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ABSTRACT

To decode auditory attention from electroencephalography (EEG)
recordings in a cocktail-party scenario with two competing speak-
ers a least-squares method has recently been proposed, showing a
promising decoding accuracy. This method however requires the
clean speech signals of both the attended and the unattended speaker
to be available as reference signals, which is difficult to achieve from
the noisy recorded microphone signals in practice. In addition, opti-
mizing the parameters involved in the spatio-temporal filter design is
of crucial importance in order to reach the largest possible decoding
performance. In this paper, the influence of noisy acoustic reference
signals and the spatio-temporal filter and regularization parameters
on the decoding performance is investigated. The results show that
to some extent the decoding performance is robust to noisy acous-
tic reference signals, depending on the noise type. Furthermore, we
demonstrate the crucial influence of several parameters on the de-
coding performance, especially when the acoustic reference signals
used for decoding have been corrupted by noise.

Index Terms— auditory attention decoding, noisy acoustic ref-
erence, speech envelope, brain computer interface

1. INTRODUCTION

The human auditory system has a remarkable ability to separate a
speaker of interest from a mixture of speakers or to tune out inter-
fering sounds in a noisy environment, known as the cocktail-party
paradigm [1, 2]. Motivated by this observation, during the last
decade a large research effort has focused on better understanding
the neural activity of the auditory system [3, 4, 5, 6], especially
regarding auditory attention in a cocktail-party situation with (two)
competing speakers [7, 8]. It has been shown that the auditory corti-
cal responses to speech are correlated with the envelope of attended
(and unattended) speech signals [5, 8, 9, 10]. Based on this finding,
it has been proposed to decode auditory attention from single-trial
EEG recordings using a least-squares method that aims to recon-
struct the envelope of the attended speech signal from the EEG
recordings [8, 11]. It has been shown that it is possible to decode
to which speaker a listener has attended with quite a large accuracy,
implying the possibility of controlling the assistive hearing devices
with auditory attention decoding in the future [8, 12].

The least-squares-based auditory attention decoding (AAD)
method proposed in [8] uses a spatio-temporal filter to reconstruct
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the attended speech envelope from the EEG recordings. During a
training step the filter coefficients are estimated based on a least-
squares cost function, aiming to maximize the correlation between
the reconstructed envelope and the attended speech envelope. In
order to avoid over-fitting to the training data, the least-squares cost
function is typically regularized, e.g., using the norm of the filter
coefficients. Aiming to optimize the envelope reconstruction accu-
racy to increase the AAD performance, the spatio-temporal filter
parameters (i.e. the number of coefficients and the latency) and the
regularization parameter need to be tuned. Based on experimental
results we show that tuning these parameters may result in a signifi-
cant decoding performance increase up to 97%, especially when the
acoustic reference signals are corrupted by noise.

The AAD method in [8] however requires the clean speech sig-
nals of both attended and unattended competing speakers to be avail-
able as acoustic reference signals. In practice, obtaining clean acous-
tic reference signals from the recorded microphone signals, con-
taining a mixture of the speech signals and background noise, us-
ing acoustical signal processing algorithms is hard (if not impossi-
ble), since the output signals of blind source separation [13, 14] and
speech enhancement algorithms [15, 16] typically contain cross-talk
components and residual background noise. A crucial question then
arises how robust the AAD is to noisy acoustic reference signals. To
investigate the influence of noise on the AAD performance in this
paper, we assume that the acoustic reference signals are not equal
to the clean speech signals but have been corrupted by either cross-
talk components or background noise, e.g., white or speech-shaped
noise. Using simulation experiments we show that the least-squares-
based AAD method is to some extent robust to noise where the in-
fluence of cross-talk (unattended speech signal) is considerably large
than for white and speech-shaped noise.

2. AUDITORY ATTENTION DECODING

Let us consider a cocktail-party scenario with two competing speak-
ers, where the ongoing EEG responses of a subject listening to the
mixture of these speakers have been recorded. The clean speech sig-
nals of the attended and the unattended speaker (clean acoustic ref-
erence signals) are denoted as xa [t] and xu [t], respectively, where
t = 1 . . . T denotes the time index. The envelopes of these speech
signals are denoted as sa [k] and su [k], where k = 1 . . .K denotes
the sub-sampled time index (cf. section 4). To decode auditory at-
tention from N -channel EEG recordings rn [k], n = 1 . . . N , using
a spatio-temporal filter with filter coefficients wn,l, an estimate of
the attended speech envelope ŝa [k] is reconstructed using the EEG
recordings as
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ŝa [k] =

N∑
n=1

L−1∑
l=0

wn,l rn [k + ∆ + l] , (1)

where ∆ models the latency of the EEG responses to the speech
stimuli and L denotes the number of filter coefficients. In vector
notation, (1) can be rewritten as

ŝa [k] = wT r [k] , (2)

with

w =
[
wT

1 wT
2 . . .w

T
N

]T
, (3)

wn = [wn,0 wn,1 . . . wn,L−1]T , (4)

r [k] =
[
rT1 [k] rT2 [k] . . . rTN [k]

]T
, (5)

rn [k] = [rn [k + ∆] rn [k + ∆ + 1] . . . rn [k + ∆ + L− 1]]T .
(6)

During the training step, the filter w (also referred to as the decoder)
is computed by minimizing the least-squares error between sa [k]
(which is known during the training step) and the estimated envelope
ŝa [k], i.e.,

JLS (w) = E

{∣∣∣sa [k]−wT r [k]
∣∣∣2} , (7)

where E {.} denotes the expected value operator. In order to avoid
over-fitting to the training data, the cost function in (7) is typically
regularized [3], e.g., using the norm of the filter coefficients, i.e.,

JRLS (w) = E

{∣∣∣sa [k]−wT r [k]
∣∣∣2}+ βwTw, (8)

with β the regularization parameter. The filter minimizing the regu-
larized cost function in (8) is equal to

wRLS = (R + βI)−1 r, (9)

with R = E
{
r [k] rT [k]

}
the auto-correlation matrix, I the identity

matrix, and r = E {r [k] sa [k]} the cross-correlation vector. For
small values of the regularization parameter β, the reconstruction ac-
curacy is increased for training data at the expense of decreasing the
reconstruction accuracy for unseen data, referred to as over-fitting.
However, for too large values of the regularization parameter, the
reconstruction accuracy is severely decreased both for training and
evaluation data. Aiming at improving the reconstruction accuracy in
order to increase the decoding performance, determining appropriate
values for L, ∆ and β is hence of crucial importance.

Based on the correlation coefficients between the reconstructed
speech envelope ŝa [k] and the clean attended and unattended speech
envelopes, i.e.,

ρa = ρ (sa[k], ŝa [k]) , (10)

ρu = ρ (su[k], ŝa [k]) , (11)

with

ρ (z [k] , y [k]) =
E
{(
z [k]− µz[k]

) (
y [k]− µy[k]

)}
σz[k]σy[k]

, (12)

where µz[k] and σz[k] denote the mean and the variance of z [k], it
is then decided that auditory attention has been correctly decoded
when ρa > ρu.

3. NOISY ACOUSTIC REFERENCE SIGNALS

In [8] it has been assumed that the clean attended and unattended
speech signals are available for decoding, i.e., for computing the
correlation coefficients in (10) and (11). However, in practice these
clean speech signals are typically not available. To investigate the in-
fluence of noisy acoustic reference signals on the AAD performance,
it is assumed here that the reference signals are not equal to the clean
speech signals of the speakers but have been corrupted either by each
other (simulating residual cross-talk at the output of a source sepa-
ration algorithm) or by stationary noise (simulating residual noise at
the output of a speech enhancement algorithm).

In the first case, the noisy acoustic reference signals are equal to

x̃a [t] = xa [t] + βaxu [t] , (13)

x̃u [t] = xu [t] + βuxa [t] , (14)

where the scalars βa and βu determine the amount of cross-talk. The
amount of cross-talk can be characterized by the signal-to-noise ratio
(SNR), i.e.,

SNRx̃a/x̃u = 10 log10

(
Pxa/xu

β2
a/uPxu/xa

)
. (15)

where Pxa/xu denote the power of xa [t] or xu [t] .
In the second case, the noisy acoustic reference signals are equal

to

x̃a [t] = xa [t] + αana [t] , (16)

x̃u [t] = xu [t] + αunu [t] , (17)

where the scalars αa and αu determine the amount of stationary
noise, and na [t] and nu [t] denote different realizations of the same
noise type. The amount of noise can again be characterized by the
SNR, i.e.,

SNRx̃a/x̃u = 10 log10

(
Pxa/xu

α2
a/uPna/nu

)
. (18)

where Pna/nu denotes the power of na or nu.
For both cases, auditory attention is then correctly decoded when

ρ̃a > ρ̃u, with

ρ̃a = ρ (s̃a [k] , ŝa [k]) , (19)

ρ̃u = ρ (s̃u [k] , ŝa [k]) , (20)

where s̃a [k] and s̃u [k] denote the envelopes of x̃a [t] and x̃u [t],
respectively.

4. ACOUSTIC AND EEG MEASUREMENT SETUP

Eight native German-speaking participants (aged between 21 and
29) took part in this study. The participants reported no present
or past neurological or psychiatric conditions and normal hearing.
Two German stories, uttered by male and female speakers, were pre-
sented to the participants using earphones at a sampling frequency of
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48kHz. The only difference between the left and the right earphone
signals was an interaural level difference of 3dB (i.e., no interau-
ral time difference), so that the participants had the feeling that one
speaker was located at the left side and the other speaker at the right
side. The participants were asked to attend to either the left or the
right speaker during the whole experiment (4 participants to the right
speaker and 4 participants to the left speaker). The participants were
instructed to keep looking ahead and minimize eye blinking. The
presentation of the stories lasted 48 minutes, and was interrupted by
four breaks, during which the participants were asked to fill out a
questionnaire consisting of eight multiple-choice questions (see [12]
for more detailed information about the measurement procedure).

EEG responses were recorded using 96 channels (N = 96), ref-
erenced to the nose electrode and recorded with a sampling rate of
500 Hz (analog filter settings 0.0153− 250Hz). The EEG data were
offline re-referenced to a common average reference, band-pass fil-
tered between 2 and 8Hz using a third-order Butterworth band-pass
filter, and subsequently downsampled to fs = 64Hz. The speech en-
velopes of the (noisy) speech signals were obtained using a Hilbert
transform of the signals, followed by low-pass filtering at 8Hz and
downsampling to fs = 64Hz.

For each participant the 48-minute EEG responses were split
into 24 trials, each of length 2 minutes. The leave-one-out cross-
validation approach was used for training and testing, i.e., for each
trial j = 1 . . . 24 different decoders wRLS were computed for all
other trials, and using the averaged decoder the decoding accuracy
for trial j was computed. Each participant’s own data were used
for decoder training and testing. The average decoding performance
was defined as the percentage of correctly decoded trials over all
trials and participants.

5. EXPERIMENTAL RESULTS

In this section the decoding performance of the least-squares method
will be presented using the experimental setup discussed in the previ-
ous section. In Section 5.1 the spatio-temporal filter parameters and
the regularization parameter will be optimized using clean acoustic
reference signals. In Section 5.2 the influence of noisy acoustic ref-
erence signals on the decoding performance will be investigated.

5.1. Clean Acoustic Reference Signals

In order to optimize the AAD performance, we have considered
the following parameter values: latency ∆ ranging from 0ms to
375ms in steps of 31.25ms (covering the EEG response latencies
reported in [3]), filter length L ranging from 0ms to 375ms in steps
of 31.25ms, and regularization parameter β ranging from 10−2 to
106. For all possible combinations of parameter values, the average
decoding performance was computed over all trials and participants.
The largest AAD performance (97%) was obtained for ∆ = 125ms,
L = 125ms and β=1, implying that the most contributing EEG
recordings to reconstruct the attended speech envelope are those with
latencies between 125ms and 250ms and that regularization is re-
quired in order to avoid over-fitting.

In order to investigate the sensitivity of the decoding perfor-
mance around the optimal parameter values, Fig. 1a depicts the
average decoding performance for different values of the regular-
ization parameter β (for ∆ = 125ms and L = 125ms), whereas
Fig. 1b depicts the average decoding performance for different val-
ues of the spatio-temporal filter parameters L and ∆ (for β = 1).
The shaded area represents the 95% confidence interval, which was

(a)

(b)

Fig. 1. Average decoding performance using clean reference signals
for different values of the (a) regularization parameter β, and (b)
spatio-temporal filter parameters ∆ and L. The shaded area repre-
sents the 95% confidence interval.

estimated using bootstrap sampling. The results show that the de-
coding performance is relatively insensitive to the regularization
parameter (only for very large and very small values the decoding
performance significantly decreases). In addition, when the latency
and the filter length are chosen in the range 62.5ms to 156.25ms, the
decoding performance remains relatively high, whereas for smaller
and for larger values the decoding performance significantly de-
creases. Nevertheless, determining appropriate parameters is crucial
to achieve a large and robust decoding performance.

5.2. Noisy Acoustic Reference Signals

In this section we investigate the influence of noisy acoustic refer-
ence signals (cf. Section 3) on the decoding performance for three
types of acoustic noise: cross-talk, white noise, and speech-shaped
noise. For all noise types, the mixing parameters βa and βu (in (13)
and (14)) and αa and αu (in (16) and (17)) were computed such that
SNR = SNRx̃a = SNRx̃u , with SNRs ranging from −30dB to
30dB in steps of 2dB. Note that for all conditions we have used the

696



Fig. 2. Average decoding performance for different SNRs (cross-
talk, white noise, and speech-shaped noise). The shaded area repre-
sents the 95% confidence interval.

decoders trained on clean acoustic reference signals using the opti-
mal parameters determined in Section 5.1.

Fig. 2 depicts the average decoding performance for all consid-
ered noise types for different SNRs. In general, it can be observed
that the influence of white noise is smaller than speech-shaped noise
and cross-talk. This can be explained by considering the influence
of noise on the correlation coefficients ρ̃a and ρ̃u in (19) and (20),
which are used to decode auditory attention. For different SNRs,
Fig. 3 depicts the correlation coefficients between the reconstructed
speech envelope and the attended/unattended speech envelope, av-
eraged across participants (note that these average correlation coef-
ficients are not directly used for decoding). On the one hand, from
Fig. 3a it can be observed that for white noise and speech-shaped
noise both the (average) attended and unattended correlation coef-
ficients decrease, such that below a certain SNR both correlation
coefficients become similar and auditory attention can not be ac-
curately decoded any more. On the other hand. from Fig. 3b it
can be observed that for cross-talk the (average) attended correlation
coefficient decreases, whereas the (average) unattended correlation
coefficient increases, such that below a certain SNR (around 0dB)
decoding auditory attention becomes impossible.

To evaluate the robustness of the decoding performance against
noise, we defined two criteria: 1) the SNR for which the average de-
coding performance is larger than 90%, denoted as SNRL, and 2) the
mean decoding performance between SNRL and SNRU = 30dB.
For the spatio-temporal filter and regularization parameters used in
Fig. 2, SNRL was equal to 0dB for cross-talk, −4dB for speech-
shaped noise and −14dB for white noise, whereas the mean decod-
ing performance was equal to 97% for cross-talk, 91% for speech-
shaped noise and 96% for white noise. Similarly as in Section 5.1,
we computed the mean decoding performance (i.e. averaged be-
tween SNRL and SNRU) for all possible combinations of param-
eter values. Surprisingly, for all noise types the largest mean decod-
ing performance was obtained using the same parameters as for the
clean acoustic reference signals, i.e. ∆ = 125ms, L = 125ms and
β=1.

In summary, the experimental results have shown that the least-
squares-based AAD method is to some extent robust to noisy acous-
tic reference signals, depending on the noise type. In addition, tun-

(a)

(b)

Fig. 3. Correlation coefficients between the reconstructed speech
envelope and the attended/unattended speech envelope, averaged
across participants for different SNRs for (a) white noise and
speech-shaped noise, and (b) cross-talk.

ing the spatio-temporal filter and the regularization parameters plays
a crucial role to increase the performance and the robustness.

6. CONCLUSION

In this paper, we have investigated the influence of noisy acoustic
reference signals on decoding auditory attention in a scenario with
two competing speakers. The experimental results have shown that
the least-squares-based AAD method is to some extent robust to
noisy acoustic reference signals, where the influence of cross-talk
(i.e., unattended speech signal) is considerably larger than for white
and speech-shaped noise. In addition, tuning the spatio-temporal
filter parameters is of crucial importance, especially when the refer-
ence signals used for decoding have been corrupted by noise.
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