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ABSTRACT

Speaker diarization has gained much importance over the past
five years in helping overcome key challenges faced by automatic
meeting transcription systems. Current state-of-the-art algorithms
can only utilize spatial information when multi-microphone record-
ings are available. In this paper, we propose the novel use of re-
verberation as a source of spatial information obtained from single-
channel recordings to perform speaker diarization. The proposed
system is shown to reduce speaker classification errors by 34%
when compared with current MFCC based single-channel systems.

Index Terms— Speaker diarization, direct-to-reverberant ratio,
spatial acoustic features

1. INTRODUCTION

Speaker diarization aims at answering the question ‘which speaker
spoke when?’. This information can be used to improve the perfor-
mance of Automatic Speech Recognition (ASR) systems by allow-
ing effective speaker adaptation or enable efficient tagging of large
transcripts of meetings so that a user can search by speaker name,
for example.

Previous algorithms for single-channel speaker diarization dis-
criminated different speakers using speech dependent features such
as Mel-frequency Cepstral Coefficients (MFCC) or Perceptual Lin-
ear Predictive (PLP) coefficients [1] preferably extracted from data
captured by a close talking microphone [2]. In meeting scenar-
ios, however, distant microphones are often preferred to headsets
or lapel microphones. The use of distant microphones can cause
the adverse effects of reverberation to become more prominent and
reduce the performance of MFCC or PLP based systems due to tem-
poral smearing of the received signal. The combination of reverber-
ation and other adverse phenomena typical of meeting scenarios,
e.g. poor Signal-to-Noise Ratio (SNR) or variable speech levels,
further reduces the performance of such diarization systems [3].

When multi-channel signals are available, the use of beamform-
ing as a preprocessor to enhance the signal has been explored in
[4], while in [5], a feature based on the Time-Difference-of-Arrival
(TDOA) between each pair of microphones has been proposed. In
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[6], a framework in which MFCCs and TDOAs are combined has
also been proposed.

In many meeting scenarios, such as teleconferencing, there is
only a single microphone signal available. In such scenarios, the
current state-of-the-art speaker diarization systems are unable to
benefit from any spatial information as beamforming preprocessing
or TDOA features can only be used when there are at least 2 mi-
crophones available. Whereas in previous single-channel speaker
diarization methods, reverberation would be seen as a hindrance,
we propose in this paper to turn this hindrance into an advantage.
The Direct-to-Reverberant Ratio (DRR) [7] is known to be strongly
correlated with the distance between a microphone and the sound
source [8]. We estimate the DRR from the single-channel signal us-
ing a non-intrusive algorithm [9] that does not require prior knowl-
edge of the Room Impulse Response (RIR) or the source signal and
use it as an additional feature that characterizes the acoustic channel
from each speaker to the microphone.

The remainder of this paper is organized as follows: in Sec-
tion 2.2, the diarization system is described. In Section 3, the sim-
ulated meeting data together with the evaluation metric are shown.
The performance of the proposed method is then presented in Sec-
tion 4 and conclusions are drawn in Section 5.

2. THE DIARIZATION SYSTEM

Throughout this paper, we assume that the speakers are stationary
and that the received signal at the microphone y(n) at time instant
n is given by

xi(n) = hi ∗ si(n), (1)

y(n) =

P∑
i=1

xi(n) + ν(n) (2)

where i represents a speaker index, hi = [hi(0), hi(1), . . . , hi(L−
1)] the L sample time-invariant RIR relating the ith speaker to the
microphone, P the total number of speakers and ν(n) is the additive
noise at the microphone.

2.1. Baseline diarization system

The baseline, selected for comparison in this paper, is the sys-
tem proposed in [10]. It discriminates different speakers based on
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Figure 1: Block diagram of the proposed speaker diarization sys-
tem.

MFCC features and a diarization system relying on the Information
Bottleneck (IB) principle [11].

IB based diarization. The IB based diarization system clus-
ters a given uniform linear segmentation A of the recorded signal
y(n) into a set C of clusters, which compresses the input variable
while preserving the mutual information about a set B of relevance
variables. This is achieved by the minimization of the following
objective function using the agglomerative IB [12]:

J = I(A,C)− βI(C,B) (3)

where β is a trade-off parameter and I is the mutual informa-
tion. The relevance variables correspond the components of a
background Gaussian Mixture Model (GMM) trained on the entire
recording.

At each step of the agglomerative IB, two clusters are merged
so that the loss of mutual information about the relevance variables
is minimum. The optimal number of clusters is determined by a
threshold on the normalized mutual information I(B,C)

I(A,B)
. Further

details can be found in [6].
The Short Time Fourier Transform (STFT) of the recorded sig-

nal y(n) is computed after application of a 20ms Hamming window
with 50% overlap. From each frame, 19 MFCCs are extracted.

At the output of the agglomerative IB algorithm, the clusters are
aligned with the boundaries of the initial segments. Those bound-
aries are realigned by computing the sequence of clusters that min-
imizes the cost function based on the posterior distribution of the
relevance variables.

2.2. Proposed diarization system

The proposed diarization system, a block diagram of which is
shown in Fig. 1, is built on top of the system described in [10].
From the received signal y(n), 2 streams of features, namely the
MFCC and DRR features, are extracted independently before being
combined and clustered so that a label l[k] is assigned to the kth

frame.
We propose to use DRR as a spatial feature for speaker diariza-

tion, defined for speaker i as follows [13]

DRRi = 10 log10


n=nd+n0∑
n=nd−n0

h2
i (n)

n=nd−n0∑
n=0

h2
i (n) +

∞∑
n=nd+n0

h2
i (n)

 dB,

(4)
where n0 is the number of samples in a rectangular window of 8 ms
and nd is the time index (in sample) of the direct path arrival in the
RIR, hi(n).

To evaluate this measure of reverberation, the RIR needs to be
known or estimated. However, in this work DRR is estimated non-
intrusively from the reverberant signal, i.e. without information on
the RIR or the source signal. The non-intrusive room acoustic pa-
rameter estimator (NIRA) [14] employed is a data-driven approach
which computes 106 features per frame from active speech seg-
ments in the input signal using the Voice Activity Detector (VAD)
presented in Section 2.4. These features are derived from pitch
period, importance weighted signal to noise ratio, zero-crossing
rate, Hilbert transformation, power spectrum of long term devia-
tion, MFCCs, line spectrum frequency and modulation representa-
tion. A bidirectional long short-term memory model [15] is trained
with these features computed from speech segments to obtain DRR
estimates every 10 ms. The estimation of DRR is made level inde-
pendent by normalizing the power of the input utterance.

2.3. Feature combination

A background GMM, Mj , is now estimated for each stream of
features, Fj . The VAD described in Section 2.4 is applied to ex-
clude features extracted from estimated pauses in the training of the
GMM. The combined distribution, which is required in the IB based
diarization system, is then calculated as:

p(b|a) =
∑

j∈{MFCC, DRR}

p(b|Mj , a)Pj

where b ∈ B is a relevance variable, a ∈ A is an input feature and
the stream weights, Pj , satisfy PMFCC + PDRR = 1. These weights
are empirically estimated from a development set to maximize per-
formance.

2.4. VAD

A VAD based on the P.56 method [16, 17] is applied to extract seg-
ments with active speech from the input signal. The time boundaries
of detected speech are also given to the clustering block to discard
speech features that were extracted from detected silence frames.

3. EXPERIMENTAL SETUP

This section describes the experimental setup used to evaluate the
diarization systems. NIRA was trained on the training data of the
REVERB Challenge. The measured RIRs used in the training and
the simulated meeting data were captured in different rooms [18].

3.1. Simulated meeting data

The simulated meetings were generated by convolving clean speech
with measured RIRs taken from the evaluation set of the REVERB
Challenge database [18]. Recorded fan noise was added at 20 dB
SNR.

Speech data. The nearly-anechoic speech data consisted of
utterances taken from the WSJCAM0 corpus [19] which were
recorded by a close-talking noise-cancelling head-mounted micro-
phone. There were, in total, 14 speakers: 7 male and 7 female. Each
utterance was only used once across the simulated meetings.

RIRs. The RIRs of the REVERB Challenge were captured in
3 rooms of different size by a circular microphone array. For each
room, the RIR that was recorded at a distance of 0.5 m is labeled as
near and the RIR that was recorded at a distance of 2 m is labeled
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Room 1 Room 2 Room 3
T60 (s) 0.25 0.5 0.7

Near DRR (dB) 16 11 11
far DRR (dB) 6 0 2

Table 1: T60 in s and DRR in dB for the near and far positions in
each of the three rooms.

as far. The ground truth DRRs together with the reverberation time
T60 are given in Table 1.

In each simulated meeting, the reverberant signal consisted of
10 to 14 utterances spoken by 2 different speakers speaking in turn.
Spatial differences between the 2 speakers are simulated by con-
volving each speakers’ signal with different RIRs, i.e. the utterances
spoken by one speaker are convolved with the near RIR while the
utterances spoken by the other speaker are convolved with the far
RIR.

In total, 42 simulated meeting audio streams were generated,
14 streams per room. Among the 42 audio streams, 18 streams
contained speakers of different gender, 12 streams contained only
male speakers and 12 streams contained only female speakers.

Noise. Fan noise signals, recorded in each room, were added to
the simulated meeting data at a mean SNR of 20 dB, defined as [18]

SNR = 10 log10

(∑N
n=1

∑P
i=1 x̃

2
i (n)∑N

n=1 ν
2(n)

)
, (5)

x̃i(n) = h̃i ∗ si(n) (6)

whereN is the total number of samples in the considered recording,
h̃i = [hi(0), hi(1), . . . , hi(n50 − 1)] is the truncated RIR contain-
ing the n50 taps within the first 50 ms and x̃i(n) is the direct sound
together with the early reflections up to 50ms.

Development and Evaluation sets. The simulated data were
broken down into two non-overlapping subsets: a development and
an evaluation set.

The development set was used to determine the optimum
weightsPMFCC andPDRR = 1−PMFCC to use in the IB based diariza-
tion system to minimize the Diarization Error Rate (DER) defined
below. The optimum weights were then used on the evaluation set.

3.2. Evaluation

The performance of the diarization system was evaluated in terms
of DER [20]. The DER corresponds to the fraction of time that is
not attributed the correct speaker. That score can be broken down
into the missed speaker time, false alarm time and speaker error
time. The first two solely depend on the VAD as they respectively
correspond to the fraction of time of estimated silence when speech
was present and the fraction of time of estimated speech when there
was a silence.

The DER is computed as follows [20]:

DER =

∑
σ∈S τ(σ) {max (Nref(σ), Nsys(σ))−Ncorrect(σ)}∑

σ∈S τ(σ)Nref(σ)
(7)

where S is the set of speech segments taken between 2 consecutive
speaker change points after merging the estimated and the refer-
ence diarization files, σ is a segment and τ(σ) is the duration of σ.
The symbols Nref(σ) and Nsys(σ) respectively denote the number
of reference and system speakers in σ. The number of reference

speakers speaking in σ for whom their mapped system speakers are
also speaking in σ is denoted by Ncorrect(σ).

4. RESULTS

4.1. Development set

Figure 2 shows the variation of DER with PDRR on the development
set. It can be observed that the use of DRR features alone in the IB
based diarization system does not achieve low DER. However, by
combining them with MFCCs, the performance of the diarization
system can be improved to outperform the similar system solely
relying on MFCCs.

The lowest DER in the development set is achieved for PDRR =
0.18. This weight reduces the DER from 1.95% to 1.2%, achieving
a relative improvement of 38%.
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Figure 2: DER of the development set as a function of DRR weight
(PDRR = 1− PMFCC).

As shown in Table 2, the inclusion of DRR features in the di-
arization system reduces the DER on average. Although the base-
line and the proposed systems perform similarly in Room 1, signifi-
cant improvements are observed in Room 2 and Room 3, i.e. rooms
with higher amount of reverberation. A relative improvement of
56% and 46% are respectively seen in the 2 latter rooms.

Overall Room 1 Room 2 Room 3
Baseline 1.95% 0.95% 2.80% 2.10%
Proposed 1.20% 0.94% 1.22% 1.44%

Table 2: Mean DER of the baseline and the proposed method for
the development set.

Analyzing the breakdown of the DER in terms of gender, the
proposed system achieves lower DER for simulated meeting data
containing mixed genders or 2 female speakers. In these cases, the
mean DERs were respectively 1.09% and 1.79% for the proposed
system against 2.28% and 3.06% for the baseline.
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4.2. Evaluation set

The weights PMFCC = 0.82, PDRR = 0.18 determined from the
development set are now applied to evaluate the performance of the
diarization system on the evaluation set.

Figure 3 shows that the inclusion of DRR features improves by
23% the performance of the diarization system on average. The
DER as well as the speaker error time in Room 2 and Room 3 are
decreased while the DER in Room 1 is increased by 9% on av-
erage. This degradation in performance is due to the limitations
of the NIRA DRR estimator, which is reported to have high esti-
mation errors for environments with low reverberation [9]. Ana-
lyzing the Root-Mean-Square Deviation (RMSD) of the estimated
DRR in each room, the RMSD indeed decreased as T60 increased.
The RMSD values were respectively 2.7 dB, 2.5 dB and 2.2 dB for
Room 1, Room 2 and Room 3.

Similar observations can be made about the speaker error time,
which decreases from 2.35% and 1.34% down to 0.85% and 1.03%
for Room 2 and Room 3 respectively. The speaker error time in-
creases from 1.07% to 1.24% in Room 1. The variance of the DER
is also significantly reduced in Room 2 and Room 3 and slightly
increased in Room 1 as shown in Table 3.

Room 1 Room 2 Room 3 Overall
Baseline 0.68% 4.03% 1.06% 2.50%
Proposed 0.75% 1.16% 0.69% 0.91%

RMSD (dB) 2.7 2.5 2.2 2.5

Table 3: Standard deviation in speaker error time of the baseline and
proposed systems for the evaluation set together with the RMSD of
the estimated DRR.

Overall Room 1 Room 2 Room 3
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Figure 3: Relative improvement in DER and speaker time error by
inclusion of DRR features.

Figure 4 shows that the estimated DRRs mostly take values
around 10 dB and 2 dB, depending on the identity of the active
speaker. This figure corresponds to the simulated meeting which
had the highest DER and speaker error time, which were respec-
tively 16.73% and 13.7%. The presence of the DRR features re-
spectively decreased the DER and speaker error time to 7.13% and

4.1%, achieving a relative improvement of 57% and 70% respec-
tively.
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Figure 4: Estimated DRR along with the ground truth speaker iden-
tity.

Table 4 shows that the proposed system decreases the mean
speaker error time when the speakers have the same gender while
the mean speaker error time slightly increases when the speakers
have different gender. This shows that the DRR feature is beneficial
when the MFCCs have low discrimination capabilities.

Male - Male Mixed Female - Female
Baseline 1.07% 0.76% 3.20%
Proposed 0.74% 0.77% 1.68%

Table 4: Mean speaker error time broken down by gender for the
evaluation set.

5. CONCLUSION

In this work, we proposed to take advantage of the presence of
the speaker-dependent variation of reverberation in single-channel
recorded meetings for speaker diarization problems. The DRR has
been shown to be a feature that can discriminate different speakers
located in a room at different positions relative to the microphone.

By combining non-intrusive estimates of the DRRs with MFCC
features, the proposed diarization system was evaluated on simu-
lated meeting data created using recorded RIRs and noise signals
and was shown to give a relative improvement of 34% in average in
terms of speaker error time. The standard deviation of the speaker
error time was also reduced in the 2 rooms with higher T60.

We might suggest that a good way forward would be selective
combination, such that if the T60 indicates an environment with low
reverberation, spatial features are not used, otherwise if the T60 in-
dicates a moderately or highly reverberant environment, we use the
spatial features as proposed in this paper. We note that the NIRA
algorithm can also be used to estimate the T60 in a non-intrusive
manner.
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