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ABSTRACT
Acoustic multi-channel equalization techniques, such as the regularized partial multi-channel equalization
technique based on the multiple-input/output inverse theorem (RP-MINT), are able to achieve a high dere-
verberation performance in the presence of room impulse response perturbations but may lead to additive
noise amplification. This paper proposes to directly extend the RP-MINT technique by incorporating the
noise statistics in the reshaping filter design, such that joint dereverberation and noise reduction is achieved.
In addition to the regularization parameter used in the RP-MINT technique, a weighting parameter is in-
troduced to trade off between dereverberation and noise reduction. To automatically determine the regular-
ization and weighting parameters, a novel non-intrusive procedure based on the L-hypersurface is proposed.
Simulation results using instrumental performance measures show that the proposed technique maintains
the high dereverberation performance of the RP-MINT technique, while improving the noise reduction per-
formance.

1. INTRODUCTION

Speech signals recorded in an enclosed space by micro-
phones placed at a distance from the source are often cor-
rupted by reverberation and additive noise, which typi-
cally degrade speech quality, impair speech intelligibil-
ity, and decrease the performance of automatic speech
recognition systems [1–3]. With the continuously grow-
ing demand for high-quality hands-free speech commu-
nication, speech enhancement techniques aiming at joint
dereverberation and noise reduction have become indis-
pensable. In this paper, we focus on the effective inte-
gration of the dereverberation and noise reduction tasks
using acoustic multi-channel equalization techniques.
Acoustic multi-channel equalization techniques [4–8]
aim to reshape the measured or estimated room impulse
responses (RIRs) between the speech source and the mi-
crophone array. These techniques comprise in principle
an attractive approach to speech dereverberation since in
theory perfect dereverberation can be achieved [4]. In
practice however, such techniques suffer from several
drawbacks. Since the available (measured or estimated)
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RIRs typically differ from the true RIRs due to fluctua-
tions (e.g., temperature or position variations [9]) or due
to the sensitivity of supervised and blind system identi-
fication methods to near-common zeros and interfering
noise [10, 11], such techniques can fail to achieve dere-
verberation and possibly cause additional speech distor-
tion in the output signal [6, 7]. Furthermore, acoustic
multi-channel equalization techniques typically design
reshaping filters aiming only at speech dereverberation,
without taking the presence of the additive noise into ac-
count. Applying such dereverberation filters may result
in a large noise amplification [7].
To increase the robustness against RIR perturbations,
several techniques have been proposed [6–8], with the
regularized partial multi-channel equalization technique
based on the multiple-input/output inverse theorem (RP-
MINT) shown to yield a high dereverberation perfor-
mance [7]. By incorporating regularization in the RP-
MINT technique, the energy of the reshaping filter is de-
creased, reducing the distortions in the output signal due
to RIR perturbations, and hence, increasing the derever-
beration performance. While the regularization parame-
ter introduced in the RP-MINT technique is also effec-
tive in partly avoiding the additive noise amplification,
the noise reduction performance is limited since the ac-
tual noise statistics are not explicitly taken into account.
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In this paper we propose to directly extend the RP-MINT
technique by explicitly taking the actual noise statistics
into account such that joint dereverberation and noise
reduction is achieved. In addition to the regularization
parameter used in the RP-MINT technique, a weighting
parameter is introduced, which enables to trade off be-
tween dereverberation and noise reduction. Furthermore,
a novel procedure for the joint automatic selection of
the regularization and weighting parameters is also pro-
posed. Simulation results show that the proposed tech-
nique maintains the high dereverberation performance of
the RP-MINT technique, while improving the noise re-
duction performance.1

2. CONFIGURATION AND NOTATION

Consider the acoustic system depicted in Fig. 1, consist-
ing of a single speech source, M microphones, and addi-
tive noise. Each microphone signal ym(n), m = 1, . . . , M,
at discrete-time index n, consists of a filtered version
of the clean speech signal s(n) and a noise component
vm(n), i.e.,

ym(n) = hm(n)∗ s(n)+ vm(n) = xm(n)+ vm(n), (1)

where hm(n) is the RIR between the speech source and
the m-th microphone, xm(n) is the reverberant speech
component at the m-th microphone, and ∗ denotes con-
volution. Since the RIR hm(n) consists of a direct path
and early reflections component he,m(n) and a late reflec-
tions component hr,m(n), i.e., hm(n) = he,m(n) + hr,m(n),
the microphone signal in (1) can also be written as

ym(n) = he,m(n)∗ s(n)︸ ︷︷ ︸
xe,m(n)

+hr,m(n)∗ s(n)︸ ︷︷ ︸
xr,m(n)

+ vm(n), (2)

with xe,m(n) the early reverberation component and
xr,m(n) the late reverberation component at the m-th mi-
crophone. Using the filter-and-sum structure in Fig. 1,
the enhanced output signal z(n) is equal to the sum of the
filtered microphone signals, i.e.,

z(n) =
M

∑
m=1

xm(n)∗wm(n)︸ ︷︷ ︸
zx(n)

+
M

∑
m=1

vm(n)∗wm(n)︸ ︷︷ ︸
zv(n)

, (3)

where wm(n) is the filter applied to the m-th microphone,
zx(n) is the output speech component, and zv(n) is the

1An extensive theoretical and experimental analysis of the tech-
nique proposed here is provided in [12].

output noise component. The output speech component
can also be written as

zx(n) = s(n)∗
M

∑
m=1

hm(n)∗wm(n)︸ ︷︷ ︸
c(n)

, (4)

with c(n) the equalized impulse response (EIR) between
the clean speech signal s(n) and the output speech com-
ponent zx(n). Furthermore, the early reverberation out-
put speech component ze,x(n) and the late reverberation
output speech component zr,x(n) are defined as

ze,x(n) =
M

∑
m=1

xe,m(n)∗wm(n), (5)

zr,x(n) =
M

∑
m=1

xr,m(n)∗wm(n). (6)

In vector notation, the RIR hm and the filter wm are given
by

hm = [hm(0) hm(1) . . . hm(Lh−1)]T , (7)

wm = [wm(0) wm(1) . . . wm(Lh−1)]T , (8)

with Lh and Lw the RIR and the filter length respectively.
Using the MLw-dimensional stacked filter vector w, i.e.,
w = [wT

1 wT
2 . . . wT

M]T , the EIR vector c of length Lc, i.e.,
c = [c(0) c(1) . . . c(Lc−1)]T , is equal to

c = Hw, (9)

with H the Lc×MLw-dimensional multi-channel convo-
lution matrix. Using the MLw-dimensional stacked vec-
tor of the received microphone signals

y(n) = x(n)+ v(n), (10)

...

w1(n)
y1(n)

w2(n)
y2(n)

wM (n)
yM (n)

...
...

Σ
z(n)

C
s(n)

h1
(n
)

h2(n)

h
M (n)

v1(n)
+

v2(n)
+

vM (n)
+

Fig. 1: Schematic illustration of a typical time-domain
multi-channel speech enhancement system.
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with

y(n) = [yT
1 (n) yT

2 (n) . . . yT
M(n)]T , (11)

ym(n) = [ym(n) ym(n−1) . . . ym(n−Lw + 1)]T , (12)

and x(n) and v(n) similarly defined, the enhanced output
signal z(n) can be expressed as

z(n) = wT x(n)+wT v(n) = wT HT︸ ︷︷ ︸
cT

s(n)+wT v(n), (13)

with s(n) = [s(n) s(n−1) . . . s(n−Lc−1)]T and x(n) =
HT s(n). For conciseness, the time index n will be omit-
ted when possible in the remainder of this paper.

3. ACOUSTIC MULTI-CHANNEL EQUALIZA-
TION TECHNIQUES

Acoustic multi-channel equalization techniques typically
disregard the presence of the additive noise v and de-
sign the reshaping filter w such that only the EIR c is
optimized. Since the presence of the additive noise is
disregarded, such techniques can result in a large noise
amplification [7] (cf. Section 6.3). Furthermore, since
in practice only the perturbed RIRs ĥm are available, the
perturbed convolution matrix Ĥ = H + E is used for the
reshaping filter design, with E the convolution matrix of
the RIR perturbations.
In this paper we will focus on the partial multi-
channel equalization technique based on the multiple-
input/output inverse theorem (P-MINT) proposed in [7],
which aims at suppressing the late reverberation and pre-
serving the perceptual speech quality. To this purpose,
the late reflection taps of the target EIR ct are set equal
to 0, while the remaining taps are set equal to the direct
path and early reflections of one of the available RIRs,
i.e.,

ct = [ ĥp(0) . . . ĥp(Ld−1)︸ ︷︷ ︸
Ld

0 . . . 0 ]T , (14)

where Ld corresponds to the length of the direct path and
early reflections and p ∈ {1, 2, . . . , M}. The P-MINT
filter is computed by minimizing the least-squares cost
function

JP = ‖Ĥw− ct‖2
2. (15)

As shown in [4], assuming that the available RIRs do not
share any common zeros and using Lw ≥

⌈
Lh−1
M−1

⌉
, the P-

MINT filter minimizing the least-squares cost function

in (15) is equal to

wP = Ĥ+ct , (16)

where {·}+ denotes the matrix pseudo-inverse. When
the true RIRs are available, i.e., Ĥ = H, the P-MINT
filter yields perfect dereverberation performance, i.e.,
HwP = ct . However, in the presence of RIR perturba-
tions, i.e., Ĥ 6= H, applying the P-MINT filter to the true
convolution matrix yields

HwP = ĤwP −EwP = ct −EwP . (17)

The first term in (17) is the target EIR, whereas the sec-
ond term represents distortions due to RIR perturbations.
If the energy of the reshaping filter w is small, then the
distortions caused by RIR perturbations are also small.
To decrease the reshaping filter energy, and hence, to in-
crease the robustness of the P-MINT technique against
RIR perturbations, the RP-MINT technique has been
proposed in [7,13]. The RP-MINT cost function is given
by

JRP = ‖Ĥw− ct‖2
2︸ ︷︷ ︸

εc

+δ wT w︸︷︷︸
εw

, (18)

where εc denotes the dereverberation error energy, εw de-
notes the reshaping filter energy, and δ is a regulariza-
tion parameter providing a trade-off between both terms.
Minimizing (18) yields the RP-MINT filter

wRP = (ĤT Ĥ + δ I)−1ĤT ct , (19)

with I the MLw × MLw-dimensional identity matrix.
While the P-MINT filter fails to achieve dereverberation
in the presence of RIR perturbations, it has been shown
in [7] that the RP-MINT filter yields a significantly bet-
ter dereverberation performance. Furthermore, the RP-
MINT filter is able to partly avoid the additive noise
amplification at the output of the system [7] (cf. Sec-
tion 6.3), however, the noise reduction performance is
limited since the actual noise statistics are not explicitly
taken into account.
Clearly, the dereverberation performance of the RP-
MINT technique depends on the regularization param-
eter δ which enables to trade off between the dereverber-
ation error energy εc and the reshaping filter energy εw,
with

εc = ‖ĤwRP − ct‖2
2, (20)

εw = wT
RP

w
RP
. (21)
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An appropriate regularization parameter should incorpo-
rate knowledge about both the dereverberation error en-
ergy and the reshaping filter energy, such that both terms
are low. In order to automatically compute the regular-
ization parameter in the RP-MINT technique, it has been
proposed in [7] to use a parametric plot of the reshaping
filter energy εw versus the dereverberation error energy
εc for different values of the regularization parameter
δ . Due to the arising trade-off, this parametric plot has
an L-shape, with the corner (i.e., the point of maximum
curvature) located where the reshaping filter wRP in (19)
changes from being dominated by over-regularization to
being dominated by under-regularization. It has there-
fore been proposed in [7] to automatically select the reg-
ularization parameter δ as the point of maximum cur-
vature of this L-curve. Experimental results in [7] have
shown that this automatic parameter selection procedure
yields a very similar robustness against RIR perturba-
tions as intrusively selecting the regularization parame-
ter.

4. INCORPORATING THE NOISE STATISTICS
IN ACOUSTIC MULTI-CHANNEL EQUALIZATION

Since acoustic multi-channel equalization techniques de-
sign reshaping filters aiming only at speech dereverber-
ation without taking the presence of the additive noise
into account, the output noise power is not explicitly
controlled and may even be amplified compared to the
noise power in the microphone signals. The output noise
power εv is given by

εv = E {(wT v)2}= wT Rvw, (22)

with E the expected value operator and Rv the additive
noise correlation matrix.
Aiming at controlling the dereverberation error energy
εc, the reshaping filter energy εw, as well as the output
noise power εv, we propose to extend the RP-MINT cost
function in (18) such that the actual noise statistics are
explicitly taken into account. The RP-MINT cost func-
tion for joint dereverberation and noise reduction (RP-
DNR) can then be written as

JRP-DNR = JRP + µεv (23)

= ‖Ĥw− ct‖2
2︸ ︷︷ ︸

εc

+δ wT w︸︷︷︸
εw

+µ wT Rvw︸ ︷︷ ︸
εv

, (24)

with δ the regularization parameter controlling the
weight given to the reshaping filter energy and µ an addi-
tional weighting parameter controlling the weight given

to the output noise power. The RP-DNR filter minimiz-
ing (24) is equal to

wRP-DNR = (ĤT Ĥ + δ I + µRv)−1ĤT ct . (25)

Clearly, the dereverberation and noise reduction perfor-
mance of the RP-DNR filter in (25) depend on the regu-
larization and weighting parameters δ and µ . Increasing
the regularization parameter δ results in a lower reshap-
ing filter energy at the expense of a higher dereverber-
ation error energy and a larger output noise power. In-
creasing the weighting parameter µ results in a better
noise reduction performance at the expense of a worse
dereverberation performance. While in simulations the
optimal values for the parameters δ and µ can be intru-
sively determined, in practice an automatic non-intrusive
procedure is required. In Section 5 we propose a novel
procedure for the joint automatic selection of the regular-
ization and weighting parameters in the RP-DNR tech-
nique.

5. AUTOMATIC SELECTION OF THE REGU-
LARIZATION AND WEIGHTING PARAMETERS

As already mentioned, different regularization and
weighting parameters δ and µ obviously result in differ-
ent RP-DNR filters in (25), which yield different dere-
verberation error energy εc, reshaping filter energy εw,
and output noise power εv, with

εc = ‖ĤwRP-DNR − ct‖2
2, (26)

εw = wT
RP-DNR

w
RP-DNR

, (27)

εv = wT
RP-DNR

Rvw
RP-DNR

. (28)

Similarly as for the RP-MINT technique, appropriate pa-
rameters δ and µ should incorporate knowledge about
the dereverberation error energy, the reshaping filter en-
ergy, and the output noise power, such that all three terms
are low. Motivated by the simplicity and the applica-
bility of the L-curve for regularizing least-squares tech-
niques [14], the so-called L-hypersurface has been pro-
posed in [15] as a multi-parameter generalization of the
L-curve. Similarly to the L-curve procedure where the
optimal parameter is selected as the point of maximum
curvature (cf. Section 3), we propose to select the regu-
larization and weighting parameters δ and µ as the point
of maximum Gaussian curvature of the L-hypersurface,
obtained by plotting the output noise power εv versus the
dereverberation error energy εc and the reshaping filter
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Fig. 2: Exemplary parametric surface of the output noise
power εv versus the dereverberation error energy εc and
the distortion energy εw for the RP-DNR technique.

energy εw for several parameters δ and µ .
Fig. 2 depicts an exemplary L-hypersurface obtained by
plotting εv versus εc and εw for several regularization and
weighting parameters δ and µ , with the circle denoting
the point of maximum Gaussian curvature. Although the
Gaussian curvature of a surface can be analytically com-
puted, numerical inaccuracies due to the manipulation of
large-dimensional matrices can occur when maximizing
it [16], such that a numerically stable algorithm is re-
quired. In this paper, the minimum distance method pro-
posed in [16] has been used to compute the point of max-
imum Gaussian curvature.

6. SIMULATIONS

In this section the dereverberation and noise reduction
performance when using the P-MINT filter in (16), the
automatically regularized RP-MINT filter in (19), and
the automatically parametrized RP-DNR filter in (25)
will be evaluated.

6.1. Acoustic system and algorithmic settings

We have considered an acoustic scenario with a single
speech source placed in broadside direction to a linear
microphone array with M = 4 equidistant microphones.
The room reverberation time is T60 ≈ 610 ms [17], the
RIR length is Lh = 4880, and the sampling frequency
is fs = 8 kHz. The distance between the microphones
is 4 cm and the distance between the speech source and
the microphone array is 2 m. The speech components
in the microphone signals are generated by convolv-
ing clean speech signals from the HINT database [18]
with the measured RIRs. The noise components consist
of a directional interference and spatially diffuse noise
which is simulated using [19]. The directional interfer-
ence is located in endfire direction at a distance of 2 m

from the microphones. The broadband input speech-to-
interference-ratio (SIR) is varied between −5 dB and
5 dB and the broadband input speech-to-diffuse-noise-
ratio is set to 10 dB. The “speech plus noise” signal is
13 s long and is preceded by a 7 s long “noise only” sig-
nal, which is not taken into account during evaluation.
In order to simulate RIR perturbations, the measured
RIRs are perturbed by adding scaled white noise as pro-
posed in [20], such that a desired level of normalized pro-
jection misalignment (NPM), i.e.,

NPM = 20log10
‖h− hT ĥ

ĥT ĥ ĥ‖2

‖h‖2
, (29)

is generated. The considered NPM values are

NPM ∈ {−33 dB, −27 dB, −21 dB, −15 dB}. (30)

For all considered techniques the filter length is set equal
to Lw =

⌈
Lh−1
M−1

⌉
= 1627, the desired window length is set

equal to Ld = 0.01× fs, and the target EIR ct is chosen
as the direct path and early reflections of the perturbed
first RIR ĥ1. In order to generate the L-curve and the L-
hypersurface required for the automatic selection of the
regularization and weighting parameters, the considered
regularization and weighting parameters are

δ ,µ ∈ {10−6, 10−5, . . . , 10−1, 1, 3, 5, 7}. (31)

Furthermore, the noise correlation matrix is estimated
during the “noise only” period as

Rv =
1
Lv

Lv

∑
l=1

vlv
T
l , (32)

with Lv denoting the number of available “noise only”
signal vectors. To avoid other sources of errors, we have
assumed that a perfect voice-activity-detector is used.

6.2. Instrumental performance measures
The dereverberation performance is evaluated in terms
of the reverberant energy suppression and perceptual
speech quality improvement. As commonly done in
the evaluation of acoustic multi-channel equalization
techniques, the reverberant energy suppression is eval-
uated as the improvement in direct-to-reverberant ra-
tio (∆DRR) [21] between the EIR c(n) and the input RIR
h1(n), i.e., ∆DRR = oDRR− iDRR, with

oDRR = 10log10

nd−1
∑

n=0
c2(n)

Lc−1
∑

n=nd

c2(n)

, (33)
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iDRR = 10log10

nd−1
∑

n=0
h2

1(n)

Lh−1
∑

n=nd

h2
1(n)

, (34)

where the first nd taps of the EIR and RIR represent
the direct-path propagation. The perceptual speech qual-
ity is evaluated using the instrumental quality measure
PESQ [22], which generates a similarity score between
a test signal and a reference signal in the range of 1 to
4.5. The reference signal employed here is xe,1(n) =
s(n)∗he,1(n), i.e., the early reverberation speech compo-
nent in the first microphone. The improvement in percep-
tual speech quality ∆PESQ is computed as the difference
between the PESQ score of the output speech component
zx(n) and the PESQ score of the reverberant speech com-
ponent x1(n).
The noise reduction performance is evaluated in terms of
the noise reduction factor ηNR , i.e.,

ηNR = 10log10
E {v2

1(n)}
E {z2

v(n)}
, (35)

with v1(n) the noise component in the first microphone
and zv(n) the output noise component defined in (3).
The joint dereverberation and noise reduction per-
formance is evaluated in terms of the improvement
in signal-to-reverberation-and-noise-ratio (∆SRNR), i.e.,
∆SRNR = oSRNR - iSRNR, with

iSRNR = 10log10
E {x2

e,1(n)}
E {x2

r,1(n)}+E {v2
1(n)}

, (36)

oSRNR = 10log10
E {z2

e(n)}
E {z2

r (n)}+E {z2
v(n)}

, (37)

where xe,1(n) and xr,1(n) are the early and late reverber-
ation speech components in the first microphone defined
in (2) and ze(n) and zr(n) are the early and late reverber-
ation output speech components defined in (5) and (6).

6.3. Results

Performance of the P-MINT technique

To illustrate that the P-MINT technique generally fails
to achieve dereverberation and results in additive noise
amplification, in this section we only investigate the per-
formance of the P-MINT technique. The presented per-
formance measures are averaged over the different con-
sidered NPM values in (30). Table 1 presents the ∆DRR,

∆PESQ, ηNR , and ∆SRNR values obtained using the P-
MINT technique for the different considered input SIRs.
Since the P-MINT reshaping filter is independent of the
input SIR, the obtained ∆DRR and ∆PESQ values are
the same for all considered input SIRs. As illustrated,
the P-MINT technique fails to achieve dereverberation,
worsening the DRR and the PESQ score by 10.8 dB and
0.4 respectively. Furthermore, the noise reduction fac-
tors presented in Table 1 shows that the additive noise
is significantly amplified, which is to be expected since
the P-MINT reshaping filter is designed without taking
the noise statistics into account. Since the P-MINT tech-
nique fails to achieve dereverberation and amplifies the
additive noise, it results in a significantly worse SRNR
value than in the input signal, as illustrated by the large
negative ∆SRNR values presented in Table 1. These sim-
ulation results confirm that when the RIR perturbations
are not taken into account, acoustic multi-channel equal-
ization techniques fail to achieve dereverberation. Fur-
thermore, they confirm that designing reshaping filters
for speech dereverberation without taking the presence
of the additive noise into account results in a large noise
amplification.

Performance of the RP-MINT and RP-DNR techniques

In this section the performance of the automatically reg-
ularized and parametrized RP-MINT and RP-DNR tech-
niques is investigated. Similarly as before, the presented
performance measures are averaged over the different
considered NPM values in (30). Fig. 3 depicts the perfor-
mance of considered techniques in terms of the ∆DRR,
∆PESQ, ηNR , and ∆SRNR measures. It can be observed
in Fig. 3a that the ∆DRR obtained using the RP-MINT
and RP-DNR techniques is very similar, with an insignif-
icant difference of at most 0.05 dB for low input SIRs.
Furthermore, Fig. 3b shows that also the PESQ score ob-
tained using the RP-MINT and RP-DNR techniques is
very similar, with an insignificant difference of at most
0.02 for low input SIRs. These results show that the dere-
verberation performance of the proposed RP-DNR tech-
nique is very similar to the dereverberation performance
of the RP-MINT technique. Although one would expect
the dereverberation performance of the RP-DNR tech-
nique to be lower than that of the RP-MINT technique,
this is not the case in these simulation results. This oc-
curs due to the automatic selection of the regularization
parameter in the RP-MINT technique, which does not
yield the best dereverberation performance one would
otherwise obtain by intrusively selecting the regulariza-
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Table 1: Average performance of the P-MINT technique for several input SIR.

Input SIR [dB] −5 −2.5 0 2.5 5

∆DRR [dB] −10.8
∆PESQ −0.4
ηNR [dB] −28.8 −28.7 −28.4 −28.3 −28.0
∆SRNR [dB] −13.1 −12.7 −12.1 −11.2 −10.1

−5−2.5 0 2.5 5
8.7

8.75

8.8

8.85

Input SIR [dB]

∆
D

R
R

[d
B

]

(a)

−5−2.5 0 2.5 5
0.59

0.6

0.61

0.62

Input SIR [dB]

∆
PE

SQ

(b)

−5−2.5 0 2.5 5
1
2
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5
6
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η
N
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[d
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]

RP-MINT RP-DNR

(c)

−5−2.5 0 2.5 5

2

3

4

5

Input SIR [dB]

∆
SR

N
R

[d
B

]

(d)

Fig. 3: Average performance of the automatically regularized P-MINT and the automatically parametrized RP-DNR
techniques for several input SIR in terms of (a) ∆DRR, (b) ∆PESQ, (c) ηNR , and (d) ∆SRNR.

tion parameter. While the dereverberation performance
of both techniques is very similar, it can be observed in
Fig. 3c that the noise reduction factor obtained using the
RP-DNR technique is up to 4 dB higher than the noise
reduction factor obtained using the RP-MINT technique.
Furthermore, Fig. 3c also shows that the incorporation
of regularization in acoustic multi-channel equalization
techniques avoids the significantly large noise amplifi-
cation one would otherwise obtain (cf. Table 1). This
occurs due to the decrease in the reshaping filter energy
when regularization is incorporated, which is also partly
effective in reducing the distortions in the output signal
arising due to the additive noise. However, it should be
noted that there is no guarantee that any noise reduction
can be achieved using the RP-MINT technique, since
the actual noise statistics are not explicitly taken into ac-
count. The very similar dereverberation performance but
higher noise reduction performance of the RP-DNR tech-
nique in comparison to the RP-MINT technique is also
reflected in the ∆SRNR values depicted in Fig. 3d, with
the RP-DNR technique yielding a higher ∆SRNR of up
to 3 dB when compared to the RP-MINT technique.
In summary, these simulation results demonstrate the im-

portance of taking the noise statistics into account in or-
der to achieve joint dereverberation and noise reduction.
Furthermore they show that the proposed RP-DNR tech-
nique does not sacrifice the high dereverberation per-
formance of the RP-MINT technique, but improves the
noise reduction as well as the joint dereverberation and
noise reduction performance.

7. CONCLUSION
In this paper we have proposed the RP-DNR technique
which aims at joint dereverberation and noise reduction
based on acoustic multi-channel equalization. The RP-
DNR technique directly extends the RP-MINT technique
by explicitly taking the noise statistics into account. In
addition to the regularization parameter used in the RP-
MINT technique, the RP-DNR technique introduces an
additional weighting parameter, enabling to trade off be-
tween dereverberation and noise reduction. We have also
proposed an automatic non-intrusive procedure based on
the L-hypersurface for selecting the regularization and
weighting parameters. Simulation results demonstrate
that the RP-DNR technique maintains the high derever-
beration performance of the RP-MINT technique, while
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improving the noise reduction as well as the joint dere-
verberation and noise reduction performance.
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