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Abstract
In the context of ambient assisted living, automatic speech
recognition (ASR) has the potential to provide textual sup-
port for hearing aid users in challenging acoustic conditions.
In this paper we therefore investigate possibilities to improve
ASR based on binaural hearing aid signals in complex acous-
tic scenes. Particularly, information about the spatial config-
uration of sound sources is exploited and estimated using a re-
cently developed method that employs probabilistic information
about the location of a target speaker (and a simultaneous local-
ized masker) for robust real-time localization. Two different
strategies are investigated: straightforward better-ear listening
and a multi-channel beamforming system aiming at enhance-
ment of a target speech source with additional suppression of
localized masking sound. The latter method is also comple-
mented by better-ear listening. Both approaches are evaluated
in different acoustic scenarios containing moving target and in-
terfering speakers or noise sources. Compared to using non-
preprocessed signals, we obtain average relative reductions in
word error rate of 28.4% in the presence of a localized interfer-
ing noise, 19.2% in the case of a concurrent talker and 23.7%
in presence of a concurrent talker in spatially diffuse noise. A
post-analysis assesses the relation of localization performance
and beamforming for improved speech recognition in complex
acoustic scenes.

Index Terms: speech recognition, direction of arrival estima-
tion, hearing aids

1. Introduction
Technologies to support users of assistive devices such as hear-
ing aids gain more and more importance in our aging soci-
ety [1]. This study analyzes the potential of automatic speech
recognition (ASR) operating on the multi-channel signals that
are used in today’s hearing aids, with application scenarios such
as textual support for hearing-impaired users in mind.

Psychoacoustic studies report two strategies that hearing-
impaired listeners can profit from in complex acoustic scenes:
In [2] it was shown that users of bilateral cochlea implants gain
significant benefit in speech intelligibility when estimates of the
direction of a moving target is used to steer a beamformer. Sec-
ondly, human listeners are able to efficiently exploit the inherent
spatial filtering characteristics of the head by simply relying on
better-ear listening for better speech intelligibility if target and
interferer are spatially separated [3, 4].

Both techniques require a robust estimation of direction of
arrival (DOA). In this paper, we explore if our recently devel-
oped method for accurate DOA estimation that employs prob-
abilistic information about target and masker can be exploited

in binaural machine listening. This real-time DOA estimation
method [5] is tailored to the binaural sensor setup by statisti-
cal, data-driven learning. The advantage of this method is its
real-time capability, robustness in noise and in reverberant con-
ditions without the requirement of further assumptions. This
is in contrast to several related studies dealing with DOA es-
timation, which often rely on additional information such as
estimates of target signal properties [6, 7, 8], noise statistics
[9, 10], room reverberation [11], sensor position and room ge-
ometry [12, 13] from multi-conditional training of the machine
localization framework [14].

Aiming at improved ASR in hearing aids by exploiting
DOA information, we employ better-ear listening and beam-
forming for signal enhancement. Both methods are evaluated
by linking an ASR back-end to the output of our preprocess-
ing scheme. Since the signals are measured directly at the ears
with a behind-the-ear hearing aid setup, it is straightforward
to apply the better-ear strategy by choosing the favorable lat-
eral channel on the basis of the DOA estimate. In an attempt
to further enhance the signal-to-interference ratio (SIR), multi-
channel beamforming is utilized in two ways: amplification of
a target speech signal and suppression of a localized interfering
sound source. In [15, 16], a similar setup was used that ex-
ploited binaural preprocessing combined with bio-inspired fea-
ture extraction, which has been shown to significantly enhance
ASR performance. However, this method relied on a dynamic
model that required the integration of localization features over
a complete utterance; thus, it did not offer on-line processing
capabilities as required for close-to-realtime transcriptions of
speech. For ASR in assistive devices, low-latency processing is
an important system feature, which potentially can be achieved
with the approach presented here.

The remainder of this paper is structured as follows: In Sec-
tion 2 the methods for sound source localization and tracking,
spatial filtering, and ASR are introduced, as well as the data and
the experimental setup. In Section 3, the results of the experi-
ments carried out are presented and discussed, for which the
signals without any spatial processing serve as benchmark. The
conclusions from our work are presented in Section 4.

2. Methods
In the following, a description of the methods used in our
processing chain is given. First, the DOA estimation for tar-
get and interfering signals using binaural hearing aid output is
described. The estimates are passed to a tracking algorithm,
whose output is used to choose the better ear and to steer a
beamformer towards the target to be preserved and an interferer
to be suppressed. The acoustic output of the beamformer is pro-
cessed by the ASR back-end.
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Figure 1: DOA tracking results in a scenario with two talkers
at equal sound level. Gray dots denote DOA estimates with the
probability denoted in gray level, solid lines denote the tracks
of the target source (red) and the interferer (black) and dashed
lines correspond to the ground truth DOA over time.

2.1. Direction of arrival estimation and source tracking

The direction of arrival of a target speech source and of an in-
terfering sound source, which can be either speech or noise, is
estimated using a classification-based approach. The method
employed here is described in detail in [5]. It consists of
a set of discriminative support vector machine (SVM) clas-
sifiers, each one trained to distinguish between presence and
absence of a sound source for a given direction, followed by
a generalized linear model (GLM) that delivers the probabil-
ity of sound source incidence from each direction. Short-term
generalized cross-correlation functions [17] with phase trans-
form (GCC-PHAT functions) serve as input features. A set of
direction-dependent SVM-GLM models was learned that cov-
ers the frontal hemisphere of a binaural hearing aid setup with
5◦ angular resolution. Using noisy, anechoic data in train-
ing, purely head-related information is learned and no a-priori
knowledge of the room characteristics is available to the DOA
estimator. DOA probabilities are computed in segments of
10 ms length and subsequently pooled over 200 ms using a slid-
ing average. From the resulting probability functions, the three
most likely directions are used for the tracking of the sound
sources.

The tracking was carried out with a particle filter algorithm
using Kalman filters [18]. The particle filter is able to track
multiple sources and to assign each measurement to one of the
localized moving sources or to clutter. When a target and a lo-
calized interferer have to be tracked, two sets of particles need
to be initialized. For the target source, the a-priori knowledge
of its starting position was used to resolve the target-interferer-
ambiguity. Note that this information is not required for ac-
curate DOA, but merely for specifying the correct target. For
the second source, particles were initialized equidistantly over
the whole hemisphere with 5◦ resolution, which amounts to 37
particles. Each particle weight was initialized according to the
probability of sound source incidence observed during the first
200 ms of the signal, which yields a fast convergence of DOA
tracks. Furthermore, DOA probabilities are used in the sequen-
tial importance resampling needed during the tracking.

Fig. 1 shows an example of the outputs obtained in the DOA
estimation and tracking procedure.

2.2. Spatial filtering approaches

The spatial filtering methods described in the two following sec-
tions allow three possible processing strategies: 1) better-ear
listening that selects the signal from the favorable side of the
head according to the target signal’s position; 2) a steered bin-
aural multi-channel beamformer that processes all microphone

signals of the hearing aids and is adjusted according to DOA
estimates of target and interferer; 3) a combination of 1) and 2),
i.e., the better-ear signal from the binaural beamformer output
is selected. The difference between 2) and 3) is that in 2) always
the same monaural channel is used in contrast to 3), where the
channel is selected systematically and adaptively.

2.2.1. Better-ear listening

Better-ear listening exploits the acoustic transmission charac-
teristics of the human head and is implemented in a straight-
forward way: The signal from the ear that is in the same hemi-
sphere as the target sound source is passed to the ASR back-end.
In the transition from the right to the left hemisphere, around a
DOA α of 0◦, the output signal sout is a linear combination of
the signal captured by the front left hearing aid microphone sl
and the front right sr , respectively:

sout =

⎧⎪⎨
⎪⎩

sl, α <−5◦
sr, α > 5◦(

1− α+5◦
10◦

)
· sl + α+5◦

10◦ · sr, |α| ≤ 5◦
. (1)

2.2.2. Binaural linearly constrained beamformer

In [20] an extension of the LCMV beamformer [19], namely
the binaural LCMV beamformer (BLCMV) has been proposed,
which aims to minimize the overall noise output power of the
left and right hearing aids subject to the constraints of preserv-
ing the desired speech source and suppressing the directional
interfering source by a prespecified amount determined by the
interference rejection parameters ηl and ηr . The optimization
criteria for the left and the right hearing aid are

min
W{l,r}

WH
{l,r}RvW{l,r} subject to CHW{l,r} = b{l,r} (2)

with

C =
[
A B

]
, b{l,r} =

[
A∗{l,r}

η∗{l,r}B
∗
{l,r}

]
, Rv = PvΓ.

Rv is the correlation matrix of a diffuse noise field, Pv the
power spectral density of the noise component and Γ the spatial
coherence matrix. A and B are the acoustic transfer functions
of the speech component and the directional interference com-
ponent, respectively. The filter vectors Wl and Wr minimizing
the expressions given in (2) are equal to [20]

W{l,r} = Γ−1C
[
CHΓ−1C

]−1

b{l,r}. (3)

In this paper, we use anechoic head-related transfer functions
(equal to those that have been used for the training of the DOA
estimator) to represent A and B and to calculate the spatial co-
variance matrix Γ. By these means, the HRTFs needed to ad-
just the beamforming system are selected according to the DOA
estimates for the target and the interference. For the interfer-
ence rejection, we set ηl = ηr = 0.2. Alternatively, expres-
sions for an optimal choice of ηl and ηr are presented in [21],
aiming at the maximization of the speech-to-interference+noise
ratio (SINR). As this optimization requires an estimate of the
correlation matrix of the interference component as well as for
the noise component, we adapted the optimization criterion by
maximizing the SNR instead of the SINR. Hence, the optimiza-
tion only depends on A, B and Γ.

In summary, two signal-independent variants of the
BLCMV beamformer are used in our experiments: BLCMVfix

with constant ηl = ηr = 0.2 and BLCMVopt with an adaptive
SNR-optimized choice ηl = ηr = ηopt, whereby ηopt is the
optimal value relating to the better ear.
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2.3. ASR setup

ASR features are calculated by converting the time signals to
Mel-Frequency Cepstral Coefficients (MFCCs) [22] with ad-
ditional cepstral mean and variance normalization. By adding
delta and double-delta features, 39-dimensional feature vectors
are obtained in 10 ms steps. Feature vectors are spliced with a
total temporal context of 11 frames (± 5 frames), subsequently
a linear discriminant analysis and maximum likelihood linear
transform is performed with a final feature dimension of 40 fea-
tures per frame. These features are fed into an Hidden Markov
Model (HMM) classifier. The HMM classifier has been set up
as word models with each word of the vocabulary correspond-
ing to a single HMM. The HMM used sixteen states per word
model and five to six Gaussians per mixture and was imple-
mented using the Kaldi speech recognition toolkit [23].

2.4. Speech database and spatial scenes

Speech data was taken from the TIDIGITS speech corpus de-
signed for speaker-independent recognition of connected digit
sequences [24], which is divided into a training set (55 male
and 57 female speakers) and a test set (56 M, 57 F). Because
the utterances are rather short, sequences of the same speaker
have been concatenated to create longer sequences suitable for
speaker tracking. On average, 23 sequences per speaker with
an average duration of 5.9 s were generated. The speech sig-
nals were reverberated using binaural room impulse responses
(BRIR, [25]) measured with a 6-channel behind-the-ear hear-
ing aid setup in 1 m distance from the sound source in an office
room with a reverberation time T60 = 500ms. Sound source
movement was simulated by partial convolution using 64 ms
Hann windows with 50% overlap. This spatialization results in
speech sources that move linearly on a half circle in the frontal
hemisphere between a pair of starting and end DOA randomly
drawn from a −90◦ to +90◦ azimuth interval. The moving-
speaker signals were mixed with randomly localized stationary
speech-shaped noise at SIRs ranging from -5 dB to 20 dB in
5 dB steps. Additionally a set without noise was used, result-
ing in a total number of 18032 signals (29.5 h) for training.

Three different acoustic scenarios were simulated on the ba-
sis of the test speech: The first includes one moving speaker
with a fixed localized stationary noise source (A) (comparable
to the training condition), the second consists of two moving
speakers without any additional noise (B) and the third scenario
is composed of two moving speakers superimposed by spatially
diffuse noise (C). The same SIRs (-5 to 20 plus clean) as for the
training set were used, with the exception of Scenario B where
we did not include the -5 dB condition as we found a masking
talker at this SIR to result in ASR chance performance in earlier
experiments. In Scenario C, interfering talker and noise were
mixed at 0 dB before adding the resulting masker to the target.

Initial and final positions were again randomly drawn for all
localized sound sources. Parameters of movement were chosen
such that the target speaker crossed the localized masker in 50%
of all realizations.

2.5. Experiments

For a fair comparison of the spatial processing approaches a
separate ASR model was trained for each one of them: baseline,
i.e., no processing was conducted and a single channel of the left
hearing aid was used, better-ear, BLCMVfix and BLCMVopt. In
the training ground truth DOA information was used. ASR was
conducted in each of the scenarios described above.
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Figure 2: RMSE of DOA estimates of target and interferer de-
pending on the signal-to-interferer ratio.

3. Results and discussion
3.1. Localization performance

Fig. 2 shows the localization accuracy expressed in average root
mean square error (RMSE) of the estimated angle in reference
to the ground truth DOA information. The error was averaged
over all realizations for each scenario and SIR condition. In Sce-
nario A, the localized interfering noise is localized more accu-
rately than the target speech source even at high positive SIRs.
This can be explained by the signal characteristics: In contrast
to the modulated speech signal, the noise signal is stationary,
i.e., modulation minima of the speech signal can be exploited to
localize the noise source also at low levels. At 20 dB SIR, DOA
errors for target and interferer are practically identical.

In the Scenario B, target and interferer speech signals have
similar characteristics. Since the target speech has equal or
higher energy compared to the interfering source, it can be lo-
calized more accurately. In the 0 dB-SIR condition, the DOAs
of both sound sources are estimated with equal accuracy. Ac-
cordingly, no systematic advantage of the initially used starting
position (cf. Section 2.1) of the target is found.

The third scenario is the most challenging regarding DOA
estimation: The target source is masked by a 0-dB mixture of
a concurrent speaker and diffuse noise with the same spectral
characteristics as in Scenario A; hence, the target localization
is consistent with A. The interfering speech source is to a large
extent masked by the noise and additionally by the target, such
that DOA estimation is close to chance performance.

3.2. ASR results

ASR results are measured in word error rate (WER). For all
preprocessing strategies, we found better-ear listening to lower
average WERs in all scenes: The better-ear benefit amounts to
22.1% with better-ear listening as described in Sec. 2.2.1 when
expressed in relative improvement in WER of better-ear listen-
ing over using always the left ear and averaged over all SIRs
< ∞ and all scenarios. With beamforming, a relative WER
reduction of 4.9% is achieved in case of the BLCMVfix setup
and 8.9% with BLCMVopt. Hence, all results reported in the
following include better-ear processing, with exception of the
baseline. Comparisons between the setups are drawn in terms
of relative improvement (i.e., reduction) in WER over the base-
line results. Here, average values computed over improvements
in all conditions with an interferer present (SIR <∞) are given.

Absolute WERs obtained from ASR are summarized in Ta-
ble 1. Regarding the best performing approach, characteristic
differences between the scenarios are found: In Scenario A,
straightforward better-ear listening yields the best ASR results.
The averaged relative reduction in WER amounts to 28.4% .
With perfect DOA information, the average improvement is
10% higher. In this scenario, the overall ASR performance is
highest due to the absence of masking speech.
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Table 1: WERs for each scenario and SIR condition using the different spatial filtering approaches. In the lowermost line average
WERs achieved with ground truth DOA information are given.

Scenario A Scenario B Scenario C
SIR (dB) baseline better ear BLCMVfix baseline better ear BLCMVfix baseline better ear BLCMVfix BLCMVopt

-5 50.03 46.58 51.45 – – – 69.83 60.32 64.48 65.83
0 20.01 16.08 25.45 69.96 62.82 58.09 52.46 40.28 45.73 46.48
5 5.91 4.44 10.93 56.89 48.27 45.66 36.28 26.22 29.45 29.21

10 2.26 1.42 4.82 45.43 38.53 35.99 24.68 18.23 19.22 17.97
15 1.28 0.78 2.72 35.93 31.76 28.87 17.93 13.24 14.15 11.91
20 1.13 0.65 2.08 28.84 25.74 23.33 12.75 9.51 10.71 8.17
∞ 1.56 1.34 3.14 1.73 1.56 3.36 1.69 1.54 3.40 4.73

Average 11.74 10.18 14.37 39.80 34.78 32.55 30.80 24.19 26.73 26.33

Average gt – 8.76 12.35 – 34.60 31.31 – 23.54 22.54 24.50

As could be expected, the concurrent speaker in Scenario
B results in generally high WERs. In this scenario, the sup-
pression of the interferer becomes particularly important, and
consequently the BLCMVfix beamformer yields the best per-
formance with 19.2% relative WER reduction. Compared to
perfect DOA information, this enhancement is only 3% points
below the possible maximum. In comparison, straightforward
better-ear listening achieves 12.6% relative improvement with
estimated DOAs and 13.0% with ground truth DOA.

Scenario C represents a combination of a localized inter-
fering talker and diffuse noise causing a strong degradation
of localization performance, especially for the interferer (cf.
Fig. 2). This affects ASR performance such that straightfor-
ward better-ear listening yields the best results at low SIRs of
-5 dB, 0 dB and 5 dB. In all conditions, this methods achieves
better results compared to BLCMVfix and 23.7% relative en-
hancement in total, which is only 1.4% points below ground-
truth-DOA enhancement. Due to the poor localization capabil-
ities regarding the interference, the interferer suppression can-
not take its full effect in this scenario with the relatively small
fixed value of ηl and ηr . By using the SNR-optimized vari-
ant, BLCMVopt, a noticeable reduction of WERs is achieved,
in particular at higher SIRs above 10 dB. Note that the use of
ηopt does make sense only in this scenario, as in there is no dif-
fuse noise present in Scenarios A and B. If perfect DOA infor-
mation was available, BLCMVfix would achieve 31.3% relative
reduction in WER. Using DOA estimates, only 16.42% were
obtained. By comparison, BLCMVopt approximates to maxi-
mal performance much closer with 22.2% relative reduction in
WER compared to 28.6% given perfect DOA information.

ASR results in conditions without interferer show that in
such cases beamforming has a detrimental effect, presumably
due to distortion of the speech signals and due to increased vari-
ability in the training data of the ASR models. If better-ear lis-
tening is used in clean conditions, a relative WER reduction of
23.2% averaged over all scenarios is achieved, which can be
caused by reduced variability due to a reduced impact of the
head-filtering discussed above.

4. Conclusions
In this work, a robust DOA estimation technique with real-time
processing capabilities was used to obtain DOA estimates from
signals captured with a binaural hearing aid setup, with the ad-
vantage of relying on very little a priori information, namely
only sensor-related characteristics of the setup, such that no spe-
cific knowledge about the acoustic scene is required.

Our aim was to improve ASR by exploiting DOA estima-
tion, hence we explored how to optimally apply spatial informa-

tion in acoustic scenes. Better-ear listening and beamforming
(and a combination of those) were tested, which were shown
to increase speech intelligibility in human listeners in earlier
studies [26, 2]. However, it was unclear if and to what ex-
tent a machine listener could profit from such a system con-
figuration. Three acoustic scenarios of different complexity
were investigated to cover realistic application scenarios, each
including a moving talker masked by different kinds of inter-
fering sources. For each scenario, distinct DOA errors were
observed, which strongly depend on the modulation character-
istics of the sources. While localization of the target source is
sufficiently accurate for better-ear listening (relying solely on
target DOA information), interferer localization is increasingly
degraded from stationary localized noise (A) over a competing
speaker (B) to competing speaker and diffuse noise (C).

When coupled with the probabilistic DOA estimator, the
simple method of choosing the better ear signal gave surpris-
ingly good results: For Scenario A, choosing the best lateral
channel surpasses the performance of the far more complex
beamforming approach operating on six channels. Beamform-
ing profits from high-resolution DOA, but also produces sig-
nal artifacts with inaccurate estimations that increase ASR er-
ror rates as in Scenario A. On the other hand, our experiments
have shown that accurate DOA estimation is particularly im-
portant for suppressing an interferer in scenarios where con-
current speech causes strong masking of the target source, and
here beamforming should be employed: in Scenario B contain-
ing a concurrent speaker without additional noise, the advantage
of interferer suppression outperforms better-ear listening. For
the most complex Scenario C, we see a mixed picture in which
better-ear listening should be preferred at low SIRs and in clean
conditions, while a beamformer with adaptive optimization of
interference rejection should be used at medium SIRs (10 dB to
20 dB).

In future work, our probabilistic DOA algorithm and the
beamforming method could be combined with other approaches
in machine listening that deliver estimates of additional param-
eters about the acoustic scene and signals present therein (e.g.,
room-reverberation, transfer characteristics and noise statistics)
to enable an adaption to the acoustic conditions. The results
obtained by solely linking probabilistic DOA information with
ASR is already encouraging with relative improvements of 19%
to 28% compared to unprocessed signals.
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