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ABSTRACT

This paper presents a novel signal-dependent method to increase the
robustness of acoustic multi-channel equalization techniques against
room impulse response (RIR) estimation errors. Aiming at obtain-
ing an output signal which better resembles a clean speech signal, we
propose to extend the acoustic multi-channel equalization cost func-
tion with a penalty function which promotes sparsity of the output
signal in the short-time Fourier transform domain. Two convention-
ally used sparsity-promoting penalty functions are investigated, i.e.,
the l0-norm and the l1-norm, and the sparsity-promoting filters are
iteratively computed using the alternating direction method of multi-
pliers. Simulation results for several RIR estimation errors show that
incorporating a sparsity-promoting penalty function significantly in-
creases the robustness, with the l1-norm penalty function outper-
forming the l0-norm penalty function.

Index Terms— speech dereverberation, sparsity, robustness, RIR
estimation errors

1. INTRODUCTION

Acoustic multi-channel equalization techniques aim at speech dere-
verberation by reshaping the estimated room impulse responses
(RIRs) between the speech source and the microphone array [1–4].
Although in theory perfect dereverberation can be achieved when
multiple microphones are available [1], such an approach poses the
practical challenge of achieving robustness against errors in the es-
timated RIRs [3–5]. Since the estimated RIRs typically differ from
the true RIRs [6, 7], acoustic multi-channel equalization techniques
may fail to achieve dereverberation and may cause distortions in the
output signal [3, 6].
Several methods have been proposed to increase the robustness of
equalization techniques against RIR estimation errors, such as, e.g.,
relaxing the constraints on the filter design by using a weighted least-
squares or an energy-based optimization criterion [2, 4], incorporat-
ing regularization to reduce the filter energy [3,5], or using a shorter
filter length to improve the conditioning of the underlying optimiza-
tion criteria [8]. To the best of our knowledge, all proposed methods
are signal-independent methods, i.e., they rely only on the estimated
RIRs for the filter design, without incorporating knowledge of the
resulting output signal.
In this paper we propose a signal-dependent method to increase the
robustness of equalization techniques by incorporating the output
signal in the filter design, with the aim of enforcing it to exhibit
spectro-temporal characteristics of a clean speech signal. Given the
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successful exploitation of the sparse nature of clean speech in several
speech enhancement techniques [9–12], we propose to promote spar-
sity of the output signal in the short-time Fourier transform (STFT)
domain by extending the acoustic multi-channel equalization cost
function with an l0-norm or l1-norm penalty function. The sparsity-
promoting filters are iteratively computed using the alternating di-
rection method of multipliers (ADMM), since it is a well-suited al-
gorithm for solving large scale problems with sparsity-promoting
penalty functions [13]. Simulation results show that promoting spar-
sity of the output signal significantly increases the robustness of
equalization techniques against RIR estimation errors, with the l1-
norm penalty function outperforming the l0-norm penalty function.

2. CONFIGURATION AND NOTATION

Consider the acoustic system depicted in Fig. 1, consisting of a sin-
gle speech source andM microphones. Them-th microphone signal
xm(n) at time index n is given by

xm(n) = s(n) ∗ hm(n), m = 1, . . . , M, (1)

with s(n) the clean speech signal, hm(n) the RIR between the
speech source and the m-th microphone, and ∗ denoting convolu-
tion. Using the filter-and-sum structure in Fig. 1, the output signal
z(n) is equal to the sum of the filtered microphone signals, i.e.,

z(n) =

M∑
m=1

xm(n) ∗wm(n) = s(n) ∗
M∑
m=1

hm(n) ∗ wm(n)︸ ︷︷ ︸
c(n)

, (2)

with wm(n) the filter applied to the m-th microphone signal and
c(n) the equalized impulse response (EIR) between the speech
source and the output of the system. In vector notation, the RIR hm
and the filter wm are given by

hm=[hm(0) . . . hm(Lh−1)]T, wm=[wm(0) . . . wm(Lw−1)]T, (3)

where Lh and Lw denote the RIR length and the filter length, re-
spectively. Furthermore, the Lc-dimensional EIR vector c, with
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Fig. 1. Acoustic system configuration.
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Lc = Lh + Lw − 1, is given by c = [c(0) . . . c(Lc − 1)]T . Us-
ing theMLw-dimensional stacked filter vector w = [wT

1 . . .w
T
M ]T

and the Lc ×MLw-dimensional multi-channel convolution matrix
of the RIRs H = [H1 . . .HM ], with Hm the Lc×Lw-dimensional
convolution matrix of hm, the output signal in (2) can be expressed
as

z(n) =

M∑
m=1

wT
m HT

ms(n)︸ ︷︷ ︸
xm(n)

= wTHT︸ ︷︷ ︸
cT

s(n), (4)

with s(n) = [s(n) . . . s(n − Lc + 1)]T the Lc-dimensional clean
speech vector, xm(n) = [xm(n) . . . xm(n − Lw + 1)]T the Lw-
dimensional signal vector at the m-th microphone, and

c = Hw. (5)

Alternatively, the output signal in (4) can also be expressed as

z(n) =

M∑
m=1

xTm(n)wm = xT (n)w, (6)

with x(n) = [xT1 (n) . . .xTM (n)]T the MLw-dimensional stacked
signal vector. Based on (6), the Lz-dimensional output signal vector
z(n) = [z(n) . . . z(n− Lz + 1)]T can be written as

z(n) = X(n)w, (7)

with X(n) the Lz ×MLw-dimensional multi-channel convolution
matrix of the microphone signals, i.e., X(n) = [X1(n) . . .XM (n)],
where Xm(n) denotes the Lz×Lw-dimensional convolution matrix
of xm(n). For conciseness, the time index n will be omitted when
possible in the remainder of this paper.

3. ACOUSTIC MULTI-CHANNEL EQUALIZATION

Acoustic multi-channel equalization techniques aim at speech dere-
verberation by designing the filter w such that the resulting EIR c
in (5) resembles a dereverberated target EIR ct. Since the true RIRs
are generally not available in practice [6, 7], such techniques design
w using the estimated multi-channel convolution matrix Ĥ (con-
structed from the estimated RIRs ĥm) instead of the true multi-
channel convolution matrix H.
In this paper we will focus on the partial multi-channel equal-
ization technique based on the multiple-input/output inverse the-
orem (PMINT) proposed in [3], which has been shown to be a
perceptually advantageous technique. The PMINT technique aims
at simultaneously suppressing late reverberation and preserving per-
ceptual speech quality by using a target EIR ct whose late reflection
taps are equal to 0, while the remaining taps are equal to the direct
path and early reflections of one of the estimated RIRs, i.e.,

ct = [ĥq(0) . . . ĥq(Ld − 1) 0 . . . 0]T , (8)

with Ld the length of the direct path and early reflections and q ∈
{1, . . . , M}. The PMINT filter is computed by minimizing the
least-squares cost function

JP (w) = ‖Ĥw − ct‖22. (9)

As shown in [1,3], assuming that the RIRs do not share any common
zeros and using Lw ≥

⌈
Lh−1
M−1

⌉
, with d·e the ceiling operator, the

PMINT filter minimizing the cost function in (9) is equal to

wP = Ĥ+ct, (10)

where {·}+ denotes the matrix pseudo-inverse. When the true RIRs
are available, i.e., Ĥ = H, the PMINT filter yields perfect derever-
beration performance, i.e., HwP = ct [3]. However, in the presence
of RIR estimation errors, i.e., Ĥ 6= H, the PMINT filter fails to
achieve dereverberation, i.e., HwP 6= ct, causing distortions in the
output signal [3].
Several methods have been proposed to increase the robustness of
equalization techniques against RIR estimation errors, e.g., relaxing
the constraints on the filter design using a weighted least-squares or
an energy-based optimization criterion [2, 4], incorporating regular-
ization [3, 5], or decreasing the filter length Lw [8]. To the best of
our knowledge, all proposed methods are signal-independent meth-
ods, i.e., they only use the estimated convolution matrix Ĥ for the
filter design without incorporating knowledge of the resulting output
signal z. The objective of this paper is to explore the potential of in-
creasing the robustness of acoustic multi-channel equalization tech-
niques by incorporating a signal-dependent penalty function, which
enforces the output signal z to exhibit spectro-temporal character-
istics of a clean speech signal. Although the proposed method is
discussed as an extension of the PMINT technique, it can also be
applied to increase the robustness of other (more robust and signal-
independent) acoustic multi-channel equalization techniques.

4. SPARSITY-PROMOTING
ACOUSTIC MULTI-CHANNEL EQUALIZATION

While in principle any well-defined characteristic of clean speech
could be exploited, we propose to use a penalty function which pro-
motes sparsity of the output signal in the STFT domain. The ad-
vantage of promoting sparsity of the output signal is expected to be
twofold. First, it is widely accepted that clean speech is sparse in
the STFT domain [9, 14, 15]. Empirical observations, e.g., in [9],
have shown that when clean speech is corrupted by reverberation
(and noise), the STFT coefficients are less sparse than the STFT co-
efficients of clean speech. Hence, promoting sparsity of the output
signal yields a signal which better resembles a clean speech signal.
Second, in the presence of RIR estimation errors, non-robust equal-
ization techniques introduce distortions (i.e., non-zero STFT coeffi-
cients) in the output signal [3]. By sparsifying the STFT represen-
tation of the output signal it is expected that these distortions are
reduced.

4.1. Cost function formulation

The STFT coefficients of the output signal are computed as

Z(k, l) =

K−1∑
n=0

wSTFT (n)z(lR+ n)e−
j2πkn
K , (11)

where k = 0, . . . , K−1, denotes the frequency bin index with K
the frame size, l = 0, . . . , L−1, denotes the frame index withL the
total number of frames,wSTFT (n) denotes the STFT analysis window,
and R denotes the frame shift. Similarly as in [16], we define the
STFT operator Ψ ∈ CLz̃×Lz which transforms the Lz-dimensional
time-domain vector z into the Lz̃-dimensional frequency-domain
vector z̃, i.e., z̃ = Ψz, consisting of all STFT coefficients Z(k, l),
with Lz̃ = K × L (i.e., z̃ denotes the stacked vector of the columns
of the spectrogram of z). When using a tight STFT analysis window,
the inverse STFT operator ΨH ∈ CLz×Lz̃ is such that ΨHΨ = I,
with I the Lz × Lz-dimensional identity matrix.
The proposed sparsity-promoting PMINT cost function is then de-
fined by adding a penalty function to (9), i.e.,

JS-P (w) = JP (w) + ηfS (z̃) = ‖Ĥw− ct‖22 + ηfS (ΨXw), (12)
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with fS (z̃) a sparsity-promoting penalty function and η a weight-
ing parameter providing a trade-off between the minimization of the
least-squares error and the sparsity of the STFT coefficients of the
output signal. For the penalty function fS (z̃), we propose two com-
monly used sparsity-promoting norms, i.e., the l0-norm1 f0

S (z̃) and
the l1-norm f1

S (z̃), defined as

f0
S (z̃) = |i : z̃(i) 6= 0|, f1

S (z̃) =

Lz̃−1∑
i=0

|z̃(i)|, (13)

with the l1-norm differing from the l0-norm by penalizing the large
coefficients of z̃ more than the small coefficients. It should be noted
that the l0-norm is non-convex and it is well known that optimiza-
tion problems with non-convex penalty functions are typically hard
(if not impossible) to solve exactly, particularly for large scale prob-
lems [17]. The l1-norm on the other hand can be viewed as a con-
vex relaxation of the l0-norm, and efficient methods have been pro-
posed to solve optimization problems with l1-norm penalty func-
tions [18, 19].

4.2. Cost function optimization based on the alternating direc-
tion method of multipliers (ADMM)

Since no closed-form expression is available for the filter minimiz-
ing the cost function in (12), iterative optimization algorithms are
required. We have chosen to use the ADMM algorithm, since it is
a well-suited algorithm for solving large scale optimization prob-
lems of the form in (12) [13]. Within the ADMM framework, the
minimization of the sparsity-promoting cost function in (12) is re-
formulated as

min
w

[
‖Ĥw − ct‖22 + ηfS (ã)

]
subject to ΨXw = ã, (14)

introducing the auxiliary variable ã such that the optimization prob-
lem in (12) can be split into simpler sub-problems. The augmented
Lagrangian of (14) is equal to

L = ‖Ĥw − ct‖22 + ηfS (ã) +
ρ

2
‖ΨXw + λ− ã‖22, (15)

with λ the Lz̃-dimensional dual variable and ρ > 0 the penalty
parameter. The ADMM algorithm minimizes (15) alternately with
respect to the variables w and ã, followed by a dual ascent over the
variable λ. The ADMM update rules are given by:

w(i+1) =arg min
w

[
‖Ĥw−ct‖22+

ρ

2
‖ΨXw+λ(i)−ã(i)‖22

]
, (16)

ã(i+1) =arg min
ã

[
ηfS(ã)+

ρ

2
‖ΨXw(i+1)+λ(i)−ã‖22

]
, (17)

λ(i+1) =λ(i)+ΨXw(i+1)−ã(i+1), (18)

where {·}(i) denotes the variable in the i-th iteration. The original
minimization problem in (12) is hence decomposed into simpler sub-
problems, which are solved in an alternating fashion using the update
rules in (16), (17), and (18) until a convergence criterion is satisfied
or a maximum number of iterations is exceeded (cf. Section 5.1). In
the following, the update rules for the filter and the auxiliary variable
in (16) and (17) are presented.
1) Filter update rule: Minimizing (16) yields

w(i+1)=(2ĤT Ĥ+ρXTX︸ ︷︷ ︸
C

)−1[2ĤTct︸ ︷︷ ︸
b1

+ρXTΨH(ã(i)−λ(i))︸ ︷︷ ︸
b
(i)
2

], (19)

1Note that the l0-norm is not a norm in the strict mathematical sense,
since it does not satisfy all properties of a norm.

where the variables C, b1, and b2 are introduced to highlight that
only the variable b2 is iteration-dependent, whereas the variables C
and b1 can be pre-computed. Although (19) appears to require a
matrix inversion in each iteration, the filter update can be efficiently
computed by, e.g., storing the LU-factorization of C and using for-
ward and backward substitution.
2) Auxiliary variable update rule: The solution to (17) is the prox-
imal mapping of the sparsity-promoting penalty function, which ex-
ists in closed-form for the l0- and l1-norm penalty functions [19,20].
Defining the variable b(i) = ΨXw(i+1)+λ(i) to simplify the nota-
tion, the proximal mapping for the l0-norm is the element-wise hard
thresholding map, i.e.,

ã
(i+1)
j =

(
|b(i)j | −

η

ρ

)
+

b
(i)
j

|b(i)j | −
η
ρ

, (20)

with {·}j denoting the j-th element of a vector and (T )+ =

max(T, 0). The proximal mapping for the l1-norm penalty function
is the element-wise soft thresholding map, i.e.,

ã
(i+1)
j =

(
|b(i)j | −

η

ρ

)
+

b
(i)
j

|b(i)j |
. (21)

In summary, using the filter update rule in (19), the auxiliary variable
update rule in (20) or (21), and the dual variable update rule in (18)
until a termination criterion is satisfied, the sparsity-promoting
PMINT filter can be computed.

5. SIMULATIONS

In this section the dereverberation performance of the sparsity-
promoting PMINT technique using the l0- and l1-norm penalty
functions is compared to the PMINT technique for several RIR
estimation errors.

5.1. Algorithmic settings and performance measures

We consider an acoustic system with a single speech source and
M = 4 microphones in a room with reverberation time T60 ≈
610 ms [21]. The source-microphone distance is 2 m, the inter-
microphone distance is 4 cm, and the RIR length is Lh = 4880 at a
sampling frequency of 8 kHz. To generate the microphone signals,
10 sentences (approximately 17 s long) from the HINT database [22]
have been convolved with the measured RIRs.
To simulate RIR estimation errors, the measured RIRs have been
perturbed by adding scaled white noise as proposed in [23], such that
a desired level of normalized projection misalignment (NPM) be-
tween the true and the estimated RIRs is generated. The considered
NPM values are NPM ∈ {−33 dB,−27 dB,−21 dB,−15 dB}.
For all considered techniques the filter length is Lw = 1600 and the
target response ct is set to the direct path and early reflections of ĥ1,
with the length of the direct path and early reflections corresponding
to 10 ms (cf. (8)). Furthermore, for the sparsity-promoting PMINT
technique, the weighting and penalty parameters are empirically set
to η = 10−4 and ρ = 10−1.
In order to reduce the computational complexity, the sparsity-
promoting filters are computed using only the first 2 sentences
of the microphone signals (approximately 3 s long). However, the
complete output signal has been used for the evaluation. The STFT
is computed using a 32 ms Hamming window with 50% overlap
between successive frames. The frame size is K = 256 and the
total number of frames is L = 208. For the ADMM algorithm, the
variables w, ã, and λ are initialized with [1 0 . . . 0]T . Furthermore,
the termination criterion is set to either the number of iterations
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Fig. 2. Spectrogram of (a) reference signal sr(n), (b) input signal x1(n), and output signal z(n) obtained using (c) PMINT, (d) l0-PMINT,
(e) l1-PMINT (NPM = −33 dB).

Table 1. Performance in terms of ∆DRR, ∆PESQ, and ∆CD of
the PMINT, l0-PMINT, and l1-PMINT techniques for several NPMs.
The input DRR, PESQ, and CD are −1.89 dB, 2.15, and 4.11 dB.

NPM [dB] −33 −27 −21 −15

∆DRR [dB]

PMINT −18.47 −18.16 −17.43 −15.41
l0-PMINT 3.74 2.76 2.34 0.22
l1-PMINT 8.15 8.04 7.68 3.78

∆PESQ

PMINT −0.41 −0.50 −0.29 −0.43
l0-PMINT 0.07 0.05 −0.02 −0.08
l1-PMINT 0.36 0.42 0.32 0.03

∆CD [dB]

PMINT 1.84 1.96 1.88 1.90
l0-PMINT −0.68 −0.29 0.05 0.39
l1-PMINT −0.90 −0.84 −0.50 0.14

exceeding a maximum number of iterations or the relative change in
the solution norm dropping below a tolerance, i.e.,

i+ 1 > imax or
‖w(i+1) −w(i)‖2

‖w(i)‖2
< ε, (22)

with imax = 150 and ε = 10−3.
The dereverberation performance is evaluated in terms of the re-
verberant energy suppression and the perceptual speech quality im-
provement. The reverberant energy suppression is evaluated using
the direct-to-reverberant-ratio improvement (∆DRR) [24] between
the resulting EIR c and the true RIR h1. The improvement in per-
ceptual speech quality is evaluated using the improvement in PESQ
(∆PESQ) [25] and in cepstral distance (∆CD) [26] between the out-
put signal z(n) and the microphone signal x1(n). The reference
signal sr(n) employed for PESQ and cepstral distance is the clean
speech signal convolved with the direct path and early reflections of
the true RIR h1. It should be noted that an improvement in percep-
tual speech quality is indicated by a positive ∆PESQ and a negative
∆CD.

5.2. Results

Table 1 presents the ∆DRR, ∆PESQ, and ∆CD values obtained us-
ing the PMINT and the sparsity-promoting PMINT techniques with
l0-norm (l0-PMINT) and l1-norm (l1-PMINT) penalty functions for
several NPMs. It can be observed that, as expected, the PMINT
technique fails to achieve dereverberation in the presence of RIR es-
timation errors and introduces distortions in the output signal, wors-
ening the DRR, PESQ, and CD values. Furthermore, it can be ob-

served that incorporating the l0-norm penalty function significantly
improves the robustness of the PMINT technique, typically yielding
a slight improvement (for NPM = −33 dB and NPM = −27 dB)
or a similar performance as the input signal (for NPM = −21 dB
and NPM = −15 dB) in terms of all performance measures. Finally,
it can be observed that incorporating the l1-norm penalty function
yields the best performance in terms of the ∆DRR, ∆PESQ, and
∆CD measures, outperforming the l0-norm penalty function and re-
sulting in a considerable improvement in comparison to the input
signal.
To better illustrate the advantages of promoting sparsity of the output
signal in the STFT domain, Fig. 2 presents the spectrograms of the
reference signal sr(n), the microphone signal x1(n), and the output
signal z(n) obtained using the PMINT, l0-PMINT, and l1-PMINT
techniques for an exemplary scenario of NPM = −33 dB. Compar-
ing Figs. 2(a) and 2(b), it can be observed that due to the spectro-
temporal smearing effect of reverberation, the spectrogram of x1(n)
is significantly less sparse than the spectrogram of sr(n). Further-
more, Fig. 2(c) shows that due to the distortions introduced in the
output signal by the non-robust PMINT technique, the spectrogram
of the output signal z(n) obtained using PMINT is significantly less
sparse than the spectrogram of x1(n). On the contrary, Fig. 2(d)
shows that incorporating the l0-norm penalty function sparsifies the
spectrogram of the output signal, largely suppressing the distortions
introduced by the PMINT technique as well as slightly suppressing
the reverberant energy (e.g., around 1 kHz). Finally, Fig. 2(e) shows
that incorporating the l1-norm penalty function results in an even
sparser spectrogram than the l0-norm, significantly suppressing both
the distortions introduced by the PMINT technique as well as the
reverberant energy.
In summary, these simulation results confirm that incorporating
a sparsity-promoting penalty function in equalization techniques
yields a significant increase in robustness against RIR estimation
errors. Incorporating such penalty functions in other (more robust
signal-independent) equalization techniques as well as investigat-
ing other sparsity-promoting penalty functions, e.g., the weighted
l1-norm [27], remain topics for future investigation.

6. CONCLUSION

In this paper we have presented a novel signal-dependent method to
increase the robustness of acoustic equalization techniques against
RIR estimation errors. We have proposed to incorporate an l0- and
l1-norm penalty function, aiming at promoting sparsity in the output
signal and reducing distortions generated by non-robust equaliza-
tion techniques. The sparsity-promoting filters have been iteratively
computed using the alternating direction method of multipliers. Sim-
ulation results for several RIR estimation errors have validated the
effectiveness of incorporating sparsity-promoting penalty functions
to increase the robustness of equalization techniques, with the l1-
norm penalty function outperforming the l0-norm penalty function.
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