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ABSTRACT
Reverberation can severely affect the speech signals recorded in a
room, possibly leading to a significantly reduced speech quality and
intelligibility. In this paper we present a batch algorithm employ-
ing a signal model based on multi-channel linear prediction in the
short-time Fourier transform domain. Aiming to achieve multiple-
input multiple-output (MIMO) speech dereverberation in a blind
manner, we propose a cost function based on the concept of group
sparsity. To minimize the obtained nonconvex function, an itera-
tively reweighted least-squares procedure is used. Moreover, it can
be shown that the derived algorithm generalizes several existing
speech dereverberation algorithms. Experimental results for sev-
eral acoustic systems demonstrate the effectiveness of nonconvex
sparsity-promoting cost functions in the context of dereverberation.

Index Terms— speech dereverberation, multi-channel linear
prediction, group sparsity

1. INTRODUCTION

Recordings of a speech signal in an enclosed space with micro-
phones placed at a distance from the speaker are typically affected
by reverberation, which is caused by reflections of the sound against
the walls and objects in the enclosure. While moderate levels of re-
verberation may be beneficial, in severe cases it typically results in
a decreased speech intelligibility and automatic speech recognition
performance [1, 2]. Therefore, effective dereverberation is required
for various speech communication applications, such as hands-
free telephony, hearing aids, or voice-controlled systems [2, 3].
Many dereverberation methods have been proposed during the last
decade [3], such as methods based on acoustic multi-channel equal-
ization [4, 5], spectral enhancement [6, 7], or probabilistic model-
ing [8–13].

Several dereverberation methods employ the multi-channel lin-
ear prediction (MCLP) model to estimate the clean speech sig-
nal [8–10, 14]. The main idea of MCLP-based methods is to de-
compose the reverberant microphone signals into a desired and an
undesired component, which can be predicted from the previous
samples of all microphone signals. Estimation of the prediction co-
efficients for a multiple-input single-output dereverberation system,
with multiple microphones and a single output signal, has been for-
mulated using a time-varying Gaussian model in [8], while general-
ized sparse priors have been used in [14]. A generalization of [8] to
a multiple-input multiple-output (MIMO) dereverberation system,
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based on a time-varying multivariate Gaussian model, has been pro-
posed in [9] and is referred to as the generalized weighted prediction
error (GWPE) method. The GWPE method has been extended for a
time-varying acoustic scenario in [10], as well as for joint derever-
beration and suppression of diffuse noise [15].

In this paper, we consider a MIMO system and formulate the
estimation of the prediction filters using a cost function based on
the concept of group sparsity [16–18]. It is well known that speech
signals are sparse in the short-time Fourier transform (STFT) do-
main and that reverberation decreases sparsity [19–21]. The main
idea of the proposed cost function is to estimate the prediction coef-
ficients that make the estimated desired speech signal in the STFT
domain more sparse than the observed reverberant microphone sig-
nals. Using the concept of mixed norms [22], the proposed cost
function takes into account the group structure of the coefficients
across the microphones. More specifically, the cost function aims
to estimate prediction coefficients that make the STFT coefficients
of the desired speech signal sparse over time, whilst taking into ac-
count the spatial correlation between the channels. The obtained
nonconvex problem is solved using the iteratively reweighted least
squares method [23]. Furthermore, the derived batch algorithm gen-
eralizes several previously proposed speech dereverberation algo-
rithms [8,9,14]. The performance of the proposed method is evalu-
ated for several acoustic systems, and the obtained results show the
nonconvex cost functions outperform the convex case.

2. SIGNAL MODEL

We consider a single speech source recorded using M microphones
in a noiseless scenario. Let s(k, n) denote the clean speech signal
in the STFT domain, with k ∈ {1, . . . ,K} the frequency bin index
and n ∈ {1, . . . , N} the time frame index. The STFT coefficients
of the observed noiseless reverberant signal at them-th microphone
xm(k, n) can be modeled as

xm(k, n) =

Lh−1∑
l=0

hm(k, l)s(k, n− l) + em(k, n), (1)

where the Lh coefficients hm(k, l) represents the convolutive trans-
fer function between the source and m-th microphone [12, 13],
and em(k, n) models the error of the approximation in a single
band [24]. Several dereverberation algorithms are based on an
autoregressive model of reverberation, subsequently using MCLP
to estimate the undesired reverberation [8–10, 25]. Assuming the
model in (1) holds perfectly and the error term can be disregarded,
e.g., as in [8, 9], the reverberant signal at the m-th microphone can
be written as

xm(k, n) = dm(k, n) + rm(k, n). (2)
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The first term dm(k, n) =
∑τ−1
l=0 hm(k, l)s(k, n− l), with τ being

a parameter, models the desired speech signal at the m-th micro-
phone consisting of the direct speech and early reflections, which
can be useful in speech communication [26]. The second term
rm(k, n) =

∑Lh−1
l=τ hm(k, l)s(k, n− l) models the remaining un-

desired reverberation. When M > 1 the undesired term at time
frame n can be predicted from the previous microphone samples on
all M microphones delayed by τ , as used in, e.g., [8–10]. Using M
prediction filters of length Lg the undesired term rm(k, n) can be
written as

rm(k, n) =

M∑
i=1

Lg−1∑
l=0

xi(k, n− τ − l)gm,i(k, l), (3)

where gm,i(k, l) is the l-th prediction coefficient between the i-th
and the m-th channel. The signal model in (2) can be rewritten in
vector notation as

xm(k) = dm(k) + X̃τ (k)gm(k), (4)

with vectors

xm(k) = [xm(k, 1), . . . , xm(k,N)]T ,

dm(k) = [dm(k, 1), . . . , dm(k,N)]T ,

and the multi-channel convolution matrix

X̃τ (k) =
[
X̃τ,1(k), . . . , X̃τ,M (k)

]
where X̃τ,m(k) ∈ CN×Lg is the convolution matrix of xm(k)
delayed for τ samples. The vector gm(k) ∈ CMLg contains the
prediction coefficients gm,i(k, l) between the m-th channel and all
otherM channels. In the following we omit the frequency bin index
k, since the model in (4) is applied in each frequency bin indepen-
dently. Defining the M -channel input matrix X = [x1, . . . ,xM ],
the M -channel output matrix D = [d1, . . . ,dM ], the prediction
coefficients in G = [g1, . . . ,gM ], and using (4), a MIMO signal
model in each frequency bin can be written as

X = D + X̃τG, (5)

The problem of speech dereverberation, i.e., estimation of the de-
sired speech signal D, is now reduced to the estimation of the pre-
diction coefficients G for predicting the undesired reverberation.

3. GROUP SPARSITY FOR SPEECH
DEREVERBERATION

In this section we formulate speech dereverberation as an optimiza-
tion problem with a cost function promoting group-sparsity, and
propose to solve it using iteratively reweighted least squares (IRLS).
We start with defining mixed norms and briefly review their rela-
tionship to group sparsity.

3.1. Mixed norms and group sparsity

Mixed norms are often used in the context of sparse signal process-
ing [18,22]. Let D ∈ CN×M be a matrix with elements dn,m, with
the elements of its n-th row contained in a (column) vector dn,:,
i.e., dn,: = [dn,1, . . . , dn,M ]T . Let p ≥ 1, and Φ ∈ CM×M be

a positive definite matrix. We define the mixed norm `Φ;2,p of the
matrix D as

‖D‖Φ;2,p =

(
N∑
n=1

‖dn,:‖pΦ;2

)1/p

, (6)

where ‖dn,:‖Φ;2 =
√

dHn,:Φ−1dn,: is the `Φ;2 norm of the vector
dn,:. The role of the matrix Φ is to model the correlation structure
within each group, i.e., row of D. When Φ = I we denote the cor-
responding mixed norm as `2,p. In words, the mixed `Φ;2,p norm of
D is composed of the inner `Φ;2 norm applied on the rows of D in
the first step, and the outer `p norm applied on the vector composed
of the values obtained in the first step. Intuitively, the inner `Φ;2

norm measures the energy of the coefficients in each row, while
the outer `p norm is applied on the obtained energies and measures
the number of rows with significant energies, i.e., the mixed norm
`Φ;2,p provides a measure of group sparsity of D, with groups being
the rows of D. Therefore, minimization of (6) aims at estimating a
matrix D that has some rows with a significant energy (in terms of
the `Φ;2 norm) and the remaining rows have a small energy.

Mixed norms generalize the usual matrix and vector norms [22,
27], e.g., `2,2 is the Frobenius norm of a matrix. A commonly used
mixed norm is `2,1, which is well known as Group-Lasso [16] or
joint sparsity [17], and it is often used in sparse regression with the
goal of keeping or discarding entire groups (here rows) of elements
in a matrix [27]. Similarly as in the case of a vector norm, for
p ∈ [0, 1) in (6) the obtained functional is not a norm since it is not
convex. Still, we will refer to `Φ;2,p for p < 1 as a norm.

3.2. Proposed formulation

In this paper we propose to estimate the prediction coefficients G
by solving the following optimization problem

min
G

‖D‖pΦ;2,p =

N∑
n=1

‖dn,:‖pΦ;2 (7)

subject to D = X− X̃τG

for p ≤ 1. The motivation behind the proposed cost function is to
estimate such prediction filters G that result in some rows with sig-
nificant energy in D, and suppress the coefficients in the remaining
rows. For p = 1 and Φ = I the cost function in (7) is the `2,1
norm as in Group-Lasso, with the groups being defined across the
M channels. While for p = 1 the cost function in (7) is convex,
it is known that nonconvex penalty functions can be more useful in
enforcing sparsity [28].

The proposed cost function for speech dereverberation with
multiple microphones is motivated with the following common
assumptions in the context of multi-channel speech processing.
Firstly, due to reverberation, the STFT-domain coefficients of the
microphone signals are less sparse than the STFT-domain coeffi-
cients of the corresponding clean speech signal [19–21]. Therefore,
it is reasonable to estimate prediction filters that result in an esti-
mate of the desired speech signal that is more sparse than the mi-
crophone signals. Secondly, for relatively small arrays it is plausible
to assume that at a given time frame the speech signal is present or
absent simultaneously on all channels [9]. Therefore, it is reason-
able to formulate estimation of the prediction filters using a cost
function promoting group sparsity as in (7), with the groups de-
fined across the channels and the matrix Φ capturing the spatial
correlation between the channels. The prediction filters obtained
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by solving (7) aim to estimate the desired speech signal coefficients
D that are more sparse than the reverberant speech coefficients in
X, by simultaneously keeping or discarding the coefficients across
the channels. Therefore, the undesired reverberation will be sup-
pressed, with the spatial correlation (group structure) being taken
into account.

3.3. Nonconvex minimization using IRLS

A class of algorithms for solving `p norm minimization problems
is based on iteratively reweighted least squares [23]. The idea is to
replace the original cost function with a series of convex quadratic
problems. Namely, in every iteration the `p norm is approximated
by a weighted `2 norm [23]. The same idea is applied here, i.e., the
`Φ;2,p norm in (7) is approximated with a weighted `Φ;2,2 norm.
Therefore, in the i-th iteration the `p norm of the energies of the
rows of D is replaced by a weighted `2 norm, resulting in the fol-
lowing approximation

N∑
n=1

‖dn,:‖pΦ;2 ≈
N∑
n=1

w(i)
n ‖dn,:‖2Φ;2 = tr

{
W(i)DΦ−TDH

}
,

(8)
where W(i) is a diagonal matrix with the weights w(i)

n on its di-
agonal, and tr {.} denoting the trace operator. Similarly as in [23],
the weights w(i)

n are selected such that the approximation in (8) is
a first-order approximation of the corresponding `Φ;2,p cost func-
tion, and therefore the n-th weight can be expressed as w(i)

n =

‖dn,:‖p−2
Φ;2 . In the i-th iteration, the weights w(i)

n are computed
from the previous estimate of the desired speech signal D(i−1), i.e.,
as w(i)

n = ‖d(i−1)
n,: ‖p−2

Φ;2 . To prevent a division by zero, a small pos-
itive constant ε can be included in the weight update [23]. Given the
weights w(i)

n , the optimization problem using approximation in (8)
can be written as

min
G

tr

{(
X− X̃τG

)H
W(i)

(
X− X̃τG

)
Φ−T

}
, (9)

with the solution for the prediction filters given as

G(i) =
(
X̃H
τ W(i)X̃τ

)−1

X̃H
τ W(i)X. (10)

Note that the obtained solution does not depend on the matrix Φ.
However, the choice of Φ affects the calculation of the weights
w

(i)
n , and can therefore influence the final estimate. Additionally,

the matrix Φ, capturing the spatial (within-group) correlation, can
be updated using the current estimate D(i) of the desired speech
signal as

Φ(i) =
1

N

N∑
n=1

w(i)
n d(i)

n,:d
(i)H
n,: =

1

N
D(i)TW(i)D(i)∗, (11)

with (.)∗ denoting complex conjugate. This update can be ob-
tained by minimizing the cost function in (9) with an additional
term (N log detΦ). The obtained expression can be interpreted as
a maximum-likelihood estimator of Φ when dn,: is modeled using
a zero-mean complex Gaussian distribution with covariancew−1

n Φ,
as commonly used in speech enhancement and group sparse learn-
ing [29]. The complete algorithm for solving (7) using IRLS is
outlined in Algorithm 1.

Algorithm 1 MIMO speech dereverberation with group sparsity us-
ing IRLS.

parameters: Filter length Lg and prediction delay τ in (3), p in
(7), regularization parameter ε, maximum number of iterations
imax, tolerance η
input: STFT coefficients of the observed signals X(k), ∀k
for all k do

i← 0, D(0) ← X, Φ(0) ← I
repeat

i← i+ 1

w
(i)
n ←

(
‖d(i−1)

n,: ‖2Φ(i−1);2
+ ε
)p/2−1

, ∀n

G(i) ←
(
X̃H
τ W(i)X̃τ

)−1

X̃H
τ W(i)X

D(i) = X− X̃τG
(i)

if estimate Φ then Φ(i) ← 1
N

D(i)TW(i)D(i)∗

until ‖D(i) −D(i−1)‖F /‖D(i)‖F < η or i ≥ imax

end for

3.4. Relation to existing methods

The GWPE method in [9] was derived based on a locally Gaus-
sian model for the multi-channel desired signal, with the variances
being unknown and time and frequency varying. The obtained op-
timization problem was formulated using a cost function based the
on Hadamard-Fischer mutual correlation, which favors temporally
uncorrelated random vectors. An appropriate auxiliary (majoriz-
ing) function was used to derive a practical algorithm based on
alternating optimization. By comparing Algorithm 1 with the up-
dates in [9], it can be seen that the GWPE method corresponds to
the proposed method when p = 0, i.e., to the minimization of the
`Φ;2,0 norm in (7). Furthermore, if an `p,p norm is used as the
cost function in (7) the proposed method is reduced to a multiple-
input single-output method [14] applied M times to generate M
outputs, with each microphone being selected as the reference ex-
actly once. In this case, the group structure is disregarded and the
resulting cost function is equal to the `p norm applied element-wise
on D, meaning that the prediction coefficients for each output are
calculated independently. The special case of p = 0 corresponds
to the variance-normalized MCLP proposed originally in [8]. The
considered MCLP-based algorithms have in common that the used
cost functions promote sparsity of the desired speech signal coeffi-
cients to achieve dereverberation.

4. EXPERIMENTAL EVALUATION

We performed several simulations to investigate the dereverbera-
tion performance of the proposed method. We have considered two
acoustic systems with a single speech source and measured RIRs
taken from the REVERB challenge [30]. The first acoustic system
(AC1) consists of M = 2 microphones in a room with a reverbera-
tion time of T60 ≈ 500ms, and the second acoustic system (AC2)
consists of M = 4 microphones in a room with a reverberation
time of T60 ≈ 700ms, with the distance between the source and
the microphones being approximately 2m in both cases. We have
considered both noiseless and noisy scenario, with the latter ob-
tained using the background noise provided in the REVERB chal-
lenge. The proposed method was tested on 20 different speech sen-
tences (uttered by different speakers) taken from the WSJCAM0
corpus [31], with an average length of approximately 7 s. The
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performance was evaluated in terms of the following instrumental
speech quality measures: cepstral distance (CD), perceptual evalu-
ation of speech quality (PESQ), and frequency-weighted segmental
signal-to-noise ratio (FWsegSNR) [30]. The measures were evalu-
ated with the clean speech signal as the reference. Note that lower
values of CD indicate better performance.

The STFT was computed using a tight frame based on a 64ms
Hamming window with 16ms shift. The length of the prediction
filters in (3) was set to Lg = 20 forM = 2 microphones, and Lg =
10 for M = 4 microphones, similarly as in [25]. The prediction
delay τ in (3) was set to 2, the maximum number of iterations was
imax = 20 with the stopping criterion set to η = 10−4, and the
regularization parameter was fixed to ε = 10−8.

In the first experiment we evaluate the dereverberation perfor-
mance in the noiseless case in AC1 and AC2 for different values of
the parameter p in the proposed cost function in (7). Additionally,
we evaluate the performance of the method with a fixed correla-
tion matrix Φ = I, and with an estimated correlation matrix Φ as
in (11). To quantify the dereverberation performance, we average
improvements of the evaluated measures over the M microphones
and over all speech sentences. The obtained improvements are
shown in Fig. 1. Firstly, it can be seen that the dereverberation per-
formance exhibits a similar trend when using the fixed correlation
matrix Φ = I or the estimated correlation matrix, with the latter
performing better. Secondly, it can be seen that the dereverberation
performance highly depends on the cost function in the proposed
approach, i.e., on the parameter p. It can be observed that the perfor-
mance deteriorates as the cost function comes closer to the convex
case, i.e., as the parameter p approaches p = 1. In general, non-
convex cost functions, which promote sparsity more aggressively,
achieve better performance, i.e., for p closer to 0. Additionally,
mild improvements can be observed for values of p slightly higher
than zero, as also observed in the case of a multiple-input single-
output algorithm in [14]. In the second experiment we evaluate the
dereverberation performance in the presence of noise. The micro-
phone signals are obtained by adding noise to the reverberant sig-
nals to achieve a desired value of reverberant signal-to-noise ratio
(RSNR). In this experiment we use the background noise provided
in the REVERB challenge, which was recorded in the same room
and with the same array as the corresponding RIRs, and was caused
mainly by the air conditioning system [30]. In this case we show
only the performance of the method with the estimated correlation
matrix, since it performed better in the previous experiment. Again,
the improvements of the evaluated measures are averaged over the
M microphones and over all speech sentences, with the results for
p ∈ {0, 1/4, 1} shown in Fig. 2. The proposed algorithm does not
explicitly model the noise, and the improvements are achieved by
dereverberation while the noise component is typically not affected,
similar as in [8]. This is due to the fact that noise is typically less
predictable than reverberation, and therefore the estimated predic-
tion filters capture almost exclusively the latter. Similarly as in the
previous experiment, the achieved performance highly depends on
the convexity of the cost function, with the nonconvex cost func-
tions performing significantly better than the convex case.

5. CONCLUSION

In this paper we have presented a formulation of the MCLP-based
MIMO speech dereverberation problem based on the concept of
group sparsity. The obtained nonconvex optimization problem is

solved using iteratively reweighted least squares, with the derived
algorithm generalizing several previously proposed MCLP-based
methods. The dereverberation performance of the proposed method
is evaluated in several acoustic scenarios, with and without noise
and for different reverberation times, and the experimental results
show the effectiveness of the nonconvex cost functions. Moreover,
the presented formulation clearly highlights the role of sparsity in
the STFT domain, and can be used to combine dereverberation with
other sparsity-based enhancement algorithms, e.g., [27].
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Figure 1: Improvements of the speech quality measures for the
noiseless scenario in AC1 (left) and AC2 (right) vs. parameter p
of the cost function. The correlation matrix Φ was fixed to I or
estimated using (11).
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Figure 2: Improvements of the speech quality measures for the
noisy scenario in the AC1 (left) and the AC2 (right) vs. RSNR.
The correlation matrix Φ was estimated using (11).
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