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Correlation Maximization-Based Sampling Rate
Offset Estimation for Distributed Microphone Arrays

Lin Wang and Simon Doclo, Senior Member, IEEE

Abstract—In this paper, we investigate the sampling rate
mismatch problem in distributed microphone arrays and propose
a correlation maximization algorithm to blindly estimate the sam-
pling rate offset between two asynchronously sampled microphone
signals. We approximate the sampling rate offset with a linear-
phase drift model in the short-time Fourier transform (STFT)
domain and show that the correlation coefficient between two
microphone signals tends to present the highest value when the
sampling of the two microphone signals is synchronized. Based on
this finding we propose the correlation maximization algorithm,
which performs sampling rate compensation on two microphone
signals with different possible offset values and calculates their
correlation coefficient after compensation. The offset value that
leads to the largest correlation coefficient is chosen as the optimal
estimate. Since the precision of the STFT linear-phase drift model
used in the algorithm degrades as the sampling rate offset or the
signal length is increased, we further propose a two-stage exhaus-
tive search scheme to detect the optimal sampling rate offset. This
scheme is able to minimize the influence of the linear-phase drift
model error in order to improve the sampling rate offset estima-
tion accuracy. Both simulated as well as real-world experiments
confirm the effectiveness of the proposed algorithm.

Index Terms—Correlation coefficient, distributed microphone
array, sampling rate offset.

I. INTRODUCTION

M ICROPHONE array processing techniques, such as
beamforming and blind source separation, are widely

used for noise reduction due to their spatial filtering capabil-
ity to suppress interfering signals that arrive from undesired
directions [1]–[7]. Despite obvious advantages over single-
microphone techniques, traditional microphone arrays have
their limitations because they usually capture the sound field
locally, typically at a relatively large distance from the sound
sources. Furthermore, due to space and energy constraints,
especially in portable devices the array is often limited in
physical size and the number of microphones. In recent years,
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distributed microphone arrays or so called wireless acoustic
sensor networks (WASN) have attracted increased attention
from the research community due to their ability to overcome
these limitations [8], [9]. A WASN generally consists of a set
of wireless nodes that are spatially distributed over the envi-
ronment, usually in an ad-hoc fashion. Each node contains
at least one microphone, an analog/digital converter (ADC),
and a processing and communication unit [10]. Via wireless
communication, the microphone nodes can physically cover a
much larger area, which vastly increases the amount of spa-
tial information and overcomes the array-size limitation. All the
microphones inside the network work collaboratively, either in
a centralized or a distributed way, towards a common goal such
as noise reduction or source localization. However, algorithm
design for WASN is quite challenging due to several issues,
such as communication bandwidth constraints [11], [12], sam-
pling rate mismatch [13], [14], unknown microphone positions
[17]–[19], and distributed signal processing [20]–[22]. This
paper addresses the sampling rate mismatch problem between
different nodes.

In a WASN, the nodes are individually connected to their own
ADC and clock source, and capture the acoustic scene asyn-
chronously. Since the oscillators or crystals, which are used for
generating the clock signals, always have a certain tolerance in
their nominal frequencies, a sampling rate mismatch between
two independent nodes is inevitable. Depending on the used
devices, the mismatch may range from just a few ppm to many
hundreds of ppm (parts per million, 10−6) [13], [14]. With
mismatched sampling frequencies, the unit lengths of digital
samples at two nodes become different. Consequently, the tem-
poral information (e.g., time difference) between the two nodes
drifts with time. This will significantly degrade the perfor-
mance of most microphone array signal processing algorithms
which assume unique time differences of arrival (TDOA) of
the sound sources [13]–[16]. Thus, sampling rate offset correc-
tion is crucial for a distributed microphone network. Generally,
two processing stages are involved: sampling rate offset (SRO)
estimation and compensation.

Once the SRO between two microphones is known, the
mismatch can be easily compensated. A straightforward way
is to resample the digital audio stream in the time domain.
Besides the traditional resampling approach using cascaded
interpolators and decimators [23], sample-wise interpolation
filters, such as the Lagrange polynomial interpolation method
[10] and the “sinc” interpolation method [14], are commonly
used in practical applications. Sampling rate compensation can
also be performed in the short-time Fourier transform (STFT)
domain [24].
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Estimating the SRO remains a challenging task, for which
several approaches have been proposed, either in a referenced
way or in a blind way.

• One example of the referenced approach is to broadcast
known calibration signals among all the recording devices
[13], [25]. To generate the calibration signal, frequency-
modulated radio transmitters and receivers are required
so that interference with recorded audio signals can be
avoided. Another approach is to exchange network packet
time-stamps between the nodes, based on which the clock
skew between two nodes can be estimated [26], [27].
Network communication protocols are however required
to support the exchange of time stamps.

• The SRO can also be blindly estimated from micro-
phone signals without using any reference information.
In [10] the SRO is estimated from spatially coherent
but stationary environment noise, by analyzing the phase
drift of the spatial coherence function of the micro-
phone signals. In [24] a maximum likelihood method
is proposed to estimate the SRO from the recording of
physically static sound sources, by assuming a zero-
mean multivariate Gaussian probability distribution for
the STFT coefficients of the microphone signals. In [28]
an SRO estimation algorithm is proposed in combina-
tion with blind source separation, where the microphone
signals are first compensated with all possible offset val-
ues and then separated. The offset value which leads
to the best separation result is regarded as the optimal
estimate.

In this paper we investigate approaches for blind SRO esti-
mation from the microphone signals. The contribution of the
paper is summarized as below. First, by approximating the
SRO with a linear-phase drift model in the STFT domain, we
theoretically prove that the correlation between two indepen-
dent microphones recording the same acoustic event is closely
related to SRO, and that the correlation coefficient tends to
show the largest value only when the sampling of the two
microphones is synchronized. Second, we propose a corre-
lation maximization based SRO estimation algorithm, which
estimates the offset value as the one maximizing the correlation
between two microphones after sampling rate compensation.
We theoretically show that the algorithm performs well as
long as the acoustic signal show a certain coherence in the
microphones. Third, we propose a two-stage exhaustive search
scheme to improve the robustness of the proposed algorithm
to the STFT linear-phase modeling error, which becomes pro-
nounced when the SRO is large or the considered signal is long.
The effectiveness of the proposed algorithm is confirmed using
both simulated as well as real-world experiments.

The paper is organized as follows. Section II introduces
some background about the sampling rate mismatch prob-
lem, including linear-phase drift modeling and sampling rate
compensation. The correlation maximization algorithm as well
as the two-stage exhaustive search scheme are proposed in
Section III. The relationship between the proposed correla-
tion maximization algorithm and existing algorithms is dis-
cussed in Section IV. Experimental results are presented in
Section V.

II. PRELIMINARIES

A. Sampling Rate Offset Formulation in the STFT Domain

In [10], [24] it has been shown that the sampling rate mis-
match problem can be approximated as a linear-phase drift
model in the STFT domain. Since this model is the founda-
tion of the proposed algorithm, we present a detailed derivation
below.

Consider a continuous-time signal z̃[t] which is sampled as
two discrete-time signals z1(n) and z2(n), with sampling rates
fs1 = fs and fs2 = fs + ε, respectively, where ε � fs is the
SRO, and t and n denote continuous time and discrete time
indices, respectively. The relationship between z1(n), z2(n),
and z̃[t] can be expressed as

z1(n) = z̃

[
n

fs

]
, z2(n) = z̃

[
n

fs + ε

]
. (1)

Using an N -point window w(n), the STFT of z1(n) with shift
Ns is given by

Z1(k, l) =
N−1∑
n=0

w(n)z1(lNs + n)exp

(
−j

2πkn

N

)

=
N−1∑
n=0

w(n)z̃

[
lNs

fs
+

n

fs

]
exp

(
−j

2πkn

N

)
, (2)

where k and l are the frequency and frame indices, respectively.
Similarly, the STFT of z2(n) is expressed as

Z2(k, l) =

N−1∑
n=0

w(n)z̃

[
lNs

fs + ε
+

n

fs + ε

]
exp

(
−j

2πkn

N

)

≈
N−1∑
n=0

w(n)z̃

[
lNs

fs
+

n

fs
− lNsε

f2
s

]
exp

(
−j

2πkn

N

)
,

(3)

where the approximation in (3) holds when ε � fs.
Let us denote the l-th windowed frames of z1(n) and z2(n),

respectively, as

zw1l(n) = w(n)z̃

[
lNs

fs
+

n

fs

]
, (4)

and

zw2l(n) = w(n)z̃

[
lNs

fs
+

n

fs
− lNsε

f2
s

]
. (5)

If the contents in these two frames are similar, zw2l(n) can be
seen as a shifted version of zw1l(n), with a non-integer shift
− lNsε

fs
. The relationship between Z1(k, l) and Z2(k, l) can then

be expressed as

Z2(k, l)≈ Z1(k, l) · exp
(
−j

2πk( lNsε
fs

)
N

)
(6)

Based on (6), the SRO can be approximated as a linear-phase
drift model in the STFT domain: the magnitude remains unity
while the phase varies linearly with respect to time and fre-
quency. To satisfy the assumption of similar contents of zw1l(n)
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and zw2l(n), the shift size between the two frames should be
small enough, i.e.,

lNsε
fs

� N (7)

Due to this condition, the precision of the linear-phase drift
model degrades for large SROs or long signals.

B. Resampling Techniques

The aim of resampling is to convert a digital sequence z(n),
with original sampling rate fo, to a sequence ẑ(n), with tar-
get sampling rate fd = fo + ε. Resampling can be performed
either in the STFT domain or in the time domain.

1) STFT-domain Resampling: Based on the linear-phase
drift model in (6), the relationship between z(n) and ẑ(n) can
be expressed in the STFT domain as

Ẑ(k, l) = Z(k, l) · exp
⎛
⎝−j

2πk
(

lNsε
fo

)
N

⎞
⎠ , (8)

where Z(k, l) and Ẑ(k, l) are the STFTs of z(n) and ẑ(n),
respectively. Resampling can hence be performed straightfor-
wardly by modifying the phase of Z(k, l). However, due to the
limited precision of the linear-phase drift model (cf. (7)), the
STFT-domain resampling approach can only roughly adjust the
sampling rate.

2) Time-domain Resampling: In [10], [29] a time-domain
fourth-order Lagrange interpolation algorithm has been pre-
sented for resampling. First, the original signal z(n) is inter-
polated by a factor of 4, obtaining the interpolated signal z̃(ñ).
Define ṅ = �4n fo

fd
� as the closest index in z̃(ñ) from left to

the time n/fd, where the operation “�·�” represents the integer
part of the argument. The resampled signal can be calculated by
using

ẑ(n) = β1z̃(ṅ− 1) + β2z̃(ṅ) + β3z̃(ṅ+ 1) + β4z̃(ṅ+ 2),
(9)

where the definitions of the four interpolation coefficients β1 −
β4 can be found in [10].

Compared with STFT-domain resampling, the time-domain
approach is not affected by the SRO value nor the signal length,
and can obtain a higher resampling precision. In this paper, both
resampling techniques are used: STFT-domain resampling is
used when estimating the SRO in the STFT domain, whereas
time-domain resampling is used to adjust the sampling rate
accurately.

III. CORRELATION MAXIMIZATION BASED SAMPLING

RATE OFFSET ESTIMATION

Assume an unknown reverberant and noisy acoustic envi-
ronment. The signals received at two asynchronously sam-
pled microphones are x1(n) and x2(n), with sampling rates
fs and fs + εo, respectively, where εo is the SRO. The
task is to blindly estimate εo from the microphone signals

x1(n) and x2(n). After introducing the underlying principle in
Section III-A, we propose the correlation maximization based
SRO estimation algorithm in Section III-B and discuss factors
that influence the estimation accuracy in Section III-C.

A. Correlation Coefficient Versus Sampling Rate Offset

Suppose x̄2(n), which in practice is unknown, is the signal
of the second microphone sampled at fs. The STFTs of x1(n),
x2(n) and x̄2(n) are denoted as X1(k, l), X2(k, l) and X2(k, l),
respectively. Based on the linear-phase drift model in (6), the
relationship between X2(k, l) and X2(k, l) can be expressed as

X2(k, l)

X2(k, l)
= exp

⎛
⎝−j

2πk
(

lNsεo
fs

)
N

⎞
⎠ = e−jα(k,l), (10)

where

α(k, l) =
2πk

(
lNsεo
fs

)
N

, (11)

denotes the phase drift due to sampling rate offset.
The correlation coefficient between X1(k, l) and X2(k, l) is

defined as:

ρko(X1,X2) =

∑
l X1(k, l)X

∗
2(k, l)√∑

l |X1(k, l)|2
√∑

l |X2(k, l)|2
. (12)

Using (10), the correlation coefficient between X1(k, l) and
X2(k, l) is defined as:

ρk(X1, X2) =

∑
l X1(k, l)X

∗
2 (k, l)√∑

l |X1(k, l)|2
√∑

l |X2(k, l)|2

=

∑
l X1(k, l)X

∗
2(k, l)e

jα(k,l)√∑
l |X1(k, l)|2

√∑
l |X2(k, l)|2

. (13)

We refer to ρko as the synchronous correlation coefficient, and
ρk the asynchronous correlation coefficient.

Considering that in (13) the term X1(k, l)X
∗
2(k, l) depends

on unknown acoustic events in the environment while the
term α(k, l) in (11) depends on the SRO, it is reasonable to
assume that these two terms are statistically independent of
each other, i.e.,

E
(
X1(k, l)X

∗
2(k, l)e

jα(k,l)
)

= E(X1(k, l)X
∗
2(k, l)) · E(ejα(k,l)), (14)

where E(·) denotes mathematical expectation. Assuming
ergodic processes where the expectation operator over realiza-
tions can be replaced by time-domain averaging over frames, in
each frequency k it follows that,

1

L

∑
l

(
X1(k, l)X

∗
2(k, l)e

jα(k,l)
)

≈ 1

L

∑
l

(X1(k, l)X
∗
2(k, l)) ·

1

L

∑
l

ejα(k,l), (15)

where L is the total number of considered time frames.
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Using (12), (13) and (15), the relationship between ρk and
ρko can now be expressed as

ρk(X1, X2) = ρko(X1,X2)
1

L

∑
l

ejα(k,l). (16)

Taking the absolute value of both sides of (16), it follows that,

|ρk| = |ρko| · | 1L
∑
l

ejα(k,l)| = |ρko| · γkL(εo) (17)

where

γkL(ε) =

∣∣∣∣∣ 1L
∑
l

ejα(k,l)

∣∣∣∣∣ =
∣∣∣∣∣∣
1

L

∑
l

exp

⎛
⎝−j

2πk
(

lNsε
fs

)
N

⎞
⎠
∣∣∣∣∣∣ ,

(18)

is defined as the attenuation factor.
It can be easily verified that γkL(ε) lies in the interval [0,1]

and is equal to 1 only when ε = 0. Accordingly, |ρk| will be
equal to |ρko| only when ε = 0, and be smaller than |ρko|
otherwise. Next, we will exploit this property to estimate the
SRO.

B. Proposed Algorithm

1) Correlation Maximization (CM) Algorithm: Since the
maximum correlation coefficient is achieved only when the
two microphone signals are sampled synchronously, we pro-
pose to compensate the sampling rate of the microphone signals
with different possible offsets and estimate the optimal value as
the one that maximizes the correlation coefficient between the
compensated microphone signals. This is expressed as

ε̃CM(k) = argmax
ε

{|ρkε|}, (19)

where ρkε is the correlation coefficient between X1 and X2ε,
where X2ε is obtained by compensating X2 with an SRO ε. For
convenience of computation, the compensation is performed in
the STFT domain directly (cf. Section II-B). After sampling
rate compensation, the correlation coefficient is expressed as

ρkε = ρk (X1(k, l), X2ε(k, l))

= ρk

⎛
⎝X1(k, l), X2(k, l)exp

⎛
⎝j

2πk
(

lNsε
fs

)
N

⎞
⎠
⎞
⎠

= ρko · 1
L

∑
l

exp

⎛
⎝j

2πk
(

lNs(ε−εo)
fs

)
N

⎞
⎠ . (20)

Similarly to (17), it hence follows that

|ρkε| = |ρko| · γkL(εo − ε). (21)

Obviously, |ρkε| is maximized when ε = εo. Considering the
whole frequency band by defining

ρ̄ε =
∑
k

|ρkε|, (22)

Fig. 1. Block diagram of the exhaustive search scheme in the STFT domain.

Fig. 2. Block diagram of the two-stage processing for sampling rate offset
estimation.

the offset value can be estimated as

εCM = argmax
ε

ρ̄ε (23)

The solution to (23) is difficult to be expressed in an analytical
form. However, since there is only one parameter to be opti-
mized, the optimal value can be straightforwardly determined
using an exhaustive search scheme as shown in Fig. 1, i.e., the
microphone signals are compensated with all possible Q offset
values and the offset which leads to the maximum correlation
coefficient is selected as the optimal estimate.

2) Two-stage Search Scheme (CM-2): The correlation max-
imization algorithm is derived based on the linear-phase drift
model in the STFT domain. However, as stated in Section II-
A, the precision of this model degrades when the SRO is large
or when the considered signal is long. To overcome this draw-
back, an improved search scheme is proposed which involves
two stages as shown in Fig. 2.

In the first stage, after transforming the time-domain signals
x1(n) and x2(n) into the STFT domain, an exhaustive search
(as depicted in Fig. 1) is applied in the STFT domain to esti-
mate the offset εCM. This estimate usually deviates from the
true offset value due to the linear-phase drift model error.

In the second stage, a time-domain resampling (9) is applied
to x2(n) using εCM. Next, the offset between x1(n) and the
compensated signal x2εCM

(n) is estimated as εe2, using the
same exhaustive search scheme in the STFT domain. As men-
tioned in Section II-B, the precision of time-domain resampling
is independent of SRO and signal length. After time-domain
resampling, the residual offset between x1(n) and x2εCM

(n),
which is equal to εo − εCM, is much smaller than the origi-
nal offset εo between x1(n) and x2(n). As the precision of the
linear-phase drift model improves for smaller offset values, the
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Fig. 3. Variation of γkL with respect to frequency and SRO ε (signal length
10 s, fs = 16 kHz, N = 1024, Ns = N/2).

residual offset can be estimated much more accurately. The final
offset is computed as the sum of the two estimates, i.e.,

εCM2 = εCM + εe2 (24)

To further refine the SRO estimate, it is possible to employ even
more processing stages. However, in practice, we have found
that two stages are typically sufficient to obtain an accurate
SRO estimate.

C. Discussion

Based on (21), the estimation accuracy of the proposed CM
algorithm mainly depends on two factors: the attenuation factor
γkL and the synchronous correlation coefficient ρko.

The attenuation factor γkL plays an important role when
locating the maximum correlation coefficient. The larger the
sensitivity of γkL(ε) to ε, the easier it is to detect the correct
offset value. As defined in (18), γkL is determined by three
parameters: the frequency k, the signal length L, and the SRO
ε. For fs = 16 kHz, N = 1024, Ns = N/2, L = 312 (corre-
sponding to a signal length of 10 s), and ε varying between
−4 Hz and 4 Hz, Fig. 3 shows, as an example, how γkL varies
with frequency and SRO. From Fig. 3 it can be verified that γkL
lies in the interval [0,1] and is only equal to 1 when ε = 0. In
addition, it can be observed that γkL decreases for increasing
ε, and that the decrease is more pronounced at higher frequen-
cies than at lower frequencies. This demonstrates that it is easier
to achieve an accurate estimation at high frequencies. For fre-
quency 2000 Hz, Fig. 4 depicts how γkL varies with signal
length (from 0 to 100 s) when ε is fixed at 0.01 Hz, 0.1 Hz,
and 1 Hz, respectively. It can be observed that for all three off-
sets γkL decreases with increasing signal length. The decrease
is evident when the offset is large (e.g., 0.1 Hz and 1 Hz). For
the small offset (0.01 Hz), the decrease of γkL can be observed
only when the signal is long enough. This demonstrates that
using a long signal is important for improving the estimation
accuracy. It should be noted that the precision of the linear-
phase drift model degrades with increasing signal length and
this issue can be addressed by the two-stage search scheme in
the CM-2 algorithm.

The estimation accuracy also depends on the synchronous
correlation coefficient ρko. The larger ρko, the easier it is to

Fig. 4. Variation of γkL with respect to signal length for a fixed ε, at frequency
2000 Hz.

detect the variation of γKL(ε) and hence the correct offset
value. In the extreme case when ρko = 0, ρkε in (21) does
not vary with γKL(ε), making it impossible to detect the cor-
rect SRO, even when ε is large. The synchronous correlation
coefficient ρko mainly depends on the acoustic environment.

• Static environment. For a single static coherent source,
the synchronous correlation coefficient between two
microphones is large for all frequencies. For a static
diffuse-like environment, e.g., a mixture of multiple
coherent sources, the synchronous correlation coefficient
between two microphones is small at high frequencies
and large at low frequencies, depending on the inter-
microphone distance. When the distance between two
microphones is too large, the microphone signals become
uncorrelated.

• Dynamic environment, e.g., one or multiple moving
sources. Depending on the trajectory and the speed, a
moving source may create time-varying delays between
two microphone signals (similar to sampling rate mis-
match), such that the peak location of the correlation
coefficient function may deviate from the true SRO value.
Since the movement of the source is typically unknown,
the deviation of the peak location is unpredictable, espe-
cially when the signal is short. In general, the proposed
algorithm can only recover the SRO up to this unknown
deviation and hence will not work for moving sources.
However, there exist special cases in which the peak loca-
tion deviation induced by the source movement is close
to 0. For instance, when the source is moving around
the microphones (i.e., there is enough spatial diversity)
and the signal is long enough, the moving source can
be considered as a combination of static sources dis-
tributed around the microphones, exhibiting diffuse-like
characteristics. In this case, the synchronous correlation
coefficient in (12) tends to be small at high frequen-
cies and large at low frequencies (depending on the
inter-microphone distance), and the deviation of the peak
location tends to be 0, such that the proposed algo-
rithm may reach the correct SRO estimate. This will be
experimentally validated in Section V-D.
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IV. RELATIONSHIP WITH EXISTING ALGORITHMS

In this section the relationship between the proposed algo-
rithm and two other algorithms which exploit the STFT-domain
linear-phase drift model to estimate the SRO [10], [24] are
explored.

A. Linear-phase Drift (LPD) Estimation

In [10] the phase shift of the correlation coefficient is
exploited to estimate the SRO. Given X1(k, l), X2(k, l) and
X2(k, l), the synchronous and asynchronous instantaneous cor-
relation coefficients are defined as

�o(k, l) =
X1(k, l)X

∗
2(k, l)√|X1(k, l)|2|X2(k, l)|2

, (25)

and

�(k, l) =
X1(k, l)X

∗
2 (k, l)√|X1(k, l)|2|X2(k, l)|2

, (26)

where ‘instantaneous’ means that the correlation coefficient is
calculated per time-frequency bin.

Assuming that the sound sources in the acoustic environment
are stationary, i.e., �o(k, l) = �o(k), it can be easily shown that

�(k, l) = �o(k)exp

(
j
2πNsklεo

Nfs

)
= �o(k)exp (jα(k, l)) .

(27)

The SRO can be estimated from the variation (with respect to
time) of the phase term in (27), i.e.,

εLPD(k) =
∠(�(k,l2)/�(k,l1))

2πNsk(l2−l1)
Nfs

(28)

where ∠(·) denotes the phase of the argument, and l1 and
l2 denote the indices of two neighbouring time frames. The
estimate εLPD(k) is equal to εo at all frequencies.

In [10], it has been proposed to further improve the estima-
tion accuracy of the LPD algorithm by averaging the estimates
across multiple time segments and multiple valid frequency
bins (where no frequency aliasing occurs). More specifically, by
dividing the complete signal into I segments (each containing
P frames) and averaging the estimates at the I time segments
and also the K̄ valid frequency bins leads to

ε̄LPD =
1

K̄

∑
k

Nfs
2πPNsk

∠
{

1

I − 1

(
I−1∑
i=1

�(k, iP )

�(k, (i− 1)P )

)}
.

(29)

The averaging in theory will not change the estimate, but in
practice can help to reduce the influence of outlier estimation
using one time segment or one frequency bin alone.

B. Maximum Likelihood (ML) Estimation

In [24] the spatial stationarity of the acoustic environment
is exploited to estimate the SRO. Assuming the STFT coeffi-
cients of the synchronously sampled microphone signals can be

modelled using a zero-mean multivariate normal distribution,
the SRO can be estimated by maximizing a likelihood function,
which evaluates the fit with a zero-mean multivariate normal
distribution. The likelihood function is defined as

J(Vε, ε) =
∑
k,l

{−logπ2 − log(det(Vε(k))

−Xε(k, l)
H
Vε(k)

−1
Xε(k, l)

}
, (30)

where det(·) denotes the determinant of a matrix, Xε(k, l) =
[X1(k, l), X2ε(k, l)]

T, and Vε(k) =
1
L

∑
l Xε(k, l)X

H
ε (k, l) is

the covariance matrix. After derivation, the SRO can be esti-
mated as

εML = argmax
ε

{
−∑

k

log det

(∑
l

Xε(k, l)X
H
ε (k, l)

)}
(31)

The optimization problem in (31) can not be solved analytically,
and thus an exhaustive search scheme can be employed to find
the optimal solution. In [24], a golden section search scheme is
proposed to accelerate the search speed.

C. Relationship Between the Algorithms

The LPD algorithm and the proposed CM algorithm both
exploit the concept of linear-phase drift to estimate the SRO.
Using instantaneous correlation coefficients at different time
frames, the LPD algorithm analytically estimates the slope of
the linear-phase drift, from which the SRO can be easily cal-
culated. The LPD algorithm is straightforward; however, it
requires the acoustic environment to be stationary such that
the phase of the synchronous correlation coefficient in (25)
does not vary with time. This assumption is not always met
in practice. In contrast, the CM algorithm does not need this
assumption. By exploiting the independence between the phase
drift and the acoustical signals, it estimates the SRO by maxi-
mizing the (non-instantaneous) correlation coefficient between
compensated microphone signals.

Although at first sight the ML and the proposed CM algo-
rithm are derived from totally different perspectives, i.e., the
ML algorithm maximizes the zero-mean multivariate normal
distribution of the compensated signals and the CM algorithm
maximizes the correlation coefficient between the compensated
signals, it can be shown that they are closely related to each
other. Using (20), the objective function of the CM algorithm
in (22) can be rewritten as

JCM =
∑
k

∣∣∣∣∣
∑

l X1X
∗
2ε√∑

l |X1|2
∑

l |X2|2

∣∣∣∣∣ , (32)

whereas, based on (31), the objective function of the ML
algorithm can be rewritten as

JML = −
∑
k

log det

([ ∑
l |X1|2

∑
l X1X

∗
2ε∑

l X2εX
∗
1

∑
l |X2ε|2

])

= −
∑
k

log

(∑
l

|X1|2
∑
l

|X2|2 − |
∑
l

X1X
∗
2ε|2
)
,

(33)
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where for conciseness the indices (k, l) have been neglected in
(32) and (33). Both objective functions are quite similar since
they both aim to maximize the term |∑l X1X

∗
2ε|. The differ-

ence is that (32) employs a normalization processing, whereas
(33) employs a logarithm operation. We nevertheless expect
the SRO estimation performance of both the CM and the ML
algorithms to be similar.

V. EXPERIMENTAL RESULTS

The experiment section is divided into four parts. The first
part shows examples of linear-phase drift modeling of sampling
rate offset (Section V-A). The second part compares the perfor-
mance of the proposed SRO estimation algorithm with existing
algorithms for three acoustic scenarios: a stationary environ-
ment with diffuse noise (Section V-B), a stationary environment
with static speakers (Section V-C), and a dynamic environ-
ment with moving speakers or time-varying acoustic events
(Section V-D). The third part applies the considered SRO esti-
mation and resampling algorithms to blind source separation
with simulated as well as real-world data (Section V-E and V-
F). Finally, we comment on the computational complexity of
the considered algorithms (Section V-G).

The performance of the SRO estimation algorithms is eval-
uated using the SRO estimation error, which is defined as the
difference between the estimated offset εe and the true offset
value εo, i.e.,

E = |εe − εo|. (34)

Four SRO estimation algorithms are considered:
• The linear-phase drift (LPD) algorithm [10].
• The maximum likelihood (ML) algorithm [24] with an

exhaustive search scheme.
• The proposed correlation maximization (CM) algorithm

with an exhaustive search scheme.
• The proposed correlation maximization algorithm with an

improved two-stage search scheme (CM-2) depicted in
Fig. 2.

For all experiments the nominal sampling rate is fs =
16 kHz, and the STFT frame length is equal to 1024 with 50%
overlap. ML and CM use the same exhaustive search scheme,
where the exhaustive search area is equal to [−10, 10] Hz with
a precision of 0.0005 Hz. Similarly to [10], the LPD algo-
rithm averages the estimates across multiple time segments
and frequency bins, with the length of each time segment
being 0.5 s.

A. Linear-phase Drift Modeling

For this experiment a white Gaussian noise signal z1(n)
with a length of 30 s has been used. The sampling rate of the
test signal z2(n) is adjusted to fs + ε, using the time-domain
resampling method presented in Section II-B. The original and
the resampled signals are transformed into the STFT domain
and denoted as Z1(k, l) and Z2(k, l), respectively. According
to (6), the phase of Z2(k,l)

Z1(k,l)
should in theory vary linearly with

respect to time while the magnitude should always be 1.

Fig. 5. Magnitude and phase of the linear-phase drift model in the STFT
domain, at frequency 2000 Hz for the SRO (a) (b) ε = 0.2 Hz and (c) (d) ε =
2 Hz.

Fig. 5 depicts the magnitude and the phase of Z2(k,l)
Z1(k,l)

for SRO
ε = 0.2 Hz and ε = 2 Hz, respectively, at frequency 2000 Hz.
The upper panels illustrate that the linear-phase drift model
holds well for a small offset ε = 0.2 Hz. However, the pre-
cision of the model degrades when the offset is increased, as
illustrated by the lower panels for ε = 2 Hz. It is additionally
observed that the model remains precise in the beginning of the
signal, but worsens as time evolves. This demonstrates that the
precision of the linear-phase drift model also depends on the
signal length. In summary, the observations made in Fig. 5 are
consistent with condition (7).

B. Diffuse Noise

In this experiment the performance of the SRO estima-
tion algorithms is evaluated in spherically diffuse white noise,
generated using the algorithm in [31], for different inter-
microphone distances and signal lengths. The considered inter-
microphone distances are {2, 10, 20, 50,∞} cm, where in prin-
ciple the correlation of the microphone signals decreases with
increasing inter-microphone distance and ∞ denotes uncorre-
lated noise. The considered signal lengths are {10, 20, 40, 60} s.
The second microphone signal is resampled using the time-
domain resampling method presented in Section II-B, where
the SRO is randomly chosen between [−10, 10] Hz with a pre-
cision of 0.01 Hz. We implement 100 realizations, where for
each realization the considered algorithms are applied to esti-
mate the SRO. The average estimation error is calculated from
the 100 realizations.

As an example, Fig. 6 depicts the two-stage search results
of CM-2, for a signal length of 10 s, inter-microphone distance
10 cm, and true SRO 8.33 Hz. The y-axis denotes the correla-
tion measure computed by (22). As shown in Fig. 6, for both
stages a peak value can be clearly detected. Due to the limited
precision of the linear-phase drift model, the estimated SRO
in the first stage is 8.2845 Hz, which deviates from the true
value. After sampling rate compensation, the residual offset is
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Fig. 6. Example of the two-stage search by CM-2. The true SRO is 8.33 Hz.
The estimation results in (a) Stage-1 and (b) Stage-2 are 8.2845 Hz and
0.0440 Hz, respectively. The final SRO estimate is 8.3285 Hz.

Fig. 7. Average SRO estimation error for the considered algorithms in diffuse
noise with an inter-microphone distance of (a) 2 cm, (b) 20 cm, (c) 50 cm, and
(d) ∞ (corresponding to uncorrelated noise).

estimated as 0.0440 Hz in the second stage. The final SRO is
estimated as 8.3285 Hz, which is very close to the true value.

The average SRO estimation errors in diffuse noise for the
four considered algorithms are shown in Fig. 7 (in log-scale),
with each panel denoting a different inter-microphone distance.
For convenience the estimation error is limited to a lower value
of 0.001 Hz. The following observations can be made.

1) LPD yields the worst performance among all consid-
ered algorithms, especially when the microphones are far
apart (≥ 20 cm). Since the correlation between two micro-
phones decreases as the inter-microphone distance increases,
the assumption of a time-invariant instantaneous correlation
coefficient does not hold any more, especially at higher
frequencies.

2) For ML, CM, and CM-2, the estimation performance
degrades when the inter-microphone distance increases. As
shown in the fourth panel, all algorithms fail when the micro-
phone distance is ∞, i.e., the microphone signals are com-
pletely uncorrelated.

3) For both CM and CM-2, the performance improves with
the signal length. CM-2 significantly outperforms CM for the
first three inter-microphone distances when the signal is long
enough (≥ 40 s).

4) CM outperforms ML for all considered scenarios,
although they have similar objective functions (cf. (32) and
(33)). A possible explanation for the better performance of CM
is that the normalization operation in (32) reduces the dynamic
range of the data, making it more robust to linear-phase drift
modeling errors.

5) For ML, it can be observed that at 2 cm inter-microphone
distance the performance improves with signal length while
at 20 cm and 50 cm inter-microphone distances the perfor-
mance degrades with signal length. For ML and CM, it should
be realized that there are both advantages and disadvantages
when using long signals for SRO estimation. On the one hand,
increasing the signal length increases the sensitivity of the
attenuation factor to the SRO (cf. Section III-C), thus improving
the estimation accuracy. On the other hand, increasing sig-
nal length increases linear-phase drift modelling errors, thus
degrading the estimation performance especially when the sig-
nal correlation is low (e.g., at high frequencies and large
inter-microphone distances for diffuse noise). Thus the SRO
estimation performance also degrades with increasing micro-
phone distance. For ML, the advantages seem to exceed the
disadvantages for a small inter-microphone distance (2 cm),
leading to an improved estimation performance with increasing
signal length. However, for a large inter-microphone distance
(20 cm and 50 cm), the disadvantages seem to exceed the
advantages, leading to a degraded estimation performance with
increasing signal length. In contrast, CM seems to be more
robust against linear-phase drift modelling errors, hence show-
ing an improved estimation performance with increasing signal
length for all considered inter-microphone distances (2 cm,
20 cm, 50 cm).

C. Static Environments

In this experiment one or three static speakers are talking in a
simulated enclosure of size 4 m × 5 m × 2.5 m with a reverber-
ation time 400 ms. The distance between two microphones is
20 cm. The speakers are randomly placed at a distance of 2 m
from the microphones. The room impulse responses between
the speakers and the microphones have been generated using
the image-source method [30]. The considered signal lengths
are {10, 20, 40, 60} s. The second microphone signal is resam-
pled with an SRO randomly chosen between [−10, 10] Hz with
a precision of 0.01 Hz. We implement 100 realizations and
calculate the average estimation error from all realizations.

The average SRO estimation errors for the four considered
algorithms are shown in Fig. 8. LPD yields the worst per-
formance since the instantaneous correlation coefficient varies
with time, due to non-stationarity of speech signals. ML and
CM perform similarly for all considered scenarios. CM-2 yields
the best performance and can achieve very accurate SRO
estimation when the signal is long enough.

D. Dynamic Environments

In this experiment the performance for two dynamic acous-
tic environments are evaluated. The first scenario considers
switched acoustic events, i.e., the first half of the microphone
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Fig. 8. Average SRO estimation error for the considered algorithms in a static
acoustic environment with (a) 1 speaker and (b) 3 speakers.

Fig. 9. Average SRO estimation error for the considered algorithms in a
dynamic acoustic environment with (a) switched events and (b) a moving
speaker.

signal contains a static speaker while the second half con-
tains pure diffuse noise. In the second scenario, we consider
the special case (cf. Section III-C) where a speaker is moving
around the microphones inside the same simulated enclosure
in Section V-C. The speaker is moving back and forth between
0◦ and 180◦ along a circle with a radius of 2 m (at a speed
of 3.3◦/s). For both scenarios the inter-microphone distance is
20 cm and the considered signal lengths are {20, 40, 80, 120} s.
The second microphone signal is resampled with an SRO
randomly chosen between [−10, 10] Hz with a precision of
0.01 Hz. We implement 100 realizations and calculate the
average estimation error from all realizations.

In comparison to static environments, estimating the SRO in
dynamic environments is a challenging task. The average SRO
estimation errors by the four considered algorithms are shown
in Fig. 9. LPD again yields the largest estimation error for both
dynamic scenarios. For the first scenario with switched acous-
tic events, the performance of CM, CM-2, and ML improves
with increasing signal length. CM performs slightly better than
ML. CM-2 yields the best performance, almost achieving per-
fect estimation when the signal is longer than 80 s. In the second
scenario with a moving speaker, CM performs slightly better
than ML although both algorithms yield relatively large estima-
tion errors (> 0.02 Hz), even for long signals. CM-2 is still able

Fig. 10. SRO deviation for a moving speaker with different signal lengths.

to achieve very accurate estimation provided that the signal is
long enough (> 80 s).

For the second scenario, the large estimation error of CM-2
for short signals is mainly due to speaker movement, such that
the peak location of the correlation coefficient function devi-
ates from the true SRO value (cf. discussion in Section III-C).
To support this argument, we have computed the deviation of
SRO estimation due to speaker movement by applying CM-2
to two synchronized microphone signals (i.e., SRO being 0) for
the scenario with a moving speaker. Fig. 10 depicts the obtained
SRO estimation deviation for different signal lengths. As can be
observed in Fig. 10, the SRO estimation deviation is relatively
large (and unpredictable) for short signals. However, when the
signal is long enough, the SRO estimation deviation approaches
0. The SRO estimation deviation curve in Fig. 10 is consistent
with the SRO estimation error curve for CM-2 in Fig. 9(b),
which is obtained with SRO varying between [−10, 10] Hz.
This demonstrates that CM-2 can recover the SRO up to the
deviation due to speaker movement.

E. Application to Blind Source Separation

In this section we evaluate the influence of sampling rate
offset on the performance of a frequency-domain blind source
separation (BSS) algorithm [6] and we evaluate the per-
formance improvement when applying the considered SRO
estimation algorithms. We simulate a similar scenario as
in Section V-C with two static speakers and two micro-
phones with an inter-microphone distance of 20 cm. The
two speakers are randomly placed at a distance of 2 m
from the microphones. The considered signal lengths are
{10, 20, 40, 60, 100} s. The second microphone signal is resam-
pled with an SRO chosen from the set {5× 10−4, 10−3, 2×
10−3, 5× 10−3, 10−2, · · · , 5, 10, 15, 20} Hz. The BSS perfor-
mance is evaluated using the output signal-to-interference ratio
(SIR), which is obtained by averaging the SIRs of two sources
at the BSS output. The SIR is calculated with a toolbox in
[32]. For all testing scenarios, the input SIR of the microphone
signals is around 0 dB.

Fig. 11 depicts the BSS performance for various SROs and
signal lengths without sampling rate compensation. When the
SRO ε ≤ 0.01 Hz, the BSS performance for the considered sig-
nal lengths is hardly affected by sampling rate offset. When
ε > 0.01 Hz, it can be clearly observed that the BSS perfor-
mance degrades as ε increases. The influence of sampling rate
offset on the BSS performance highly depends on the signal
length: long signals are more sensitive to sampling rate offset
than short signals. When ε > 1 Hz, BSS fails in most cases.
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Fig. 11. BSS performance in terms of output SIR for various SROs and signal
lengths without sampling rate compensation.

Fig. 12. BSS performance in terms of output SIR for various SROs and signal
lengths after sampling rate compensation with (a) LPD, (b) CM-2, (c) ML, and
(d) CM.

Fig. 12 depicts the BSS performance after sampling rate
compensation with the considered algorithms. In general, LPD
yields the worst performance; the performance of CM is similar
to the performance of ML, and CM-2 yields the best perfor-
mance, which is consistent with the observations made in the
previous sections. The output SIR obtained by CM-2 remains
constant at 18 dB for the considered SROs and signal lengths.
ML and CM yield a decreased SIR when the SRO or the sig-
nal length is increased. More specifically, for signals shorter
than 20 s, the output SIRs of ML and CM remain almost con-
stant at 18 dB for the considered SROs. For signals longer than
20 s, their output SIRs start to drop with increasing ε, especially
when ε > 5 Hz.

F. Real-World Experiment

In this experiment we evaluate the BSS performance using
recorded data with real devices. The recording is made in a
room of size 7 m × 7 m × 3 m with a reverberation time of
about 400 ms. We use two independent devices, a Samsung S3
smartphone and a Gopro Hero3 camera, which are placed 10 cm
apart in the center of the room. The speech signals are played
through two Genelec 8010 loudspeakers, which are randomly
placed at a distance of 1 m from the recording devices. The sig-
nal length is 100 s. The recordings contain slight noise from an

Fig. 13. BSS performance in terms of output SIR for real recorded data before
(asynchronous) and after sampling rate compensation by the considered algo-
rithms. The SRO between the devices is about 5.5 Hz at a sampling rate of
16 kHz. Note that the SIR curves of CM and ML are overlapping.

air conditioner. The sampling rate of the devices are 44.1 kHz
(Samsung) and 48 kHz (Gopro), respectively. The recorded
signals from both devices are downsampled to 16 kHz before
processing. The SRO between both devices is about 5.5 Hz at
a sampling rate of 16 kHz. To obtain the clean reference sig-
nals in the microphones, which are required to calculate the
SIR [32], we first played speech signals separately through each
loudspeaker and then simultaneously through both loudspeak-
ers. For all testing scenarios, the input SIR of the microphone
signals is around 3 dB.

Fig. 13 depicts the BSS performance after sampling rate
compensation with the considered algorithms for different sig-
nal lengths varying from 10 s to 100 s. All algorithms improve
the output SIR with respect to the asynchronously sampled
signals. LPD yields the worst performance, and CM and ML
achieve a very similar SRO estimation accuracy, hence hav-
ing practically overlapping SIR curves. CM-2 yields a similar
performance as CM and ML for a signal length of 10 s but out-
performs CM and ML for longer signals. It can be expected
that the advantage of CM-2 becomes even more evident when
the SRO between two devices is larger.

G. Computational Complexity

The computational complexity of the ML, CM and CM-2
algorithms is dominated by the exhaustive search procedure,
whose computational complexity is proportional to KLQ,
where Q is the number of SRO candidates, which depends
on the search region and the search step. For the same search
region and search step, the computational complexity of ML
and CM is similar, whereas the computational complexity of
CM-2 is twice of CM. In contrast, LPD computes the SRO
analytically and does not require an exhaustive search proce-
dure. The computational complexity of LPD is proportional to
KL, which is much smaller than the complexity of the other
algorithms.

As an example, we have compared the computation time of
the Matlab implementations of all considered algorithms on an
Intel CPU i5@3.33 GHz with 4 GB RAM, using a 20 s long
signal at a sampling rate of 16 kHz. The computation time of
LPD is only 0.32 s. For the ML, CM and CM-2 algorithms,
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we have used a search region [−10, 10] Hz and a search step
0.0005 Hz, resulting in Q = 4× 104. The computation time is
1345 s (ML), 1316 s (CM) and 2633 s (CM-2), i.e., the compu-
tation time for each SRO candidate is around 0.03 s. In practice,
the computational complexity of the exhaustive search proce-
dure can be significantly reduced (to tens of seconds) by using
a coarse-to-fine search scheme, or by using an intelligent search
scheme (e.g., the golden section search scheme [24] and the
iterative quadric function approximation scheme [28]), or by
reducing the search region based on prior knowledge of the
recording devices. In addition, since the SRO usually does not
vary a lot over time, the SRO value does not need to be updated
frequently once it has been estimated.

VI. CONCLUSIONS

In this paper, we have proposed a correlation maximization
based algorithm to blindly estimate the SRO between two asyn-
chronously sampled microphone signals1. By approximating
the SRO with a linear-phase drift model in the STFT domain,
the proposed algorithm estimates the SRO as the one maxi-
mizing the correlation coefficient between two resynchronized
signals. Furthermore, since the precision of the linear-phase
drift model degrades for large SROs and for large signal
lengths, a two-stage search scheme is proposed to minimize the
influence of the model errors.

Simulated and real-world experiments validate the perfor-
mance of the proposed correlation maximization algorithm. The
algorithm works well for static acoustic environments as long as
the correlation between the microphone signals is large enough.
The algorithm also shows promising results for dynamic acous-
tic environments for the special case when the source is moving
around the microphones and when the signal is long enough.
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