pro-

posed algorithms prevents signal modifications (and hence

distortions) for conditions with high SNR, it is likely that the

introduced distortions negatively impact perceived quality at

lower SNRs, even if some of the distortions are masked by

the environmental noise. The optimum trade-off between

increased speech intelligibility and reduced speech quality

remains a topic of further investigation.

It should be noted that the boundary condition of a maxi-

mum peak level per block was set as an artificial limitation of

the algorithm. In practical applications, such as public-address

systems, knowledge about the employed playback system and

speech material may be used to set the boundary conditions in

a more accurate way. For example, if the entire speech mate-

rial (e.g., recorded announcement signals) and the headroom

of the playback system are known, the peak level not to be

exceeded can be set globally without introducing distortions

in each block. This would further increase the output level of

speech processed by the AdaptDRCplus algorithm, since

many samples exceeding the per-block peak clipping limit

applied in the present algorithm would not be clipped any

more. Thus, one may expect a beneficial effect of a more

global peak limiting approach both in terms of speech intelli-

gibility (higher output level) as well as speech quality (less

distortions). In the present study, we decided not to make use

of such knowledge about the system. This way, the same prin-

ciple can be repeated with other speech materials, systems

and algorithms, which may facilitate comparability in the

future. In this light, the present evaluation results can be inter-

preted as a lower limit of the possible benefit because the

applied constraint introduces more distortions than necessary

in real systems. As an alternative or in combination, other

methods of limiting the peak level which introduce less audi-

ble distortions may be applied, e.g., soft clipping with

smoother input-output characteristics rather than hard clipping

(e.g., Birkett and Goubran, 1996) or even less perceptually

invasive clipping techniques (e.g., Defraene et al., 2012). For

evaluating such approaches, it would be useful to not only

focus on speech intelligibility, but also determine the per-

ceived speech quality or the preference for different process-

ing schemes. Similarly, it would be interesting to evaluate

listening effort rather than speech intelligibility. Listening

effort has been shown to be a reliable measure for more favor-

able listening conditions, i.e., for conditions with moderately

negative and positive SNRs (e.g., Sato et al., 2005; Klink

et al., 2012; Rennies et al., 2014). Although this SNR range is

typically more realistic, speech intelligibility is often optimal

in terms of correctly recognized words (see Fig. 6), such that

speech intelligibility cannot be used to quantify a possible

benefit of NELE algorithms at higher SNR. In contrast, a use-

ful distinction between different listening conditions could

still be made when listening effort was evaluated, enabling to

evaluate the effectiveness of NELE algorithms over much

wider SNR ranges.

V. CONCLUSIONS

The following conclusions can be drawn from the pre-

sent study.

• For normal-hearing listeners the combination of the

AdaptDRC algorithm proposed by Schepker et al. (2015)

and the newly integrated adaptive gain stage can be highly

beneficial, i.e., both the original AdaptDRC processing as

well as the adaptive gain stage amplifying the speech sig-

nal under an equal-peak-power constraint at the cost of

distortions provide considerable improvements.
• In contrast, the benefit from the AdaptDRC algorithm for

hearing-impaired listeners varies substantially across sub-

jects and is—on average—considerably smaller than for

normal-hearing listeners. A larger benefit was only

observed for the additional adaptive gain stage.
• For hearing-impaired listeners the benefit from the pro-

posed algorithms is smaller in very difficult listening con-

ditions (i.e., at lower ranges of the psychometric function)

than at higher SNRs.
• Speech intelligibility models cannot predict all trends

observed in the data. In particular, the role of amplification

is overestimated compared to the processing of the

AdaptDRC algorithm (which works under an equal-rms-

power constraint).
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