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ABSTRACT
Blind adaptive identification of a Single-Input Multiple-Output (SIMO) acoustic system has useful appli-
cations including acoustic environment sensing, source localization and, in combination with multichannel
equalization, dereverberation. An empirically chosen step-size is usually employed in blind system identifi-
cation algorithms based on cross-relation error minimization. Although some adaptive step-size approaches
have been proposed in the literature, the derivations rely,in some cases, on coarse approximations. In this
paper, a locally optimal adaptive-step size exploiting the algebraic nature of the problem is derived. Exper-
imental results using simulated room impulse responses show that the proposed algorithm has higher initial
convergence rate.

1. INTRODUCTION
Sound signals captured within an enclosed environment

with microphones placed at a distance from the sound
source are affected by reverberation, such that the re-
ceived signal includes not only the source component via
direct path propagation from the sound source to each
microphone but also source components due to propa-
gation via reflections from surfaces in the environment
including walls, ceilings and hard objects. While rever-
beration is desirable in music, it may degrade the quality
and the intelligibility of speech [1].

A possible approach to dereverberation is to view
the problem as a channel equalization problem. The
recorded signal yi(n) at the ith microphone is indeed
modeled as the convolution of the dry signal s(n) with
the Room Impulse Response (RIR) hi corrupted by some
additive noise νi(n):

∀i ∈ {1,2, . . . ,M}, yi(n) = hi ∗ s(n)+νi(n) (1)

where M is the number of microphones and ∗ denotes the
convolution product.

In that approach, the M RIRs are first blindly

estimated, then, given these estimates ĥi =[
ĥi(0) ĥi(1) . . . ĥi(L−1)

]T a set of inversion

filters gi =
[
gi(0) gi(1) . . . gi(Linv −1)

]T is
designed such that [2]:

M

∑
i=1

Ĥigi = d (2)

where d is the desired equalized impulse response, Ĥi de-
notes the convolution matrix of size (L+Linv −1)×Linv
associated with ĥi. The symbols L and Linv respectively
denote the length of ĥi and gi. In [2], a method to per-
fectly invert the room acoustics is proposed, i.e. d in
(2) has only one non-zero input. However, that inverse
filter design for g is very sensitive to estimation errors
in the estimate of hi [3]. By allowing early reflections
in the desired equalized impulse response, inverse filter
design algorithms robust to estimation errors have been
proposed in the literature, e.g. [3, 4, 5].

Estimations of the RIRs can be obtained by using Blind
System Identification (BSI) algorithms such as the Multi-
Channel Least Mean Square (MCLMS) [6] or the Nor-
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malized Multichannel Frequency Domain Least Mean
Square (NMCFLMS) [7]. These algorithms minimize
the Cross Relation [8] (CR) error via a Least Mean
Squares (LMS) scheme to estimate the RIRs. Several
trials are, however, required to find a proper fixed step-
size that gives the best compromise between fast con-
vergence and stability. The Variable Step-Size Uncon-
strained MCLMS (VSS-UMCLMS) algorithm, proposed
in [9], uses an optimal adaptive step-size to overcome
that drawback. The derivations, however, are made under
the assumption that no noise is present in the recorded
signal, which is unrealistic in practice.

In this paper, we propose to exploit the algebraic nature
of the BSI problem to derive an optimal adaptive step-
size which does not require the recorded signal to be
noiseless.

In Section 2, the principles underlying BSI algorithms
relying on the CR error are given. In Section 3, the pro-
posed method is derived. The simulation setups and re-
sults are presented in Section 4. Conclusions are drawn
in Section 5.

2. BACKGROUND
With respect to the identifiability conditions [8], we as-

sume that the source has a full-rank covariance matrix
and the RIRs have no common zeros. The RIRs are as-
sumed all to be of known length L.

2.1. Cross-relation error
Cross-relation error based BSI algorithms exploit the

Single-Input-Multiple-Output (SIMO) structure in (1) to
estimate the RIRs. Let us consider two channels i and j
and let us denote by xi(n) = hi ∗ s(n) the noiseless rever-
berant signal at the ith microphone. We then have:

xi(n)∗h j = hi ∗ (s(n)∗h j) = hi ∗ x j(n). (3)

Therefore, estimations of the RIRs are given by minimiz-
ing the energy of the error ei j(n) across channels:

ei j(n) = yT
i (n)ĥ j(n)−yT

j (n)ĥi(n) (4)

χ(n) =
M−1

∑
i=1

M

∑
j=i+1

e2
i j(n) (5)

where χ(n) is the cross-relation error across channels
and yi(n) =

[
yi(n) yi(n−1) . . . yi(n−L+1)

]T .

Introducing hi =
[
hi(0) hi(1) . . . hi(L−1)

]T , es-

timates ĥ(n) =
[
ĥT

1 (n) ĥT
2 (n) . . . ĥT

M(n)
]T of the

stacked RIRs h =
[
hT

1 hT
2 . . . hT

M
]T are obtained by

minimizing the expectation of χ(n), subject to the con-
straint ĥ ̸= 0ML×1, where 0ML×1 is the null vector of size
ML.

This minimization problem is equivalent to computing an
eigenvector corresponding the smallest eigenvalue of the
expectation of the cross-relation matrix R̂(n) [6] defined
as

R̂ =


∑M

i=2 R̂yiyi −R̂y2y1 . . . −R̂yMy1

−R̂y1y2 ∑M
i ̸=2 R̂yiyi . . . −R̂yMy2

...
...

. . .
...

−R̂y1yM −R̂y1yM . . . ∑M−1
i=1 R̂yiyi

 (6)

where R̂yiy j = yiyT
j and the time index n has been

dropped. We will refer to the expectation of R̂(n) as R.

2.2. Baseline
The MCLMS algorithm [6] minimizes the Rayleigh

Quotient

J(n) =
χ(n)

ĥ(n)T ĥ(n)
(7)

to estimate the RIRs. The update equation is given by

ĥ(n+1) =
ĥ(n)−µ∇J(n)

||ĥ(n)−µ∇J(n)||2
, (8)

∇J(n) =
2

ĥT (n)ĥ(n)
{

R̂(n)ĥ(n)−χ(n)ĥ(n)
}

(9)

where µ is a arbitrarily chosen constant step-size, ||.||2
denotes the Euclidean norm and ∇J(n) is the gradient of
J(n).

In [9], an adaptive step-size µMCLMS(n) is derived such
that the distance ||h−αĥ(n)||2 is minimized over α at
each step in the absence of noise. The value of µMCLMS
is given by

µMCLMS(n) =
ĥT (n)∇J(n+1)
||∇J(n+1)||2

. (10)

Neglecting the contribution of χ(n) in (9) as well as
the normalization, the update of the VSS-UMCLMS is
found:

ĥ(n+1) = ĥ(n)−2µMCLMS(n)R̂(n+1)ĥ(n). (11)
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3. LOCALLY OPTIMAL STEP-SIZE
In the derivation of (10), the assumption that h is in the

null-space of R̂(n) for all n is of key importance. In this
section, the effect of additive noise on the solution given
by the VSS-UMCLMS is analyzed. A locally optimal
step-size, which does not require the input signal to be
noiseless, is then derived. That locally optimal step-size
exploits the algebraic nature of the problem as proposed
in [10] for eigenvector estimation of fixed matrices.

3.1. Effect of additive noise
The effect of additive noise can be considered with ref-

erence to (6). Each the R̂yiy j blocks can be written as:

R̂yiy j = yiyT
j

= xixT
j +xiνννT

j +x jνννT
i +ννν iνννT

j (12)

Taking the expectation of (12) under the assumptions that
the source signal and the additive noise are uncorrelated
and that the noise is zero-mean, we have

Ryiy j = E{xixT
j }+E{ννν iνννT

j }

where E denotes the expectation. In BSI, an eigenvector
of the expected cross-relation matrix R is sought. The
expression of R, in the presence of uncorrelated zero-
mean additive noise, is given by

R = Rx +Rν (13)

where Rx and Rν are respectively the cross-relation ma-
trices defined similarly to (6) for a reverberant noiseless
input and a noise input.

In the absence of noise, Rν is equal to 0ML×ML, the null
matrix of size ML×ML and R is a positive semi-definite
matrix with a null-space of rank 1 spanned by h [8].

In the presence of noise, however, R is not necessarily
positive semi-definite. If we assume that νi(n) is a spa-
tially uncorrelated white Gaussian noise, Rν is an iden-
tity matrix of size ML×ML multiplied by the power of
the noise. R is then positive definite.

The update equation in (11) shows that the estimation
procedure for ĥ(n+1) follows the gradient of a quadratic
cost function given by ĥT (n)R̂(n+1)ĥ(n). Therefore, in
the presence of additive spatially white Gaussian noise, 0
is the minimum of the cost function and is achieved only
at the trivial solution 0ML×1.

3.2. Proposed method
Let us consider the standard update equation of a block

LMS algorithm minimizing (7):

ĥ(b+1) = ĥ(b)−µ(b)∇J(b) (14)

where b is a block index and

∇J(b) =
2

ĥT (b)ĥ(b)
{

R̂(b)ĥ(b)−χ(b)ĥ(b)
}
, (15)

with R̂(b) = 1
B ∑B−1

l=0 R̂(bno + l), B and no respectively
correspond to the block size and a sliding offset and
χ(b) = ĥT (b)R̂(b)ĥ(b).

In (14), the updated estimate ĥ(b+ 1) is clearly a linear
combination of the previous estimate ĥ(b) and the gradi-
ent ∇J(b) with a coefficient constrained to be 1 on ĥ. If
that constrain is removed, ĥ(b+1) can be written as:

ĥ(b+1) =
[
ĥ(b) ∇J(b)

]
µµµLOG(b) (16)

where µµµLOG(b) =
[

µ1(b)
µ2(b)

]
is a 2×1 vector of weights.

Let us define the residual r(b)= R̂(b)ĥ(b+1)− λ̂min(b+
1)ĥ(b+ 1) with λ̂min(b+ 1) an estimate of the smallest
eigenvalue of R. Since h(b+1) belongs to the subspace
spanned by ĥ(b) and ∇J(b), the new estimate is locally
optimal when the residual is orthogonal to that subspace.
The weight vector µµµLOG is therefore such that

[
ĥT (b)

∇J(b)T

]
R̂(b)

[
ĥ(b) ∇J(b)

]
µµµLOG =

λ̂min(b+1)
[

ĥT (b)
∇J(b)T

][
ĥ(b) ∇J(b)

]
µµµLOG. (17)

In other words, µµµLOG(b) is a generalized eigenvector

of the 2×2 matrices
[

ĥT (b)
∇JT (b)

]
R̂(b)

[
ĥ(b) ∇J(b)

]
and[

ĥT (b)
∇JT (b)

][
ĥ(b) ∇J(b)

]
for the generalized eigenvalue

λ̂min(b+1).

Provided that ĥ(b) and ∇J(b) are made orthonormal be-
fore computing ĥ(b+ 1), µLOG is an eigenvector corre-
sponding the to smallest eigenvalue of

R̂′(b) =

[
ĥT

(b)
∇JT (b)

]
R̂(b)

[
ĥ(b) ∇J(b)

]
(18)
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where ĥ(b) = ĥ(b)
||ĥ(b)||2

and ∇J(b) is the unit norm vector

orthogonal to ĥ(b) obtained via the Gram-Schmidt or-
thonormalization process.

Since µLOG is defined up to a scaling factor, we chose
the one that has a unit-norm so that ĥ(b+1) is also unit-
norm. The update equation of the proposed Locally Op-
timal Gradient-MCLMS (LOG-MCLMS) is then given
by

ĥ(b+1) = µ1(b)ĥ(b)+µ2(b)∇J(b) (19)

where µ1(b) and µ2(b) are the components of the unit-
norm eigenvector corresponding to the smallest eigen-
value of R̂′(b).

4. SIMULATION
In this section, the proposed algorithm is evaluated

against the baseline in various conditions.

4.1. Setup
The VSS-UMCLMS, NMCFLMS and LOG-MCLMS

algorithms were evaluated for impulse responses of
length L = 128, two different numbers of microphones,
(M = 3 and M = 5), and two values of Signal-to-Noise
Ratio (SNR)s (SNR ∈ {∞,30dB}). For each combina-
tion of L, M and SNR, the algorithms were evaluated
for 50 realizations of the source and additive noise. The
RIRs were generated using the image method [11] for a
shoebox-shaped room of dimensions 5m× 6m× 3m, a
reverberation time T60 = 0.5s and a sampling frequency
fs = 8kHz. The length L was then fixed by truncating
the obtained RIRs to the desired length. The input sig-
nals and the additive noise were white Gaussian noises,
uncorrelated with each other. Although longer RIRs are
present in practical scenarios, this setup allows us to
compare the proposed algorithm against the baseline.

A sliding rectangular window of length B = 2L overlap-
ping by no = L samples was used in the LOG-MCLMS.
The constant step-size shown in [7] was used in the
NMCFLMS and was equal to 0.8.

The accuracy of the different algorithms was evaluated
using the scale-independent Normalized Projection Mis-
alignment (NPM) [1] defined as follows:

NPM(ĥ,h) = 10log10

 ||h− ĥT h
ĥT ĥ

ĥ||22
hT h

 . (20)
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NMCFLMS

Fig. 1: Average NPM against time when no noise is
present with M = 3

The norms of ĥ across time are given as well to verify
that the algorithms are not converging to the trivial solu-
tion.

4.2. Result
Figures 1 and 2 show that when no noise is present in the
recorded signal, the algorithms converge and that an in-
crease in the number of microphone leads to estimates
with lower NPMs as near common zeros between the
channels are less likely [12]. In these conditions, the pro-
posed algorithm achieves significantly lower NPMs on
average than the VSS-UMCLMS and the NMCFLMS.
For M = 5, for example, the VSS-UMCLMS and
the NMCFLMS respectively achieve average NPMs of
−13dB and −20dB after 10s of input data while the pro-
posed algorithm achieves −32dB.

As shown in Figures 3 and 4, in the presence of ad-
ditive noise at SNR=30dB, similar observations can be
made although the improvement over the baseline is less
significant. As is well known with cross-relation error-
based algorithms, misconvergence occurs when in the
input contains significant noise [13]. As expected there-
fore, we observed such misconvergence in the proposed
as well baseline algorithms for noise levels greater than
around SNR = 30dB. In the presence of noise, the norm
of ĥ(n) was observed and found to be close to zero after
10s of input data in the case of VSS-UMCLMS.
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Fig. 2: Average NPM against time when no noise is
present with M = 5
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Fig. 3: Average NPM against time with SNR = 30dB
and M = 3
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Fig. 4: Average NPM against time with SNR = 30dB
and M = 5

5. CONCLUSION
In this paper, we have proposed a locally optimal

adaptive-step size, for blind SIMO acoustic system iden-
tification. The formulation of the adaptive step-size ex-
ploits the eigenvector estimation framework of cross-
relation error-based BSI. Although the proposed adap-
tive step-size algorithm does not solve the well known
misconvergence problem, the adaptive step-size shown
in this paper leads to improved initial convergence rates
in our test, measured in terms of NPM.
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