
Model-based integration of reverberation for noise-adaptive near-end listening
enhancement
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Abstract
Speech intelligibility is an important factor for successful
speech communication in today’s society. So-called near-end
listening enhancement (NELE) algorithms aim at improving
speech intelligibility in conditions where the (clean) speech sig-
nal is accessible and can be modified prior to its presentation.
However, many of these algorithms only consider the detri-
mental effect of noise and disregard the effect of reverberation.
Therefore, in this paper we propose to additionally incorporate
the detrimental effects of reverberation into noise-adaptive near-
end listening enhancement algorithms. Based on the Speech
Transmission Index (STI), which is widely used for speech in-
telligibility prediction, the effect of reverberation is effectively
accounted for as an additional noise power term. This combined
noise power term is used in a state-of-the-art noise-adaptive
NELE algorithm. Simulations using two objective measures,
the STI and the short-time objective intelligibility (STOI) mea-
sure demonstrate the potential of the proposed approach to im-
prove the predicted speech intelligibility in noisy and reverber-
ant conditions.
Index Terms: speech-in-noise enhancement, reverberation,
speech intelligibility, near-end listening enhancement

1. Introduction
In many speech communication devices, e.g., public address
systems and mobile telephony, a high quality of communication
needs to be provided. To maintain a high quality of communi-
cation, a high speech intelligibility is an important factor. How-
ever, in many situations the speech signal is (severly) degraded
by noise and/or reverberation, resulting in reduced speech in-
telligibility and increased listening effort [1, 2]. A simple, yet
effective approach to maintain a good speech intelligibility is
to raise the speech level prior to its presentation and hence
increase the signal-to-noise ratio (SNR). Although being also
found in human speech production as the so-called Lombard
effect [3] and hence being an attractive modification, this ap-
proach may lead to an overload of the amplification system and
unpleasently high sound levels. Consequently, approaches that
increase speech intelligibility while maintaining equal powers
of the unprocessed and processed speech signal are desirable.

Many near-end listening enhancement (NELE) algorithms
have been proposed to increase speech intelligibility in noise
under equal power constraints [4, 5, 6, 7, 8, 9, 10, 11, 12].
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These include algorithms that apply only spectral changes to
the speech signals [6, 7], dynamic range compression (DRC)
[8] or combined approaches [9, 10]. However, these algorithms
usually only consider the detrimental effect of noise on speech
intelligibility and neglect the presence of reverberation. On the
contrary, algorithms that aim to increase speech intelligibility
in reverberant environments, e.g., listening room compensation
algorithms (LRC) [13] and modulation enhancing algorithms
[14], mainly neglect the presence of noise. One of the first at-
tempts to consider noise as well as reverberation in the design
of pre-processing algorithms to increase speech intelligibility
was provided in [11, 12]. The approach in [12] assumes the
room impulse response (RIR) to be an exact exponential de-
caying function. Although being a convenient assumption in
their mathematical framework, this does not necessarily hold
for realistic (e.g., measured) RIRs. Therefore, in this paper we
present an approach that can make use of the full RIR infor-
mation and allows to incorporate reverberation information into
noise-adaptive NELE algorithms. Based on the concept of the
Speech Transmission Index (STI) [15, 16] the influence of re-
verberation is incorporated as an additional noise term, making
it applicable, in principle, to any noise-adaptive NELE algo-
rithm. Hence, in contrast to LRC algorithm which usually aim
at equalizing the RIR mainly spectral information of reverber-
ation is used. Furthermore, the proposed approach can be used
even with only limited knowledge, e.g., the broadband rever-
beration time T60, where it assumes an exponentially decaying
function, similar to [12].

This paper is organized as follows. In Section 2 the con-
sidered scenario and some definitions are provided. In Section
3 the novel model-based integration of reverberation is derived.
In Section 4 the concept of AdaptDRC algorithm from [9] is
briefly reviewed and is extended to the noisy and reverberant
case referred to as AdaptDRCrev. Experimental results using
two different noises and simulated as well as measured RIRs
are presented in Section 5 that demonstrate the potential of the
proposed approach.

2. Scenario and definitions

Consider the acoustic scenario depicted in Figure 1. The unpro-
cessed speech signal s[k] at discrete time k is modified using the
weighting function W{·} and played back via a loudspeaker. A
microphone picks up the disturbed and reverberant speech sig-
nal y[k], which is the mixture of the modified speech signal s̃[k]
convolved with the RIR h[k] between the loudspeaker and the
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Figure 1: Considered acoustical scenario.

microphone and the additive noise disturbance r[k], i.e.,

y[k] = s̃[k] ∗ h[k] + r̄[k] ∗ g[k]︸ ︷︷ ︸
r[k]

, (1)

where ∗ denotes convolution. Additionally it is assumed that
the noise signal r[k] can be modeled as the convolution of the
noise source signal r̄[k] and the RIR g[k] between the noise
source and the microphone. An estimate r̂[k] of the noise sig-

nal r[k] as well as an estimate ĥ[k] of the RIR h[k] between the
loudspeaker and the microphone can be obtained by using, e.g.,
adaptive filtering techniques to model h[k] [17]. Using the es-
timated noise signal r̂[k], the estimated room impulse response

ĥ[k], and the clean speech signal s[k], the processed speech sig-
nal s̃[k] is computed as

s̃[k] = W{s[k],r̂[k],ĥ[k]}s[k]. (2)

In the following perfect knowledge of the RIR is assumed, i.e.,

ĥ[k] = h[k] and hence a perfect noise estimate is available,
i.e., r̂[k] = r[k]. The goal of NELE algorithms commonly is
to find a weighting function W{·} that leads to an improved
speech intelligibility of s̃[k] + r[k] compared to s[k] + r[k]. In
contrast, the goal here is to find a weighting function W{·} that
leads to an improved speech intelligibility of s̃[k] ∗ h[k] + r[k]
compared to s[k] ∗ h[k] + r[k]. In addition, to avoid trivial
broadband amplification an equal power constraint is imposed
on s̃[k].

The following processing framework is applied. The speech

signal s[k], the estimated noise signal r̂[k] and the RIR ĥ[k]

are split into N subband signals sn[k], r̂n[k] and ĥn[k], n =
1, . . . , N using a real-valued filter bank. In the implemen-
tation an all-pass filterbank based on doubly-complementary
IIR filters is used [18] to split the signals into N = 8 octave
bands with center frequencies from 125 Hz to 16 kHz. Each
subband signal is framed into non-overlapping blocks of length
M , i.e., sln[m] = sn[lM + m] and r̂ln[m] = r̂n[lM + m],
m = 0, . . . ,M − 1 with block index l. The speech power in
l-th block in the n-th subband is equal to

φs[n, l] =
1

M

M−1∑
m=0

(sln[m])2 (3)

Similarly the the noise source power φr̄[n, l] and the estimated
noise power φr̂[n, l] in l-th block in the n-th subband are equal
to

φr̄[n, l] =
1

M

M−1∑
m=0

(r̄ln[m])2 (4)

φr̂[n, l] =
1

M

M−1∑
m=0

(r̂ln[m])2 (5)

where r̄ln[m] = r̄n[lM +m] is the noise source signal r̄[k] in
l-th block in the n-th subband.

3. Model-based integration of reverberation

To consider reverberation in noise-adaptive NELE algorithms
the goal in this section is to derive a model-based so-called ap-
parent noise power based on the STI [16] that considers both
noise and reverberation. It is shown that based on the concept
of the modulation transfer function (MTF) employed in the cal-
culation of the STI a single noise power term in each subband
can be computed that accounts for both the noise and reverber-
ation.

The STI is based on the observation that a reduction in mod-
ulation depth due to additive noises and reverberation is highly
correlated with speech intelligibility [16]. For the calculation of
the STI the following signal model is assumed

y[k] = (s[k] + r̄[k]) ∗ h[k] (6)

Note that this signal model is different from the signal model in
(1) which is assumed in the design of NELE algorithms. De-
spite this difference in the signal models, in the following it is
shown how reverberation can be accounted for in noise-adaptive
NELE algorithms based on the concept of the STI.

The STI calculation rules provide analytic relationships be-
tween the SNR and the modulation index mnoise[n, f ] as well
as the reverberation time T60[n] in the n-th subband and the
modulation index mreverb[n, f ], where f denotes the modula-
tion frequency. For the sake of clarity the dependency of the
speech signal power and the noise signal powers on the block
index l is omitted.

The modulation index for influences of noise is equal to

mnoise[n, f ] =
1

1 + φr̄ [n]
φs[n]

. (7)

Note that mnoise[n, f ] is actually independent of the modula-
tion frequency f . The modulation index for the influence re-
verberation (assuming a perfect exponential decay) is equal to
[15]

mreverb[n, f ] =
1√

1 + (2πf T60[n]
13.8

)2
, (8)

where T60[n] is the reverberation time in the n-th subband. Al-
ternatively, assuming knowledge of the true RIR h[k] of length
Lh the modulation index mreverb[n, f ] can be computed as
[19]

mreverb[n, f ] =

Lh−1∑
k=0

e−j2πfk/fsh2
n[k]

Lh−1∑
k=0

h2
n[k]

, (9)

where fs is the sampling frequency.
The combined influence of noise and reverberation is

then modeled by the multiplication of mnoise[n] in (7) and
mreverb[n, f ] in (8) (assuming a perfect exponential decay) or
mreverb[n, f ] in (9) (assuming knowledge about the true RIR)
yielding the modulation index

m[n, f ] =
1

1 + φr̄ [n]
φs[n]

·mreverb[n, f ]. (10)

The modulation index m[n, f ] can then be used to calculate
a so-called apparent SNR which effectively accounts for both
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noise and reverberation, i.e.,

φs[n]

φapp
r̂ [n, f ]

=
m[n, f ]

1−m[n, f ]
, (11)

where φapp
r̂ [n, f ] is the apparent noise power which effectively

takes into account both the noise and reverberation. The ap-
parent noise power can then be used in a noise-adaptive NELE
algorithms instead of using only the noise power.

Based on the concept of the apparent SNR and using (7) as
a function of the apparent noise power, (10) can be reformulated
as

1

1 +
φ
app
r̄ [n,f ]

φs[n]

=
1

1 + φr̄ [n]
φs[n]

·mreverb[n, f ] (12)

solving for the apparent noise power φapp
r̂ [n, f ] yields

φapp
r̂ [n, f ] =

φs[n]
( 1

mreverb[n, f ]
− 1

)
+ φr̄[n]

1

mreverb[n, f ]

(13)

Thus the apparent noise power is the sum of the reverberant part
of the speech power (first term in (13)) and the reverberant noise
power (the second term in (13)).

Following the calculation rules of the STI [15, 16] an aver-
age across modulation frequencies of the apparent noise power
is calculated in the log-domain, i.e.,

10 log10 φ̄
app
r̂ [n] =

1

|F|
∑
f∈F

10 log10 φ
app
r̂ [n, f ]. (14)

whereF is the set of 14 modulations frequencies used in the STI
[16] and |F| is its cardinality. The average apparent noise power
φ̄app
r̂ [n] can then be used in noise-adaptive NELE algorithms

to account for the combined effect of noise and reverberation
instead of the estimated noise power φr̂[n] which only accounts
for the noise.

Unfortunately, the apparent noise power in (13) requires
knowledge of the noise source power φr̄[n] which is usually not
accessible in practice. In order to apply φapp

r̂ [n, f ] in NELE
algorithms, it is helpful to consider the difference in the sig-
nal models assumed for NELE algorithms in (1) and the signal
model assumed for the calculation of the STI in (6). The last
term in (13) clearly corresponds to a modified, i.e., reverberated,
version of the power of the noise source signal. However, the
modulation index m[n, f ] accounts only for the reverberation
introduced by the RIR h[k] between the loudspeaker and the mi-
crophone, while the RIR g[k] between the noise source and the
microphone will generally differ substantially from h[k]. Fur-
thermore, in practice the noise source signal r̄[k] is not accessi-
ble but only access to the estimated noise r̂[k] of the reverberant
noise signal r[k] = r̄[k] ∗ g[k] is available. Thus to allow for
the practical application, based on the above reasoning it is pro-
posed to substitute the last term in (13) by the estimated noise
power φr̂[n], yielding

φapp
r̂ [n, f ] = φs,n

( 1

mreverb[n, f ]
− 1

)
+ φr̂[n] (15)

which is used in (14) to compute the average apparent noise
power φ̄app

r̂ [n] instead of the definition in (13).

SII Estimation

Amplification stage DRC stage

φ̄
app
r̂

[n, l]

s [k] s̃ [k]

Figure 2: Schematic flow-graph of the AdaptDRCrev algorithm

4. AdaptDRCrev Algorithm
The AdaptDRC algorithms [9] aims at improving speech in-
telligibility in noisy environments. A brief description of the
algorithm is provided below and the reader is referred to [9]
for a more detailed description of the AdaptDRC algorithm.
By using the proposed model-based integration of reverbera-
tion in Section 3 the AdaptDRC algorithm is extended for the
noisy and reverberant case, hence referred to as AdaptDRCrev
in the remainder. A schematic overview of the AdaptDRCrev
algorithm is provided in Figure 2. The AdaptDRC and Adapt-
DRCrev algorithms combine a time- and frequency-dependent
amplification stage with a time- and frequency-dependent dy-
namic range compression stage that are both a function of the
estimated Speech Intelligibility Index (SII) [20] which depends
on the speech and (apparent) noise power. Both stages aim to
modify the speech signal only in case of low predicted speech
intelligibility, while in case of high predicted speech intelligi-
bility the speech signal remains unmodified.

The time- and frequency-dependent amplification stage
aims at increasing the speech power in high frequency regions
in case of low predicted speech intelligibility by applying the
following gain function

w[n, l] =

√
(φs[n, l])

ˆSII[l]∑N
λ=1(φs[λ, l])

ˆSII[l]
·
∑N

λ=1 φs[λ, l]

φs[n, l]
(16)

with ˆSII[l] an estimate of the SII in the l-th block. Hence in

case of low predicted speech intelligibility, i.e., ˆSII[l] → 0,

w[n, l] =

√
1
N

∑N
λ=1

φs[λ,l]

φs[n,l]
resulting in a uniform distribution

of the speech power across all N subbands, while for high pre-

dicted speech intelligibility, i.e., ˆSII[l] → 1, w[n, l] = 1 and
hence no modification is applied.

The dynamic range compression stage aims at amplifying
low-levels signals and attenuating high-levels signals that are
assumed to be well audible by applying a time-dependent non-
linear gain in each subband, i.e.,

s̃ln[m] = sln[m] · p(λn[l], (s̄
l
n[m])2

)
,m = 0, . . . ,M − 1

(17)

where p
(
λn[l], (s̄

l
n[m])2

)
is the non-linear gain function that

depends on the time- and subband-dependent input-output-
characteristic λn[l] of the DRC stage and the estimated enve-

lope of the speech signal s̄ln[m] [9]. While in the AdaptDRC al-

gorithm ˆSII[l] and λn[l] depend on the estimated noise power
φr̂[n], in the AdaptDRCrev the apparent noise power φ̄app

r̂ [n]
according to (14) is used instead effectively accounting for the
combined effect of noise and reverberation.

5. Evaluation
In this section the proposed model-based integration of rever-
beration is evaluated. Specifically the new AdaptDRCrev al-
gorithm as introduced in Section 4 which considers noise and
reverberation is compared to the AdaptDRC algorithm which
considers only noise. Evaluations were performed for both the
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Figure 3: Results for STOI (left panel) and STI (right panel) as
a function of the reverberation time T60 using simulated RIRs
and the SSN for a fixed SNR of 0 dB for the different processing
conditions.
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Figure 4: Improvements compared to the unprocessed signal
for STOI (left panel) and STI (right panel) as a function of
the reverberation time T60 using simulated RIRs and the non-
stationary cafeteria noise for a fixed SNR of 0 dB for the differ-
ent processing conditions.

modulation index calculated using a frequency-independent re-
verberation time T60[n] = T60 according to (8) (AdaptDR-
CrevT60) as well as the modulation index using the RIR infor-
mation according to (9) (AdaptDRCrevIR). Two objective mea-
sures were used that have shown high correlations with speech
intelligibility in previous studies: the STI [16] and the short-
term objective intelligibility (STOI) measure [21]. Speech ma-
terial was taken from the Oldenburg Sentence Test recorded by
one male German speaker [22]. Ten sentences were randomly
selected from the corpus. Two different noises were used, a sta-
tionary speech-shaped noise (SSN) and non-stationary cafeteria
noise. Simulated RIRs using the image method [23] and mea-
sured RIRs were used to evaluate the impact of reverberation.
To achieve different degrees of reverberation for the simulated
RIRs the room dimensions were kept fixed (6 m×8 m×2.5 m)
and the absorption coefficient was varied. All signals were sam-
pled using a sampling frequency of fs = 44.1 kHz.

Figure 3 depicts the results for the SSN and a fixed SNR
of 0 dB for different reverberation times T60 of the simulated
RIRs. As can be observed all three algorithms improve over the
unprocessed condition. Furthermore, both AdaptDRCrev algo-
rithms improves slightly over AdaptDRC as can be seen in the
STI measure, while this is not observed for the STOI measure.
To see the impact of incorporating reverberation more clearly
in the following the improvement compared to the unprocessed
signal is shown.

Figure 4 depicts the improvement for the cafeteria noise and
a fixed SNR of 0 dB for different reverberation times T60 of the
simulated RIRs. Again all three algorithms improve over the
unprocessed condition. Both AdaptDRCrev algorithms improve
over the AdaptDRC algorithm demonstrating the benefit of con-
sidering reverberation in noise-adaptive NELE algorithms.

Figures 5 and 6 show the improvement for a fixed RIR mea-
sured in a conference room with a reverberation time T60 =
0.6 s as a function of the SNR for the SSN and the cafeteria
noise, respectively. All algorithms improvement over the un-
processed condition. For the SSN only marginal improvements
of both AdaptDRCrev algorithms over the AdaptDRC algorithm

SNR / dB
-30 -20 -10 0 10 20 30

Δ
O
b
je
ct
iv
e
M
ea
su
re

0

0.1

0.2

SNR / dB
-30 -20 -10 0 10 20 30

AdaptDRC
AdaptDRCrevIR
AdaptDRCrevT60

STOI
SSN
T60=0.6s

STI
SSN
T60=0.6s

Figure 5: Improvements compared to the unprocessed signal
for STOI (left panel) and STI (right panel) as a function of the
SNR for the different processing conditions in the SSN using a
measured RIR from a conference room with T60 = 0.6 s.
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Figure 6: Improvements compared to the unprocessed signal for
STOI (left panel) and STI (right panel) as a function of the SNR
for the different processing conditions in the non-stationary
cafeteria noise using a measured RIR from a conference room
with T60 = 0.6 s.

are observed. However, for the non-stationary cafeteria noise
improvements for SNRs > 0 dB are visible.

In general these results demonstrate the potential of incor-
porating reverberation information in noise-adaptive NELE al-
gorithms to increase the performance in noisy and reverberant
conditions. Even when using only broadband T60 information,
i.e., when using (8) improvements are in the same range com-
pared to using the complete RIR in (9). These improvements,
however, appear to depend on the noise characteristics, i.e., their
spectral overlap with the speech signal as well as their tempo-
ral characteristics. Furthermore, predicted speech intelligibility
improvements are largest for longer reverberation times. The
additional improvement achieved by incorporating reverbera-
tion information are smaller compared to the improvements ob-
tained by considering only noise. This is in line with results
from previous studies [12], where predictions of the STI appear
to even indicate improvements of using only noise information
over using noise and reverberation information.

6. Conclusions
In this paper a new approach to incorporate reverberation in-
formation into noise-adaptive NELE algorithms aiming to in-
crease speech intelligibility in noisy and reverberant environ-
ments has been proposed. Using the concept of the STI re-
verberation is incorporated as an additional noise term that can
be used, in principle, with any noise-adaptive NELE algorithm.
The proposed approach was incorporated into the AdaptDRC
algorithm. Experimental results using the new AdaptDRCrev
algorithm demonstrate the potential of the proposed method to
increase predicted speech intelligibility. However, the improve-
ments of the AdaptDRCrev algorithm over the AdaptDRC al-
gorithm appear to be small compared to the improvements that
were observed for the AdaptDRC algorithm compared to the
unprocessed signals. To which extent these results reflect a no-
ticeable perceptual benefit for listeners in reverberant conditions
has to be evaluated in formal listening tests and is left for future
work.
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