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ABSTRACT

We propose a novel Power Spectral Density (PSD) estimator for
multi-microphone systems operating in reverberant and noisy con-
ditions. The estimator is derived using the maximum likelihood
approach and is based on a blocked and pre-whitened additive sig-
nal model. The intended application of the estimator is in speech
enhancement algorithms, such as the Multi-channel Wiener Fil-
ter (MWF) and the Minimum Variance Distortionless Response
(MVDR) beamformer. We evaluate these two algorithms in a speech
dereverberation task and compare the performance obtained using
the proposed and a competing PSD estimator. Instrumental perfor-
mance measures indicate an advantage of the proposed estimator
over the competing one. In a speech intelligibility test all algo-
rithms significantly improved the word intelligibility score. While
the results suggest a minor advantage of using the proposed PSD
estimator, the difference between algorithms was found to be statis-
tically significant only in some of the experimental conditions.

Index Terms— multi-microphone, PSD estimation, maximum
likelihood estimator, isotropic sound field, speech dereverberation.

1. INTRODUCTION

In many speech communication scenarios reverberation and noise
degrade the intelligibility and the perceived quality of speech sig-
nals. In order to reduce the negative impact of these interferences,
various speech enhancement algorithms have been proposed for de-
vices such as hearing aids and conferencing systems. Many of these
algorithms require the Power Spectral Densities (PSDs) of the target
and the interference signal components. Estimation of these (usually
unknown) PSDs is the topic of this paper.

One general class of PSD estimators used for speech enhance-
ment is based on the assumption that the interference is more sta-
tionary than the target. This enables the use of PSD estimators based
on e.g. Voice Activity Detection (VAD) [1] or on Minimal Statis-
tics (MS) [2]. In many scenarios (notably for reverberation) the in-
terference is highly non-stationary, which requires the use of PSD
estimators other than those solely based on VAD or MS.

The class of PSD estimators that is of interest in this paper differ-
entiates between the target and the interference based on their spatial
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characteristics. These methods can be implemented only in multi-
microphone systems, but allow for simultaneous on-line estimation
of the target and the interference PSDs. Many modern speech com-
munication devices have more than one microphone, which makes
spatial processing schemes of particular interest.

In this study we focus on PSD estimators that are suitable for re-
verberant and noisy conditions; specifically, on the maximum likeli-
hood estimators proposed in [3,4]. In both these estimators the signal
components are assumed to be Gaussian and uncorrelated, and rever-
beration is modeled as isotropic. The estimator in [3] also accounts
for an additive noise component which is assumed to be station-
ary. The estimator in [4] does not include the additional noise com-
ponent, but it follows the Maximum Likelihood Estimation (MLE)
methodology more closely than [3]. As shown in [5], in the absence
of the additive noise, [4] performs better then [3]. However, when
the additive noise is present, [4] generally performs worse than [3].

In this paper we first derive an extended version of the estimator
from [4], which explicitly includes the reverberation and the additive
stationary noise in the signal model, while still attempting to closely
follow the MLE methodology. We then evaluate four speech dere-
verberation algorithms based on the proposed PSD estimator and on
the estimator from [3]. The evaluation is based on instrumental per-
formance measures and on a speech intelligibility test.

2. SIGNAL MODEL AND STATISTICAL ASSUMPTIONS

Consider an array of M microphones in a reverberant room where
a single talker is active. Due to the wide-band and non-stationary
nature of speech signals, we implement the proposed method in the
Short Time Fourier Transform (STFT) domain. For notational con-
ciseness the complex-valued STFT coefficients of all microphone
signals are stacked in an M × 1 vector y(k, n), where k is the fre-
quency bin index and n is the time frame index. We assume that
y(k, n) is uncorrelated across n and k. This allows us to omit the
frequency bin index k in the following without loss of generality.

We model the vector y(n) as a sum of three components: the
target signal s(n) (i.e. the direct speech and early reverberation),
late reverberation r(n), and additive noise x(n),

y(n) = s(n) + r(n) + x(n). (1)

We define the cross-PSD matrix of the input y(n) as Φy(n) =
E[y(n)yH(n)], where ·H denotes the Hermitian transpose. As-
suming that s(n), r(n), and x(n) are uncorrelated with each other,
Φy(n) can be modeled as a sum of the cross-PSD matrices of these
individual signal components (defined analogously to Φy(n)). We
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assume that the microphone signal and its components are Gaussian
distributed; hence, their STFT coefficients are circularly-symmetric
complex Gaussian distributed, e.g: y(n) ∼ NC(0,Φy(n)).

We model the talker as a single point-source and the early re-
flections as linear filters acting on the speech emitted by the talker.
Hence, s(n) can be written as ds(n), where s(n) is the scalar STFT
coefficient of the direct-path speech at a chosen reference position,
and d is a vector of Relative Transfer Functions (RTFs) [6] of the
target signal from the reference position to all microphones. In
terms of the cross-PSD matrix of the target component, this leads to:
Φs(n) = φs(n)ddH , where φs(n) denotes the scalar PSD of the
target speech component at the reference position. We assume that
an estimate of d is available (e.g., because the application at hand
allows accurate off-line estimation of d, or alternatively, by use of
an on-line estimation scheme such as [7, 8]).

We also assume that the late reverberation is cylindrically
isotropic, i.e. that the late reverberant energy impinges on the
microphone array from all horizontal directions with equal in-
tensity. It allows us to write the cross-PSD matrix of r(n) as:
Φr(n) = φr(n)Γr, where φr(n) denotes the PSD of the reverber-
ation at the reference position and Γr denotes the cross-PSD matrix
of a cylindrically isotropic sound field normalized by φr(n). The
matrix Γr is constant and may be measured a priori (see e.g. [9,10]).

We finally assume that the third signal component, x(n), is re-
lated to an additive noise whose statistics are slowly varying (e.g.
microphone noise, car cabin noise). It follows that the cross-PSD
matrix Φx can be assumed approximately constant (hence, we omit
the index n). We assume that Φx is known or that a reliable esti-
mate thereof is available (e.g., periodically updated during speech-
and reverberation-free fragments of the signal).

Based on the aforementioned assumptions the overall model of
the microphone input cross-PSD matrix may be written as:

Φy(n) = φs(n)ddH + φr(n)Γr + Φx. (2)

In this model only the scalar PSDs φs(n) and φr(n) are unknown
and time-varying; their estimation is the focus of this paper.

3. DERIVATION OF THE PROPOSED PSD ESTIMATOR

In this section we derive the proposed Maximum Likelihood Esti-
mator (MLE) of φs(n) and φr(n). To facilitate the derivation we
assume that φs(n) and φr(n) are approximately constant across a
certain number L of consecutive time frames. We define the sample
cross-PSD matrix based on the L most recent input vectors y(n) as:

Φ̂y(n) =
1

L

L−1∑
l=0

y(n− l)yH(n− l). (3)

It has been shown [11, 12] that the joint log-likelihood function of
φs(n) and φr(n) is given by:

L(φs, φr) = −L log |Φy(n)| − L tr
(
Φ̂y(n)Φ

−1
y (n)

)
, (4)

where tr(·) denotes the matrix trace operator. The MLEs of φs(n)
and φr(n) are defined as the values maximizing L(φs, φr).

3.1. Estimator of the target speech PSD

The class of MLEs considered in this paper has been studied in
[11], from where it follows that the MLE of φs(n) can be found
as: argmaxφs

L(φs, φ̂r(n)), where φ̂r(n) is the MLE of φr(n).

Denoting the MLE of the total cross-PSD matrix of the interfer-
ence by: Φ̂v(n) = φ̂r(n)Γr + Φx, and applying the results of [11]
to the signal model in (2), the MLE of φs(n) can be found as:

φ̂s(n) = wH
mvdr(n)

[
Φ̂y(n)− Φ̂v(n)

]
wmvdr(n), (5)

where the vector:

wmvdr(n) =
Φ̂−1

v (n)d

dHΦ̂−1
v (n)d

(6)

contains the Minimum Variance Distortionless Response (MVDR)
beamformer weights. Obviously, in order to compute φ̂s(n), the
MLE φ̂r(n) must first be found (i.e. φ̂s(n) is a function of φ̂r(n)).

3.2. Modification of the signal model by blocking and whitening

Since φ̂s(n) and φ̂r(n) are analytically related by (5), the joint like-
lihood in (4) can now be written as a function of only one variable,
i.e.: L

′
(φr) = L

(
φ̂s(φr), φr

)
. The MLE of φr(n) is determined by

maximizing L
′
(φr). Unfortunately, for the signal model at hand this

optimization problem is not easily tractable. Instead of resorting to
numerical optimization methods, we propose an alternative method
and approximate the MLE of φr(n) by using a likelihood function
based on a simplified form of the signal model.

The simplification is achieved in two steps. First, we pass
the input STFT vector y(n) through a target-blocking matrix
B ∈ CM×(M−1) defined as in [12]:

[B b] = I− d(dHd)−1dH . (7)

The columns of B can be interpreted as a set of M − 1 target-
canceling beamformers, i.e.: BHs(n) = 0(M−1)×1. The second
modification of the signal model has the objective of diagonalizing
BHΦxB, i.e. the cross-PSD matrix of the blocked additive noise
component BHx(n). This is achieved by using a whitening matrix
D ∈ C(M−1)×(M−1) defined as the Cholesky factor of the inverse
of BHΦxB (we assume that Φx is full rank):

DDH = (BHΦxB)−1. (8)

We indicate the blocked and whitened signals with a tilde, e.g.:
ỹ(n) = DHBHy(n). The cross-PSD matrix of ỹ(n) is given by:

Φỹ(n) = φr(n)Γr̃ + I, (9)

where Γr̃ = DHBHΓrBD. Thanks to the blocking operation the
number of unknowns in the signal model is now reduced to one
(compare (2) and (9)). However, the blocking operation is not in-
vertible and some information is lost in the process. It follows, that
the proposed estimator is an approximation of the exact MLE.

Due to the whitening operation the matrices Φỹ(n) and Γr̃ can
be diagonalized by the same unitary matrix U:

Φỹ(n) = UΛΦ(n)UH , Γr̃ = UΛΓUH , (10)

where the orthonormal columns of U are the eigenvectors, and
ΛΦ(n) and ΛΓ are diagonal matrices containing the eigenvalues of
Φỹ(n) and Γr̃, respectively. Let λΦ,m and λΓ,m denote the m-th
eigenvalue of Φỹ(n) and Γr̃, respectively. Then, due to (9) and (10)
the following holds:

λΦ,m = φr(n)λΓ,m + 1 . (11)
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3.3. Estimator of the late reverberation PSD

Using the blocked and whitened signal model (9) we can formulate
a new and simplified log-likelihood function of φr . By substituting
the input cross-PSD matrix and its estimate in (4) by their modified
counterparts Φỹ(n) and Φ̂ỹ(n) we obtain:

L
′′
(φr) = −L log |Φỹ(n)| − L tr

(
Φ−1

ỹ (n)Φ̂ỹ(n)
)
. (12)

Thanks to the modifications introduced in Section 3.2, solving for
the maximum of L

′′
(φr) is more easily tractable than for L

′
(φr). It

can be shown (proof omitted) that the extrema of the log-likelihood
function in (12) are the roots of the following polynomial equation:

p(φr) =

M−1∑
m=1

pm(φr), where: (13)

pm(φr) =

(
φr −

gm(n)− 1

λΓ,m

)
︸ ︷︷ ︸

order 1

M−1, k 6=m∏
k=1

(
φr +

1

λΓ,k

)2

︸ ︷︷ ︸
order 2(M−2)

,

where gm(n) denotes the m-th diagonal element of UHΦ̂ỹ(n)U.
Unfortunately, no general closed-form solution for the roots of

p(φr) exists. Therefore, numerical methods for root finding need to
be used. Since the polynomial p(φr) is of odd order 2M−3, at least
1 and at most 2M − 3 real-valued roots of p(φr) exist. When more
than one real-valued root of p(φr) exists, the one yielding the highest
value of the likelihood (12) must be chosen as the MLE φ̂r(n). It can
be shown that typically in practice gm(n) ≥ 1 for all m. When this
condition is met, only one real-valued root of p(φr) exists and it is
non-negative (proof omitted). Then, computation and comparison of
numerical values of the likelihood (12) is not necessary. ForM = 2,
the polynomial (13) has exactly one solution, which is equal to the
late reverberation PSD estimator in [3].

4. EVALUATION OF THE PROPOSED PSD ESTIMATOR

The intended application of the proposed estimator is in speech
dereverberation algorithms based on the Multi-channel Wiener Fil-
ter (MWF) [13,14] and on the MVDR beamformer. We evaluated the
speech dereverberation performance of an MVDR- and an MWF-
based algorithm using the proposed PSD estimator and compared it
to the performance of these algorithms when used with the estimator
from [3].

The MVDR beamformer coefficients wmvdr(n) were calculated
according to (6). The MWF was implemented as a concatenation
of the MVDR beamformer and a single-channel Wiener post-filter.
Hence, the MWF output ŝ(n) is given by:

ŝ(n) =

[
φ̂so(n)

φ̂so(n) + φ̂vo(n)

]
wH

mvdr(n)y(n),

where:

φ̂so(n) = φ̂s(n),

φ̂vo(n) = wH
mvdr(n)Φ̂v(n)wmvdr(n),

denote the estimated PSDs of the target speech and the total interfer-
ence at the output of the MVDR beamformer, respectively.

To investigate the performance of the MVDR- and MWF-based
dereverberation algorithms, two separate experiments have been
conducted: one using instrumental performance measures (Section
4.1) and another using a speech intelligibility test (Section 4.2).

4.1. Experiment A — instrumental performance measures

The first experiment comprised of a realistic simulation of micro-
phone signals in a reverberant and noisy single-talker scenario.
The microphone signals were simulated by concatenating TIMIT
sentences [15] and convolving them with Room Impulse Responses
(RIRs) measured using a microphone array composed of two behind-
the-ear hearing aids. Each of the hearing aids had 2 microphones
1 cm apart (M = 4 microphones in total) and was placed on one of
the ears of a Head and Torso Acoustic Simulator (HATS). The RIRs
were measured in five reverberant rooms denoted: “Bathroom”,
“Cellar”, “Stairs”, “Office”, and “Auditorium”. A sixth, synthetic
impulse response (“Isotropic”) where the reverberation was modeled
as perfectly cylindrically isotropic was also used. Microphone noise
was simulated by a spatially white, spectrally pink noise whose PSD
at 1kHz was 30 dB lower than the PSD of the target speech averaged
over TIMIT sentences.

The sampling frequency of the simulated time-domain signals
was 16 kHz and the STFT frame length was set to 8 ms (T = 128
samples). This ensured that the processing delay was below 10 ms,
which is a requirement for hearing aid systems. A square-root Han-
ning window with 50% overlap was used in the STFT filterbank and
for signal re-synthesis. The input cross-PSD matrix Φ̂y(n) was es-
timated recursively with a time constant of 50 ms.

In each of the six simulated reverberant conditions, the MWF
algorithm, the MVDR beamformer, and the PSD estimators were
implemented using RTF vectors d extracted from the first 2.5 ms
of the RIR in question. This was done to ensure that d is based
only on the direct path response and does not contain information on
the early reflections present in the RIR. This resulted in a realistic
mismatch between the used RTF vector d and the actual RTF of
the target speech component. The normalized cross-PSD matrix Γr

was measured a priori in a simulated cylindrically isotropic sound
field. In none of the five real rooms the late reverberation was truly
isotropic which, again, resulted in a realistic mismatch between the
assumed model and the actual structure of the signal. Only in the
“Isotropic” condition the signal model was accurate. The matrix Φx

was set to the identity matrix scaled by the PSD of the simulated
microphone noise.

We evaluated the algorithms using the Frequency-Weighted Seg-
mental SNR (FWSegSNR) [16] and the Perceptual Evaluation of
Speech Quality (PESQ) [17] instrumental measures with the direct
path speech s(n) as the reference signal. Fig. 1 shows the perfor-
mance scores obtained by the MWF and the MVDR beamformer
based on the two PSD estimators (denoted “Braun” and “Proposed”).
The scores calculated from the unprocessed input signal (“Input”)
are included for reference.

In most conditions all algorithms succeed in improving PESQ
and FWSegSNR. Only in the “Bathroom” condition, the post-
filtering stage of the two MWFs decreased the PESQ score com-
pared to the corresponding MVDR beamformers. This was caused
by strong early reflections present in this condition, which caused
leakage of the early speech signal to the output of the blocking ma-
trix. This resulted in overestimation of the late reverberation PSD
and distortion of the target speech by the post-filter.

The performance difference between the MWF based on “Braun”
and “Proposed” PSD estimators is small but consistent. This sug-
gests that the proposed estimator is more robust to mismatches
between the signal model and its actual structure than the estimator
from [3]. The performance scores of the MVDR beamformers are
very similar. The difference between the “Proposed” and “Braun”
MWFs arises mostly in the post-filtering stage.
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Fig. 1. (a) FWSegSNR and (b) PESQ scores obtained by using
MWF and MVDR beamformer based on the PSD estimators from [3]
(“Braun”) and the proposed estimators (“Proposed”).

4.2. Experiment B — speech intelligibility

The second experiment was a Dantale II [18] Speech Intelligibility
(SI) test with 10 subjects. Sentences were presented via Sennheiser
HD280 pro headphones and subjects were requested to select the
words they heard from an on-screen list of options, as in [19].

Stimuli were constructed as follows. The Dantale II sentences
were concatenated with 2 s of silence before and after the utterance
and underwent the same simulation as in the “Cellar” condition in
Section 4.1, corresponding to a frontal position of the target source
at a distance of 2 m. Since the SI of this condition is (close to) 100%,
speech-like interference consisting of randomly shifted and superim-
posed copies of the International Speech Test Signal (ISTS) [20] was
added to the reverberated Dantale sentences. The interferer signals
were convolved with 5 RIRs recorded in the same room as the target
RIR but with the sound source positioned at 90°, 135°, 180°,−135°,
and at−90° azimuth angle, all at 2 m distance. Each of the simulated
babble talkers radiated the same power as the target source.

Different levels of SI were achieved by manipulating the Direct
to Reverberant Ratio (DRR) of the the target source RIR. This was
done by attenuating the direct part of the target speech while keeping
the rest of the signal intact. In this way the DRR was offset by 0,−4,
−8, and −12 dB from its original value of 2.2 dB.

The RTF vector d and the cross-PSD matrix Γr were obtained in
the same way, and the simulated microphone signals were processed
using the same algorithms as in Section 4.1. The additional noise
cross-PSD matrix Φx was estimated from the first 2 s of each stim-
uli, which was known to contain only the reverberated ISTS babble
and the microphone noise. In order to provide correct binaural cues
of the target speech, signals presented to each of the subjects’ ears
were processed by separate instances of the algorithms, each using
the front microphone of the corresponding hearing aid as the refer-
ence position. In the unprocessed condition (“Input”) the signals of
the left and right reference microphones were presented to the cor-
responding ears of the subject. This allowed the subjects to localize
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Fig. 2. Word intelligibility scores obtained in a Dantale II test with
the RIR from the “Cellar” condition, averaged across 10 subjects.

the target and the ISTS interferers at their original (simulated) posi-
tions and benefit from the binaural advantage [21]. In the processed
conditions this was not possible, as all components of the enhanced
signals were perceived as coming from the target position (a known
side-effect of using binaural beamformers [22]).

To each of the experimental conditions five Dantale sentences
were randomly assigned (independently for each subject). The sen-
tences were processed and then presented to subjects in a random-
ized order. The percentage of words identified correctly was aver-
aged across subjects and is presented in Fig. 2.

Subject mean SI scores were corrected using the rationalized
arcsine method [23] and analyzed using the repeated measures
ANOVA procedure [24]. The influence of the processing type
(F4,36 = 110.2, p � 0.001), the DRR offset (F3,27 = 134.3,
p � 0.001), and the interaction term (F12,108 = 2.2, p < 0.05)
were all found to be significant. Bonferroni-corrected pairwise
comparisons of the marginal means revealed that: a) each of the
algorithms significantly improved the SI over the “Input”, b) the
“Braun MWF” outperformed the “Braun MVDR”, and c) the “Pro-
posed MWF” outperformed the “Braun MVDR”. The familywise
type I error rate was limited to 5%.

5. CONCLUSION

In this paper we have proposed a new method for PSD estimation in
reverberant and noisy conditions. The estimator is based on the max-
imum likelihood methodology and is computed by finding roots of
a low order polynomial. We have evaluated the proposed estimator
and compared it with a competing estimator [3] using two experi-
ments. The first experiment revealed that MWF- and MVDR-based
speech dereverberation algorithms using the proposed PSD estimator
result in higher instrumental performance scores than when the PSD
estimator from [3] is used. In the second experiment a speech intel-
ligibility test with 10 subjects was conducted. All evaluated derever-
beration algorithms significantly improved the speech intelligibility.
However, only few significant differences between the algorithms
were found. Notably, the MWF using the proposed PSD estimator
outperformed the MVDR based on the estimator from [3]. Future
work includes evaluation of robustness of the proposed method to
errors in the RTF vector d.
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