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ABSTRACT

When deploying acoustic echo cancellation systems in large rooms, using short filters may result in significant
amount of residual echo caused by room reverberation. In this paper, we model the late residual echo as
exponentially decaying and use a parametric IIR filter to estimate its power in the subband domain for
application in residual echo suppression. Working in an offline system identification setup, the problem of
finding the optimal parameters of the IIR filter is addressed, with an analysis conducted on the performance of
two parameter estimation methods: output error and equation error. The late residual echo power estimates
obtained using the two methods are furthermore judged using the mean squared error and the mean squared
log error cost functions. Results indicate that minimizing the mean squared log error for the output error
method provides accurate estimates for the late residual echo power and the reverberation decay parameter.

1. INTRODUCTION
In acoustic echo cancellation (AEC) applications, it is

often desirable to use short AEC filters for reasons of
computational complexity. For a room with a room im-
pulse response (RIR) shorter than the length of the AEC
filter, the entirety of the residual echo obtained may be at-
tributed to filter mismatch [1]. However, for a room with
a long RIR and/or large reverberation time (T60), a sig-
nificant amount of late residual echo remains due to the
insufficient length of the AEC filter. This late residual
echo signal is typically suppressed using a residual echo
suppression (RES) filter, which relies on an accurate es-
timate of the late residual echo power spectral density
(PSD) [1]. The RES filter takes on increased importance
in handling the acoustic echo effectively when short AEC
filters are employed.

Different methods have been proposed for estimating the
late residual echo PSD. In [2], the uncompensated part
of the RIR is modeled as exponentially decaying using a
statistical reverberation model based on the reverberation
scaling and decay parameters. The parameters are esti-
mated using the coefficients of the AEC filter (channel-
based approach), which is assumed to be converged, and

then used to estimate the late residual echo PSD. In [3], a
pure echo suppression system is considered and the late
residual echo PSD is estimated via recursive smoothing
using the decay parameter, which is estimated using a
signal-based approach. In [4], the late part of the RIR
is modeled similarly as in [2], with the parameters esti-
mated using a signal-based approach by minimizing dif-
ferent cost functions. The decay parameter is estimated
by minimizing the mean squared log error (MSLE), with
this estimate used in the estimation of the scaling param-
eter by minimizing the mean squared error (MSE).

As in [2], in this paper we model the uncompensated part
of the RIR as exponentially decaying, and use a non-
adaptive IIR filter based on the reverberation scaling and
decay parameters to estimate the late residual echo PSD.
The parameters of this IIR filter are estimated jointly in
offline batch mode using two signal-based methods: the
output error method and the equation error method. The
output error method is frequently used for identifying lin-
ear systems and, for adaptive IIR filters, often displays
local minima in the cost function on account of being
non-linear in the parameters [5, 6, 7]. As an alterna-
tive, the equation error method is often employed since
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the minimum of its convex error surface can be easily
found [5, 6, 7]. In this paper, we look at these parame-
ter estimation methods for a non-adaptive IIR filter only.
For each method, we minimize both the MSE and MSLE
cost functions and analyze the parameters thus obtained.
The objective of this paper is to investigate if the equation
error method can estimate the same reverberation param-
eters as the output error method in offline batch mode for
our late residual echo PSD estimation setup in the sub-
band domain.

The paper is organized as follows; in Section 2, our ex-
perimental setup is presented. The proposed model for
estimating the late residual echo PSD using reverberation
parameters is presented in subsection 2.1, while the MSE
and MSLE cost functions are presented in subsection 2.2.
In Section 3, we discuss the output error and equation er-
ror methods for estimating the reverberation parameters.
In Section 4, we present the simulation setup followed
by a discussion of the results in Section 5. Conclusions
are presented in Section 6.

2. EXPERIMENTAL SETUP
We consider a loudspeaker-enclosure-microphone

(LEM) system with a time-invariant RIRh in which the
reference signalx is played out. In the absence of local
speech and noise signals, the microphone signaly can be
given at discrete-time samplen as:

y(n) =
∞

∑
i=0

h(i) · x(n− i), (1)

where i denotes the filter-sample index. The residual
echo signalr can be given at samplen as:

r(n) =
∞

∑
i=0

{h(i)− ĥ(i)} · x(n− i),

=
N−1

∑
i=0

∆h(i) · x(n− i)+
∞

∑
i=N

∆h(i) · x(n− i),

= rE(n)+ rL(n),

(2)

whereĥ denotes the time-invariant AEC filter and∆h de-
notes the difference system. Here,N is chosen so as to
cover just the direct sound component and the early re-
flections inh. The residual echor can then be seen as
being composed of the early residual echorE and the late
residual echorL.

In this paper, we assume

ĥ(i) = h(i) ∀ i < N and

ĥ(i) = 0 ∀ i ≥ N,

x(n)

y(n) rL(n)

h ĥ Φx(k, ℓ)

ΦrL(k, ℓ)

Φ̂rL(k, ℓ)

P{θ(k)}

LEM

ana

ana

P
S

D

PSD

J

Figure 1: Setup for late residual echo PSD estimation.

i.e. no filter misalignment for the early part (rE(n) = 0)
and rL existing solely due to using a short AEC filter.
Thus the early part of the∆h-system is modeled using
zeros, while we assume Polack’s model [8] for the late
part:

∆h(i) =

{

0, 0≤ i < N

wL(i) · e−ρb(i−N), i ≥ N.
(3)

The late part is modeled as exponentially decayingrever-
beration, with wL denoting a zero-mean white Gaussian
noise (WGN) process (with varianceσ2

L ) andρb denot-
ing the broadband decay rate, which is related to theT60

as:

ρb =
3· ln10
fs ·T60

, (4)

where fs is the sampling rate. The setup is shown in
Figure 1, where the residual echo signal contains just the
late residual echo component.

2.1. Parametric Model
We use a recursive expression, similar to the one shown
in [2, 4], for the late residual echo PSDλrL in subband
k and frameℓ using the broadband reverberation scaling
parameterAb and the broadband reverberation decay pa-
rameterBb:

λrL(k, ℓ) = Ab ·λx(k, ℓ−G)+Bb ·λrL(k, ℓ−1). (5)

Here,λx denotes the reference PSD andG = ⌊N
F ⌋ cor-

responds to the length of the AEC filter in frames, with
F denoting the frameshift (in samples) used in the STFT
operation. The broadband reverberation parameters are
related to the parametersσ2

L andρb of the∆h-system in
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Equation 3, and have been derived in a manner similar to
the one shown in [9]:

Ab = σ2
L ·

(

1− e−2·ρb·F

1− e−2·ρb

)

, (6)

Bb = e−2·ρb·F . (7)

The derivation has been omitted here for the sake of
brevity.

Based on Equation 5, we choose to treat the task of es-
timating the late residual echo PSD as a system identi-
fication problem. In practice, the PSDsλx andλrL are
approximated by computing the squared magnitudes of
the STFT of the signalsx andrL, and are denoted byΦx

andΦrL respectively. The quantitiesΦx andΦrL do not
perfectly estimate the PSDsλx andλrL , and hence suffer
from estimation noise.

Referring to Figure 1,Φx is filtered by the parametric IIR
filter P{θ(k)} to generate the estimatêΦrL , whereθ(k)
represents the subband parameter set:

θ(k) =
[

A(k)
B(k)

]

. (8)

Figure 2 depicts the IIR filterP{θ(k)}, with z−1 denot-
ing a 1-frame delay. The direct branch of the filter in-
volves delayingΦx(k, ℓ) by G frames and scaling it by
A(k), while the recursive branch contains a first-order re-
cursion usingB(k).

Φx(k, ℓ) Φ̂rL(k, ℓ)z−G

z−1
A(k)

B(k)

P{θ(k)}

Figure 2: IIR filter for generating the late residual echo
PSD estimate from the reference PSD.

2.2. Cost Functions
We evaluate the estimatêΦrL(k, ℓ) by computing the fol-
lowing cost functions:

• The well-known MSE (mean squared error) cost
function is computed for each subband as the

squared difference between the target and the esti-
mate, averaged over the batch size ofL frames:

JMSE(k) =
1
L

L−1

∑
ℓ=0

[

ΦrL(k, ℓ)− Φ̂rL(k, ℓ)
]2
. (9)

• The MSLE (mean squared log error) cost function
is computed for each subband as the squared dif-
ference between the natural logarithms of the target
and the estimate, averaged overL frames:

JMSLE(k) =
1
L

L−1

∑
ℓ=0

[

lnΦrL(k, ℓ)− lnΦ̂rL(k, ℓ)
]2

=
1
L

L−1

∑
ℓ=0

[

ln

(

ΦrL(k, ℓ)

Φ̂rL(k, ℓ)

)]2

.

(10)

3. PARAMETER ESTIMATION METHODS
We jointly estimate the reverberation parameters per

subband in offline batch mode using two methods: out-
put error and equation error. The estimated parameters
are then fed into the IIR filterP{θ(k)} to obtain an esti-
mate for the late residual echo PSD.

3.1. Output Error Method
The output error (OE) method is a well-known technique
used for the identification of linear systems in a variety
of applications, both in the time-domain as well as in the
subband-domain. Using the OE method for estimating
the reverberation parameters per subband (Figure 3) is
characterized by the following recursive difference equa-
tion (the superscriptO denotes the OE method):

Φ̂O
rL
(k, ℓ) = Â(k) ·Φx(k, ℓ−G)+ B̂(k) · Φ̂O

rL
(k, ℓ−1).

(11)
We then evaluate the estimateΦ̂O

rL
using a chosen cost

function J to judge the quality of the reverberation pa-
rameter estimates.

3.2. Equation Error Method
As illustrated in Figure 4, the EE method differs from

the OE method by using the delayed targetΦrL(k, ℓ−
1) instead of the delayed estimateΦ̂rL(k, ℓ−1), thereby
breaking the recursive structure and resulting in an FIR
structure:

Φ̂E
rL
(k, ℓ) = Â(k) ·Φx(k, ℓ−G)+ B̂(k) ·ΦrL(k, ℓ−1).

(12)
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Φx(k, ℓ)

ΦrL(k, ℓ)

Φ̂O
rL
(k, ℓ)

z−G

z−1

Â(k)

B̂(k)

J

Figure 3: Reverberation parameter estimation using the
output error method.

As shown in [7], under certain conditions the EE method
identifies the system parameters correctly (i.e. the same
parameter set as OE), which makes it particularly attrac-
tive for use in practical applications. However, as both
the inputΦx and the targetΦrL suffer from estimation
noise, this may negatively affect the quality of the pa-
rameter estimates obtained.

Φx(k, ℓ)

ΦrL(k, ℓ)

Φ̂E
rL
(k, ℓ)

z−G

z−1

Â(k)

B̂(k)

J

Figure 4: Reverberation parameter estimation using the
equation error method.

It is important to note that the estimatêΦE
rL

cannot ac-
tually be used for RES as it is computed using the target
ΦrL , while the parameters estimated using the EE method
are fed intoP{θ(k)} to generate the late residual echo
PSD estimate.

4. SIMULATION SETUP
For our simulations, we use a 1 min long clean speech

signal (noiseless and dry) as the reference signalx at a
sampling rate of 16 kHz. We generate RIRs exactly as
described in Equation 3 for the∆h-system, with no filter
mismatch and an exponentially decaying WGN tail, and
convolve it withx to obtain the late residual echo signal
rL. For most RIRs, we use 10· log10

(

σ2
L

)

=−26 dB and

T60 ranging from 100 ms to 1000 ms in steps of 100 ms.
Other RIRs are generated forT60= 500 ms forσ2

L values
of -40, -32 and-22.5 dB. Bothx andrL are converted into
the STFT domain using an analysis filterbank of DFT-
orderNFFT= 512 and frameshiftF = 128.

As we are looking for the optimal parameter setθ opt(k)
which minimizes a given cost functionJ for our filter
P{θ(k)}, we proceed to find it by conducting a grid
search. We choose 100 discrete values forA andB each
and through their combination generate 104 distinct pa-
rameter sets. The values forA are chosen from -20 to 0
dB with a resolution of 0.2 dB, while those forB are cho-
sen using Equation 7, withT60 from 60-1050 ms in steps
of 10 ms. For the OE method, the inputΦx is processed
in a batch (per subband) using each parameter set to gen-
erateΦ̂O

rL
using Equation 11, which is evaluated usingJ.

An error surface with 104 grid-points is then plotted, with

the parameter set̂θ O
min(k) obtained by searching for the

global minimum in the error surface in thek-th subband.
The same operation is performed for the EE method by
processingΦx andΦrL in batches using Equation 12 to

obtainθ̂ E
min(k).

5. RESULTS AND DISCUSSIONS
We present and discuss the results obtained, with er-

ror surfaces and estimated reverberation parameters pre-
sented in subsection 5.1, estimates for the parametersσ2

L
andT60 presented in subsection 5.2 and the late residual
echo PSD estimates presented in subsection 5.3.

5.1. Error Surfaces
Figure 5 shows the contour plots of the error surfaces ob-
tained for the MSE (left) and the MSLE (right) cost func-
tions forP{θ(k)}. The plots show the contours as a func-
tion of A andB (in dB) in subband 25 (≈ 800 Hz), with
the targetΦrL computed for an RIR withσ2

L = −26 dB
and T60 = 500 ms. Each plot shows 20 contour lines,
equidistant on the dB scale, with the levels of some con-
tour lines displayed. The green circles, the red trian-

gles and the black squares in the plots representθ̂ O
min(k),

θ̂ E
min(k) andθ b respectively, whereθ b is obtained using

Equations 6 and 7. We observe that the EE method is
unable to find the same parameter set as the OE method
in this subband, i.e.

θ̂ E
min(k) 6= θ̂ O

min(k) = θ opt(k). (13)

A similar result is observed across all subbands. It is in-
teresting to note thatθ opt(k) is not the same forJMSE and
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Figure 5: Contour plot of error surfaces in subband 25 for the MSE (Equation 9) and MSLE (Equation 10) cost
functions obtained for the IIR filterP{θ(k)} (Figure 2), forσ2

L = −26 dB andT60 = 500 ms. The green circles

and the red triangles representθ̂ O
min(k) and θ̂ E

min(k) respectively, i.e. the parameter sets corresponding to theglobal
minimum in the error surfaces for the output error and the equation error methods; while the black squares represent
the broadband parameter setθ b (from Equations 6 and 7).

JMSLE , which suggests that the choice of cost function is
an important factor in determininĝθ min(k).

In Figure 5, we see a high density of contour lines in

the vicinity of θ̂ O
min(k) for both cost functions, which in-

dicates that the error surfaces are steep near the mini-
mum. This indicates the presence of a unique minimum

for each surface and an easily identifiableθ̂ O
min(k). Also

the JMSLE surface is more sensitive w. r. t.B whereas
the JMSE surface is more sensitive w. r. t.A. The most
probable reason for this is the fact that signal frames
with large power have more influence in the computation
of JMSE (Equation 9), thus making it more sensitive to
errors in the reverberation scaling parameter, while for
computingJMSLE , frames with free decay (low power)
are equally important as frames with high power (Equa-
tion 10), thereby making it relatively more sensitive to
errors in the decay parameter.

Figure 6 shows the contour plots for the EE method used

to obtainθ̂ E
min(k) for the MSE and MSLE cost functions.

The contour lines in this figure are by comparison less

dense in the vicinity of̂θ E
min(k). So even though we get

a unique minimum for each error surface, theθ̂ E
min cor-

responding to them do not stand out distinctly from the
surrounding parameter sets. Also, neither cost function
seems to be highly sensitive to any parameter in particu-
lar.

5.2. Parameter Estimation
In Figure 7, we plot the estimates forσ2

L atT60= 500 ms,
and the estimates forT60 atσ2

L =−26 dB, obtained using
the OE and EE methods by minimizing both cost func-
tions, and compare them to the broadband values. These
estimates have been computed through Equations 6 and
7 by using frequency averaged̂θ min. The OE method
gives accurate estimates forT60 in general, with those
obtained by minimizing MSLE being more accurate than
those obtained by minimizing the MSE on account of the
higher sensitivity ofJMSLE to the decay parameterB (see
Figure 5). The EE method is unable to provide accurate
estimates forT60, which can be explained by the lack of
sensitivity of bothJMSE andJMSLE for the EE method to
the decay parameterB (see Figure 6). Forσ2

L , minimiz-
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Figure 6: Contour plot of error surfaces in subband 25
for the MSE (Equation 9) and MSLE (Equation 10) cost
functions obtained for the equation error method, for
σ2

L =−26 dB andT60 = 500 ms.

ing the MSE gives accurate estimates for both OE and
EE methods, while minimizing the MSLE gives a small
bias in the estimates. From this figure, we can conclude
that unlike the OE method, the EE method doesn’t find
the correct decay parameter (in the broadband sense) by
minimizing either cost function, but does find the correct
scaling parameter (in the broadband sense) by minimiz-
ing the MSE cost function.

The small bias obtained in̂σ2
L by minimizing the MSLE

can be explained if we assume that the real and imagi-
nary parts of the STFT of the signalsx andrL are inde-
pendent and identically normally distributed. Then, both
Φx(k, ℓ) andΦrL(k, ℓ) haveχ2(2) distributions, as they
are computed using magnitude squares [10]. The esti-
mateΦ̂E

rL
(k, ℓ) is obtained as the sum of twoχ2(2) dis-

tributed variables (Equation 12) and so has aχ2(4) distri-
bution, whileΦ̂O

rL
(k, ℓ) is χ2-distributed with even higher

degrees of freedom as it is obtained through recursive
smoothing (Equation 11). Thus, the ratio ofΦrL(k, ℓ)

andΦ̂O/E
rL (k, ℓ), used in the computation ofJMSLE (Equa-

tion 10), has a Fisher distribution, as it is a ratio of twoχ2

distributed variables [10]. It can be shown that the log-
arithm of a Fisher distributed variable with differing de-
grees of freedom in the numerator and denominator has a
non-zero mean distribution, which may be the cause for
the bias in the estimates.
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Figure 7: Comparison of estimateŝT60 and σ̂2
L against

broadband values (black dashed line), computed through
Equations 6 and 7 using frequency averaged reverbera-
tion scaling and decay parameters.

5.3. Late Residual Echo PSD Estimation
After obtaining θ̂ min(k) using either the OE or EE

method for a given cost function minimization, we feed
it into the IIR filter P{θ(k)} to obtain thebest-case esti-
mate for the late residual echo PSD:

Φ̂min
rL

(k, ℓ) = Âmin(k) ·Φx(k, ℓ)+ B̂min(k) · Φ̂min
rL

(k, ℓ−1).
(14)

To evaluate this estimate, the Log Spectral Distance
(LSD) [11] between the target and the estimate is com-
puted as follows:

LSD=
10

K ·L
·

K−1

∑
k=0

L−1

∑
ℓ=0

| log10

(

ΦrL(k, ℓ)

Φ̂min
rL

(k, ℓ)

)

|, (15)

whereK denotes the total number of subbands. The ab-
solute value operator| · | ensures that the errors made
due to overestimation and underestimation across all sub-
bands and frames are added up.

In Figure 8, we plot the LSD values obtained when
Φ̂min

rL
(k, ℓ) is generated using parameters obtained by the

OE and EE methods by minimizing the MSE and MSLE
cost functions. The targetΦrL used for the LSD compu-
tation is obtained for a particularT60 using an RIR with
σ2

L = −26 dB. Here, we see that OE-MSLE gives the
best estimates for the late residual echo PSD, closely fol-
lowed by OE-MSE, while EE-MSE and EE-MSLE per-
form poorly. These results have a certain degree of cor-
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relation with Figure 7, in that more accurate parameter
estimates yield lower LSD values.
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Figure 8: Comparison of Log Spectral Distance (LSD)
values forσ2

L = −26 dB and differentT60 values, com-
puted using Equation 15.

6. CONCLUSIONS
In this paper, an analysis has been performed in an of-

fline system identification setup to jointly estimate the
optimal reverberation parameters (scaling and decay) in
the subband domain for residual echo suppression. It has
been shown that the EE method is unable to estimate the
optimal parameter set for our considered model. Mini-
mizing the MSLE cost function for the OE method gives
accurate estimates for the reverberation timeT60, while
minimizing the MSE cost function yields accurate esti-
mates for the varianceσ2

L of the uncompensated RIR.
Based on the results obtained, we recommend that MSLE
minimization should be used instead of MSE minimiza-
tion for estimating theT60, even when designing stan-
daloneT60-estimators. The EE method is unable to es-
timate theT60 correctly with either cost function mini-
mization. Additionally, for both the OE and EE meth-
ods, a small bias is obtained in the estimates forσ2

L when
minimizing the MSLE cost function. Altogether, OE-
MSLE minimization provides the best estimates for the
reverberation parameters and the late residual echo PSD,
while the EE method provides poor solutions. Based on
these results, future work will focus on estimating the
late residual echo PSD and the reverberation parame-
ters using the OE method by minimizing the MSLE cost
function for adaptive parametric IIR filters.
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1988.

[9] E.A.P. Habets, “Speech dereverberation using sta-
tistical reverberation models”, inSpeech Derever-
beration, P.A. Naylor and N.D. Gaubitch, Springer,
London, 2010, ch. 3, pp. 57-93.

[10] L. Fahrmeir, R. K̈unstler, I. Pigeot and G. Tutz,
Statistik: Der Weg zur Datenanalyse, Springer-
Lehrbuch, 2004.

[11] T. Gerkmann and R.C. Hendriks, “Unbiased
MMSE-based noise power estimation with low
complexity and low tracking delay”, IEEE Trans.
Audio, Speech, Lang. Process., vol. 20, no. 4, pp.
1383–1393, May 2012.

AES 60TH INTERNATIONAL CONFERENCE, Leuven, Belgium, 2016 February 3–5

Page 7 of 7


