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ABSTRACT
We consider the problem of blind multi-channel speech dereverberation without the knowledge of room
acoustics. The dereverberated speech component is estimated by subtracting the undesired component,
estimated using multi-channel linear prediction (MCLP), from the reference microphone signal. In this
paper we present a framework for MCLP-based speech dereverberation by exploiting sparsity in the time-
frequency domain. The presented framework uses a wideband or a narrowband signal model and a sparse
analysis or synthesis model for the desired speech component. The proposed problems involving a reweighted
`1-norm, are solved in a flexible optimization framework. The obtained results are comparable to the state
of the art, motivating further extensions exploiting sparsity and speech structure.

1. INTRODUCTION
Effective speech dereverberation is very important for
many speech communication applications, such as
hands-free telephony, voice-controlled systems or hear-
ing aids [1]. While moderate levels of reverbera-
tion can be beneficial, severe reverberation significantly
decreases speech intelligibility and automatic speech
recognition performance. The field of speech derever-
beration has been very active over the last decade, and
many speech dereverberation methods have been pro-
posed, e.g., based on acoustic multichannel equaliza-
tion [2, 3], spectral enhancement [4, 5], and probabilistic
models [6–9].

It is widely accepted that speech signals have a sparse
representation in the time-frequency (TF) domain, a fact
extensively exploited in source separation [10–14], au-
dio inpainting [15, 16], and dereverberation [9, 17, 18].
While many speech enhancement methods employ a nar-
rowband signal model [19], operating in each frequency
bin independently, a wideband signal model has been re-
cently employed to improve source separation in rever-
berant environments [14, 20]. In this paper we present
a general framework for speech dereverberation using
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multi-channel linear prediction (MCLP) that exploits
sparsity in the TF domain. We present different formu-
lations with a wideband or a narrowband signal model
and sparse analysis or synthesis model for the speech sig-
nal [21]. In this work, we will use a reweighted `1-norm
for promoting sparsity, but the presented formulations al-
low other sparsity-promoting cost functions. As opposed
to the locally computed weights [9], we also employ
neighborhoods in the TF domain [22], and a low-rank ap-
proximation of the power spectrogram [23]. Using sim-
ulations we compare the proposed methods with similar
state-of-the-art methods. The presented framework pro-
vides a transparent view on sparsity-based speech dere-
verberation and generalizes existing methods.

2. SIGNAL MODEL
We consider a fixed source-array geometry with a single
speech source and M microphones. The time-domain re-
verberant signal at the m-th microphone can be modeled
as the convolution of the clean speech signal s(t) with
a room impulse response (RIR) rm(t) of length Lr. The
reference microphone signal can be decomposed as

xref(t) =
Lτ−1

∑
l=0

rref(l)s(t− l)︸ ︷︷ ︸
d(t)

+
Lr−1

∑
l=Lτ

rref(l)s(t− l)︸ ︷︷ ︸
u(t)

, (1)
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where d(t) represents the desired speech component at
the reference microphone, consisting of the direct path
and early reflections, and u(t) represents the undesired
speech component at the reference microphone, consist-
ing of the late reflections. The goal is then to recover
the desired speech component d(t) that includes early
reflections, preserved due to the delay Lτ , which can be
beneficial for speech intelligibility [25]. When M > 1
microphones are available, it can be shown that using
MINT [2] the undesired part can be obtained by filtering
the delayed microphone signals, i.e., u(t) can be written
as

u(t) =
M

∑
m=1

Lg−1

∑
l=0

xm(t−Lτ − l)gm(l), (2)

where gm(l) denotes the l-th tap of the prediction filter, of
length Lg, related to the m-th microphone [6]. Assuming
that T time-domain samples are observed, using vector
notation we can write

xref = d + Xg︸︷︷︸
u

, (3)

where xref = [xref(1), . . . ,xref(T )]T , and d and u are de-
fined similarly. The matrix X ∈ RT×MLg is a multi-
channel (block-) convolution matrix obtained from the
microphone signals delayed by Lτ , and g ∈ RMLg is a
multi-channel prediction filter composed of the filter co-
efficients for all M channels.

While the wideband model in (3) holds perfectly if
the MINT conditions are fulfilled, the filters g can be
very long and dereverberation based on the wideband
model (3) can be computationally demanding, therefore
the wideband model (3) is often approximated in the
STFT domain [6, 9, 26, 27]. Let ΨΨΨ ∈ CT×KN denote
the STFT frame for which ΨΨΨΨΨΨ

H = I holds, i.e., ΨΨΨ is
a tight (overcomplete) frame with T < KN, where N de-
notes the number of time indices and K denotes the num-
ber of frequency bins in the TF domain. The TF co-
efficients of the time-domain signal d can be obtained
as d̃ = ΨΨΨ

Hd ∈ CKN , and we use d̃k ∈ CN to denote a
vector containing only the TF coefficients correspond-
ing to the k-th frequency bin and d̃k,n to denote a single
coefficient.1 The narrowband signal model is obtained
by approximating the time-domain convolution in (3) in
each frequency bin independently [28], and can be writ-
ten analogously as before as

x̃ref,k = d̃k + X̃kg̃k, (4)

1In the remainder all variables related to the STFT domain will be
denoted with ˜(.).

where X̃k ∈ CN×ML̃g is a MC convolution matrix ob-
tained from the coefficients in the k-th frequency bin de-
layed by L̃τ frames. The prediction filters g̃k ∈ CML̃g for
the narrow-band model (4) are typically much shorter,
i.e., L̃g << Lg, and are estimated independently for each
frequency.

3. PROPOSED METHODS
Sparsity of speech signals in the STFT domain is well
known and often exploited for various speech enhance-
ment tasks [9,13,14,22]. This property naturally leads to
two modeling paradigms, i.e., the sparse synthesis model
and the sparse analysis model [21]. The idea behind the
synthesis sparsity is that the desired signal can be ex-
pressed as a linear combination of a relatively small num-
ber of elements from a dictionary. In the considered sce-
nario this would imply that d = ΨΨΨd̃ with sparse d̃. The
idea behind the analysis sparsity is that the desired sig-
nal has a sparse representation when an analysis operator
is applied. In the considered scenario this would imply
that d̃ = ΨΨΨ

Hd is sparse. While both models assume spar-
sity of the STFT coefficients, the models are equivalent
only if the analysis operator is equal to the inverse of the
synthesis operator [21]. In the considered case this is not
fulfilled since the STFT frame ΨΨΨ is overcomplete and the
two models differ.

In the remainder of this section we present a brief
overview of the alternating directions method of mul-
tipliers (ADMM) and the proposed formulations for a
fixed sparsity-promoting cost function P, followed by a
discussion on the selection of the sparsity promoting cost
function and relation to other algorithms.

3.1. Alternating direction method of multipliers
The ADMM algorithm [29] is suitable for nonsmooth
convex optimization problems of the form

min
d,g

P(d)+ Q(g) (5)

subject to Ad + Bg = c, (6)

where the cost function can be conveniently split for the
variables d and g. The augmented Lagrangian for the
problem (5) can be written as

Lρ (d,g,µµµ) = P(d)+ Q(g)+
ρ

2
‖Ad + Bg− c + µµµ‖2

2,

(7)
where µµµ is a dual (splitting) variable and ρ is a penalty
parameter. The ADMM algorithm minimizes Lρ in (7)
alternately with respect to d and g, followed by a dual
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ascent over the dual variable µµµ [29], leading to the fol-
lowing update rules

d← argmin
d

P(d)+
ρ

2
‖Ad + Bg− c + µµµ‖2

2, (8)

g← argmin
g

Q(g)+
ρ

2
‖Ad + Bg− c + µµµ‖2

2, (9)

µµµ ← µµµ + γ (Ad + Bg− c) , (10)

where γ ∈ [1,(1 +
√

5)/2) can be used for faster con-
vergence [30, 31]. An important ingredient of ADMM-
based algorithms is the proximal mapping operator [32].
For a cost function P we define the proximal mapping SP

λ

of P as

SP
λ
(z) = argmin

d
λP(d)+

1
2
‖z−d‖2

2, (11)

which can often be evaluated very efficiently [32]. More
details about the ADMM algorithm can be found in [29].

3.2. Wideband model and analysis sparsity
First, we consider the estimation of the desired speech
signal d in the time domain by enforcing the STFT coef-
ficients of d to be sparse, subject to the wideband model
in (3). The optimization problem for estimating d can be
written as

min
d,g

P
(
ΨΨΨ

Hd
)

subject to d + Xg = xref. (12)

By applying the ADMM algorithm the obtained problem
can be solved using the following update rules

d← argmin
d

P
(
ΨΨΨ

Hd
)

+
ρ

2
‖d + Xg−xref + µµµ‖2

2, (13)

g← argmin
g
‖d + Xg−xref + µµµ‖2

2, (14)

µµµ ← µµµ + γ (d + Xg−xref) . (15)

The update for d corresponds to a generalized Lasso
problem [29] with the update rule

d← SP◦ΨΨΨH

1/ρ
(xref−Xg−µµµ) , (16)

which can be computed using ADMM as shown in Ap-
pendix B. The update for g can be written as

g←
(
XHX

)−1 XH (xref−d−µµµ) = g`2 −giter, (17)

where g`2 =
(
XHX

)−1 XHxref is iteration-independent
and equal to the solution for the squared `2-norm as

the cost function in (12), i.e., P(ΨΨΨ
Hd) = ‖ΨΨΨHd‖2

2, and
giter =

(
XHX

)−1 XH (d + µµµ) is the iteration-dependent
correction term. Note that the matrix XHX needs to be
factored only once, and the cached factorization can be
used to solve the corresponding linear system in subse-
quent iterations [29]. Since X is a block-convolution ma-
trix, both XHX and XHxref can be efficiently computed
using correlation. The computationally most demanding
step is the evaluation of the STFT and its inverse at each
iteration when solving (16).

3.3. Wideband model and synthesis sparsity
Next we consider the estimation of the STFT coefficients
d̃ of the desired speech signal by enforcing these coeffi-
cients to be sparse, subject to the wideband model in (3).
The desired speech signal in the time domain is finally
obtained by performing the inverse STFT of the esti-
mated coefficients as d = ΨΨΨd̃. The optimization problem
for estimating d̃ can be written as

min
d̃,g

P
(
d̃
)

subject to ΨΨΨd̃ + Xg = xref. (18)

The obtained problem can again be solved by applying
the ADMM algorithm, resulting in the following itera-
tions

d̃← argmin
d̃

P
(
d̃
)

+
ρ

2
‖ΨΨΨd̃ + Xg−xref + µµµ‖2

2 (19)

g← argmin
g
‖ΨΨΨd̃ + Xg−xref + µµµ‖2

2 (20)

µµµ ← µµµ + γ
(
ΨΨΨd̃ + Xg−xref

)
. (21)

The update for d̃ corresponds to a Lasso prob-
lem [33] (cf. Appendix A), and can be solved by ap-
plying the fast iterative shrinkage/thresholding algorithm
(FISTA) [34, 35]. Similarly as in (17), the update for g
can be written as

g←
(
XHX

)−1 XH (xref−ΨΨΨd̃−µµµ
)

= g`2 −giter, (22)

where g`2 is the iteration-independent term, and giter =(
XHX

)−1 XH
(
ΨΨΨd̃ + µµµ

)
is the iteration-dependent term.

The computationally most demanding step is the eval-
uation of the STFT and its inverse at each iteration of
FISTA.

3.4. Narrowband model
Finally, we consider the estimation of the STFT co-
efficients d̃ of the desired speech signal by enforcing
these coefficients to be sparse, subject to the narrow-
band model in (4). Since the signal model is independent
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across frequencies, we obtain a set of K optimization
problems which can be solved independently. The op-
timization problem for estimating the STFT coefficients
in the k-th frequency bin can be written as

min
d̃k,g̃k

P
(
d̃k
)

subject to d̃k + X̃kg̃k = x̃ref,k. (23)

The obtained problem can be solved by applying the
ADMM algorithm, resulting in the following update
rules

d̃k← argmin
d̃k

P
(
d̃k
)

+
ρ

2
‖d̃k + X̃kg̃k− x̃ref,k + µ̃µµk‖2

2,

(24)

g̃k← argmin
g̃k

‖d̃k + X̃kg̃k− x̃ref,k + µ̃µµk‖2
2, (25)

µ̃µµk← µ̃µµk + γ
(
d̃k + X̃kg̃k− x̃ref,k

)
. (26)

The update for d̃k can be immediately written as

d̃k = SP
1/ρ

(
x̃ref,k− X̃kg̃k− µ̃µµk

)
, (27)

and the update for g̃k can be written as

g̃k←
(
X̃H

k X̃k
)−1 X̃H

k
(
x̃refk − d̃k− µ̃µµk

)
= g̃k,`2 − g̃k,iter,

(28)
where g̃k,`2 is the iteration-independent term, and g̃k,iter =(
X̃H

k X̃k
)−1 X̃H

k

(
d̃k + µ̃µµk

)
is the iteration-dependent term.

Similarly as before, the matrix X̃H
k X̃k needs to be fac-

tored once and later used to solve the corresponding lin-
ear system in subsequent iterations. Note that this ma-
trix is much smaller than the corresponding matrix in the
wideband model, and the resulting iterations do not in-
volve the STFT.

3.5. Sparsity promoting cost function
In order to promote sparsity of the STFT coefficients

we need to select an appropriate cost function P. Typ-
ical cost functions include the `1-norm, nonconvex `p-
norms with p ∈ (0,1), or `0-norm, counting the number
of nonzero elements of a vector. Alternatively, it is pos-
sible to define a proximal mapping such that the corre-
sponding function is suitable for promoting sparsity [36].
In this paper we use a weighted `1-norm as the cost func-
tion, which can be written as

P
(
d̃
)

= ‖d̃‖w,1 = ∑
k,n

wk,n|d̃k,n|, (29)

with nonnegative weights w, which should represent in-
formation about the significant coefficients in the desired

signal. Recovery of a sparse d̃ using the cost function
(29) is an iterative two-step procedure: (i) weights w are
computed based on the previous estimate of d̃, (ii) a new
estimate of d̃ is obtained by solving an appropriate opti-
mization problem. All of the previously proposed algo-
rithms are employed in such a reweighted procedure.

The proximal mapping for the weighted `1-norm in (29)
can be computed element-wise using soft threshold-
ing [35] as

SP
λ

(
d̃k,n
)

=

(
1−λ

wk,n

|d̃k,n|

)
+

d̃k,n, (30)

where (G)+ = max(G,0) [29]. In the context of speech
enhancement [19], the proximal mapping in (30) can be
interpreted as a gain function. As noted in [19, 37], in
speech enhancement a lower bound on the gain is often
introduced, i.e., (G)+ = max(G,Gmin), to prevent sup-
pression of the small coefficients d̃k,n to a value of ex-
actly zero. It can be shown that this corresponds to a cost
function P in the form of a Huber function [29], which
is quadratic for small arguments and equal to a scaled
absolute value for large arguments.

The weights w in (29) are often computed in such a way
that the obtained weighted norm simulates behavior of
the `0-norm [20, 38]. To achieve scaling sensitivity, as
with the `0-norm, the weights can be computed as

wk,n =
(
|d̃k,n|2 + ε

)−1/2
, (31)

where ε is a small regularization coefficient to prevent
division by zero. In (31) the weight wk,n is computed
locally using the true coefficient d̃k,n. Since in practice
the true coefficients are not available, the weights are
computed based on the estimate of d̃k,n from the previ-
ous iteration. To take into account the TF structure of
the desired signal, the concept of neighborhood was in-
troduced in [22]. Assuming that a neighborhood Nk,n of
the coefficient d̃k,n is defined, the corresponding weight
can be computed as

wk,n =

 ∑
(k′,n′)∈Nk,n

ηk′,n′ |d̃k′,n′ |2 + ε

−1/2

, (32)

where ηk′,n′ are coefficients of the neighborhood that sum
to one. Similarly as in [22, 24], we employ rectangu-
lar neighborhoods with equal weights. Note that here
the neighborhood is used to compute the weights for
the reweighted `1-norm, and not to derive a structured
shrinkage operator as in [22].
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Alternatively, it is well-known that speech spectro-
grams can be modeled well using a low-rank approxi-
mation [39, 40]. Similarly as in [23], the weights can be
obtained by computing a low-rank approximation p of
the power spectrogram |d̃|2 ∈ RK×N

0+ , a nonnegative ma-
trix containing the squared magnitudes of the TF coeffi-
cients, and computing the weights as

wk,n =
(

pk,n + ε
)−1/2

. (33)

3.6. Relation to existing methods
Several MCLP-based speech dereverberation methods
have been proposed employing the narrowband signal
model in (4) and a locally Gaussian model of the de-
sired speech signal, e.g., [6,26,27,41]. This typically re-
sults in an iteratively reweighted least-squares minimiza-
tion, with the cost function being equal to a weighted
`2-norm [23], i.e.,

P
(
d̃k
)

= ‖d̃k‖2
wk,2 = ∑

n
wk,n|d̃k,n|2 (34)

The weights for the current iteration are computed based
on the estimate of the desired speech signal from the pre-
vious iteration as wk,n←

(
|d̃k,n|2 + ε

)−1 [6, 9]. The pre-
diction filters are obtained by solving the following prob-
lem

min
g̃k

‖x̃ref,k− X̃kg̃k‖2
wk,2, (35)

having a closed-form solution. The estimated desired
signal coefficients in the k-th frequency bin are computed
as d̃k ← x̃ref,k − X̃kg̃k. This algorithm is known as the
weighted prediction error (WPE). In [23] it was proposed
to compute the weights using a low-rank approximation
of the power spectrogram, and here we additionally pro-
pose to compute the weights for WPE using neighbor-
hoods, similarly as in (32). A locally Laplacian model
for the desired speech signal coefficients was used in [42]
resulting in an iteratively reweighted `1 minimization.
On the other hand, the wide-band signal model has been
employed in MCLP-based dereverberation [6, 43, 44],
however without explicitly enforcing sparsity of the de-
sired signal.

4. SIMULATIONS
The performance of the presented methods for multi-
microphone dereverberation has been evaluated through
several simulations. We have considered an acoustic sys-
tem with RIRs from the REVERB challenge [45]. The
acoustic system (AC) consists of M = 2 microphones in

a room with a reverberation time (T60) of approximately
700 ms, and the distance between the source and the mi-
crophones was approximately 2 m. The microphone sig-
nals were generated by convolving the RIRs with a clean
speech sample (length ∼ 6 s) from [45], and the sam-
pling frequency in all experiments was fs = 16kHz. The
dereverberation performance was evaluated using cep-
stral distance (CD), perceptual evaluation of speech qual-
ity (PESQ), and frequency-weighted segmental signal-
to-noise ratio (FWS), with the clean speech as the ref-
erence signal [45]. In the following we compare the
WPE method and the three proposed methods based on
ADMM: wideband model with analysis sparsity (WB-
A), wideband model with synthesis sparsity (WB-S), and
the narrowband model (NB).

4.1. Implementation details
The STFT was computed using a tight frame based on a
64 ms Hamming window with 16 ms window shift. The
length of the prediction filters was set to Lg = 5120 for
the wideband model and L̃g = 20 for the narrowband
model. The prediction delay was set to Lτ = 256 for the
wideband model and L̃τ = 2 for the narrowband model.
The weights were computed in three different ways: lo-
cally, using a rectangular neighborhood, and using a low-
rank approximation. In all experiments we initialize the
estimation of d̃ using the reference microphone signal.
A small positive constant ε = 10−8 was added to the
weights and they were additionally normalized so that
the largest weight is equal to 1. The neighborhood-based
weights were computed using a neighborhood which in-
cludes the current coefficient and 2 adjacent coefficients
on each side across the frequencies. In general, neigh-
borhoods across the temporal direction typically resulted
in a decreased dereverberation performance, due to the
fact that such neighborhoods preserve persistence of the
signal [24], which can be counterproductive for derever-
beration. A low-rank approximation was computed as
in [23] using NMF with Itakura-Saito divergence with
the rank set to 30. The maximal number of iterations
of the ADMM for the proposed methods was set to 50,
with the stopping criteria as in [29] and a relative toler-
ance of 10−3. The parameter ρ was selected from the
set
{

10−4,5 ·10−4, . . . ,1
}

intrusively, as the one yield-
ing the highest improvement in terms of PESQ score.
In the simulations we used a minimum gain equal to
Gmin = 0.01. Setting the minimum gain to 0 resulted in
a higher dereverberation performance but also a higher
speech distortion, which was reflected in the instrumen-
tal measures. Setting the minimum gain to a higher value
(e.g. 0.1) typically resulted in decreased dereverbera-
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tion performance. For the Lasso problem 20 iterations of
FISTA were performed, while for the generalized Lasso
20 iterations of ADMM with the penalty ρ = 1 were per-
formed.

4.2. Evaluation
In the Table 1 we state the results obtained using a
different number of reweighting iterations. For a sin-
gle reweighting iteration (iRW = 1), the proposed meth-
ods outperform the baseline WPE when locally com-
puted weights are used. The use of neighborhood-based
weights increases the performance for most of the meth-
ods (except WB-S), with WPE achieving the highest
gains when compared to the local weights. The use of
the low-rank approximation-based weights results in fur-
ther improvements for most of the methods. The meth-
ods based on the narrowband approximation, i.e., WPE
and NB, result in a similar performance while the wide-
band WB-A seems to perform somewhat better.

Using five reweighting iterations (iRW = 5) WB-S per-
forms somewhat worse while other achieve a similar
performance when locally computed weights are used.
Neighborhood-based and low-rank approximation-based
weights improve the performance for WPE, with mi-
nor differences for the other methods. Overall, all of
the evaluated methods achieve a similar dereverbera-
tion performance, with WB-S not improving in the ex-
periment when multiple reweighting iterations are per-
formed. In terms of computational complexity the nar-
rowband methods are clearly preferred: average times for
one reweighting iteration for 6 s of speech with M = 2
microphones are about 1.5 s, 3 s, 2 min and 3 min for
WPE, NB, WB-S and WB-A (with all algorithms imple-
mented in Matlab). As noted earlier, the wideband meth-
ods are much more complex due to the evaluation of the
STFT and its inverse in the iterative procedure [14, 20].

5. CONCLUSION
In this paper, we have presented a general framework for
MCLP-based speech dereverberation exploiting sparsity
of the speech signal. Three different formulations have
been proposed, i.e., using a wideband signal model and
an analysis or a synthesis model for the desired speech
signal, and using a narrowband signal model. The ob-
tained optimization problems are solved using ADMM,
offering flexibility for additional constraints or alterna-
tive sparsity promoting functions. Additionally, as a step
in the direction of exploiting the speech signal structure
we include a concept of structured weights, using neigh-
borhood or low-rank approximation, which further im-
prove speech dereverberation performance.

Table 1: Obtained results for the considered AC. Val-
ues of CD, FWS and PESQ for the reference microphone
were 4.4, 5.3 and 1.9, respectively.

Alg. Weights ∆CD ∆FWS ∆PESQ
iRW 1 5 1 5 1 5

local 1.3 2.3 3.3 4.4 0.7 1.2
WPE neigh. 1.8 2.5 3.8 4.8 1.1 1.4

NMF 1.9 2.6 4.1 5.0 1.1 1.5
local 1.5 2.1 2.2 4.2 1.1 1.2

NB neigh. 1.8 2.1 3.0 3.4 1.2 1.4
NMF 1.9 2.1 3.1 3.4 1.2 1.4
local 1.6 1.6 3.0 3.0 1.1 1.1

WB-S neigh. 1.6 1.6 2.8 2.8 1.1 1.2
NMF 1.6 1.6 2.9 2.9 1.1 1.1
local 1.8 2.3 3.4 4.5 1.2 1.4

WB-A neigh. 1.9 2.3 3.7 4.5 1.3 1.4
NMF 2.1 2.3 3.9 4.6 1.3 1.4

6. APPENDIX

6.1. Lasso
An optimization problem in the form

min
d̃

λP
(
d̃
)

+
1
2
‖ΨΨΨd̃− z‖2

2, (36)

where P is a weighted `1-norm is in the form of Lasso
and can be solved by applying a forward-backward al-
gorithm [32, 34, 35], also known as the iterative shrink-
age/thresholding algorithm (ISTA), consisting of the fol-
lowing iteration

d̃← SP
λ/ν

(
d̃ +

1
ν

ΨΨΨ
H (z−ΨΨΨd̃

))
, (37)

with ν being the maximum eigenvalue of ΨΨΨΨΨΨ
H , i.e.,

ν = 1. An accelerated fast ISTA (FISTA) algorithm [35]
employs a similar iteration, with the same complexity
and improved convergence.

6.2. Generalized Lasso
An optimization problem in the form

min
d

λP
(
ΨΨΨ

Hd
)

+
1
2
‖d− z‖2

2, (38)

where P is a weighted `1-norm is an instance of gener-
alized Lasso [29]. The minimizer of the cost function is
equal to the proximal mapping of the composition of the
analysis operator ΨΨΨ

H and the function P, i.e., the opti-
mal d is equal to SP◦ΨΨΨH

λ
(z), where ◦ denotes the function
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composition. Applying ADMM results in the following
iterations

d← 1
1 + ρ

[z + ρΨΨΨ(ũ− µ̃µµ)] , (39)

ũ← SP
λ/ρ

(
ΨΨΨ

Hd + µ̃µµ
)
, (40)

µ̃µµ ← µ̃µµ + γ
(
ΨΨΨ

Hd− ũ
)
, (41)

where ũ is a splitting variable satisfying the constraint
ΨΨΨ

Hd− ũ = 0.
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