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Joint Dereverberation and Noise Reduction Based
on Acoustic Multi-Channel Equalization

Ina Kodrasi, Student Member, IEEE, and Simon Doclo, Senior Member, IEEE

Abstract—Regularized acoustic multi-channel equalization
techniques, such as regularized partial multi-channel equalization
based on the multiple-input/output inverse theorem (RPMINT),
are able to achieve a high dereverberation performance in the
presence of room impulse response perturbations but may lead
to amplification of the additive noise. In this paper, two time-
domain techniques aiming at joint dereverberation and noise
reduction based on acoustic multi-channel equalization are pro-
posed. The first technique, namely RPMINT for joint derever-
beration and noise reduction (RPM-DNR), extends RPMINT by
explicitly taking the noise statistics into account. In addition to
the regularization parameter used in RPMINT, the RPM-DNR
technique introduces an additional weighting parameter, enabling
a trade-off between dereverberation and noise reduction. The
second technique, namely multi-channel Wiener filter for joint
dereverberation and noise reduction (MWF-DNR), takes both the
speech and the noise statistics into account and uses the RPMINT
filter to compute a dereverberated reference signal for the multi-
channel Wiener filter. The MWF-DNR technique also introduces
an additional weighting parameter, which now provides a trade-off
between speech distortion and noise reduction. To automatically
select the regularization and weighting parameters, for the RPM-
DNR technique a novel procedure based on the L-hypersurface is
proposed, whereas for the MWF-DNR technique two decoupled
optimization procedures based on the L-curve are used. Extensive
simulations demonstrate using instrumental measures that the
RPM-DNR technique maintains the dereverberation performance
of the RPMINT technique while improving its noise reduction per-
formance. Furthermore, it is shown that the MWF-DNR technique
yields a significantly better noise reduction performance than the
RPM-DNR technique at the expense of a worse dereverberation
performance.

Index Terms—Acoustic multi-channel equalization, automatic
parameter selection, dereverberation, L-hypersurface, noise
reduction.

I. INTRODUCTION

I N MANY hands-free speech communication applications,
such as teleconferencing, voice-controlled systems, or hear-

ing aids, the recorded microphone signals do not only contain
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the desired speech signal, but also attenuated and delayed
copies of the desired speech signal due to reverberation, as
well as additive noise. Reverberation and noise cause the
recorded signals to sound distant and spectrally distorted, and
typically result in a degradation of speech intelligibility and
a performance deterioration of automatic speech recognition
systems [1], [2]. With the continuously growing demand for
high-quality hands-free communication, speech enhancement
techniques aiming at joint dereverberation and noise reduction
have become indispensable. In the last decade, both single-
as well as multi-channel techniques have been proposed, with
multi-channel techniques being generally preferred since they
enable to exploit both the spectro-temporal and the spatial char-
acteristics of the received microphone signals. Existing dere-
verberation techniques can be broadly classified into spectral
enhancement techniques [3]–[6], probabilistic modeling-based
techniques [7]–[9], and acoustic multi-channel equalization
techniques [10]–[15].

Spectral enhancement techniques aim to suppress the late
reverberation in the spectral domain by estimating the late
reverberant power spectral density, e.g., based on an exponen-
tially decaying room impulse response (RIR) model [3]–[5] or
a diffuse sound field model [6]. Such techniques have been
extended to achieve joint dereverberation and noise reduc-
tion typically by using a two-stage approach. A commonly
used two-stage approach is based on the decomposition of the
multi-channel Wiener filter (MWF) into a minimum variance
distortionless response (MVDR) beamformer and a single-
channel postfilter [16]. The MVDR beamformer is applied to
reduce the noise and some reverberation, whereas the single-
channel postfilter is used to suppress the residual noise and
reverberation at the MVDR output [17], [18]. In [19] another
two-stage beamforming approach to joint dereverberation and
noise reduction was proposed, which does not explicitly model
and estimate the late reverberant power spectral density but nev-
ertheless relies on the assumption of a diffuse sound field model
for the late reverberation. Based on this assumption, in the first
stage a superdirective beamformer is applied to generate a dere-
verberated reference signal, whereas in the second stage the
MWF is used to achieve noise reduction.

Probabilistic modeling-based techniques generally model the
acoustic transfer function either as an auto-regressive pro-
cess [7], [8] or using the convolutive transfer function model
[9], whereas the clean speech spectral coefficients are mod-
eled using, e.g., a Gaussian [7] or a Laplacian distribution
[8]. Dereverberation is then performed by maximum likeli-
hood estimation of all unknown model parameters. In addi-
tion, by modeling the noise spectral coefficients, probabilistic
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modeling-based techniques have also been proposed for joint
dereverberation and noise reduction [20], [21].

Acoustic multi-channel equalization techniques aim to
reshape the available RIRs (measured or estimated) between the
speech source and the microphone array. These techniques in
principle comprise an attractive approach to speech dereverber-
ation since in theory perfect dereverberation can be achieved
[10], [22]. A well-known acoustic multi-channel equalization
technique which aims at perfect dereverberation is the multiple-
input/output inverse theorem (MINT) technique [10], which
however suffers from several drawbacks in practice. Since the
available RIRs typically differ from the true RIRs due to fluc-
tuations (e.g., temperature or position variations [23]), due to
the sensitivity of blind system identification (BSI) methods to
near-common zeros or interfering noise [24]–[26], or due to
the sensitivity of supervised system identification (SSI) meth-
ods to interfering noise [14], MINT fails to invert the true
RIRs, possibly leading to severe distortions in the output signal
[13], [14]. In order to increase the robustness against RIR per-
turbations, partial multi-channel equalization techniques such
as channel shortening (CS) [11], relaxed multi-channel least-
squares (RMCLS) [14], and partial multi-channel equalization
based on MINT (PMINT) [13] have been proposed. Since
early reflections tend to improve speech intelligibility [27]
and late reverberation is the major cause of speech intelli-
gibility degradation, the objective of these techniques is to
relax the constraints on the reshaping filter design by sup-
pressing only the late reverberation. To additionally increase
the robustness against RIR perturbations, regularization has
been incorporated into these techniques in [13], where the
regularization parameter enables a trade-off between derever-
beration accuracy and robustness against RIR perturbations.
In [13] it has been experimentally validated that the regular-
ized PMINT (RPMINT) technique outperforms the regularized
CS and regularized RMCLS techniques in terms of derever-
beration performance. However, even though partial acoustic
multi-channel equalization techniques are able to achieve a
high dereverberation performance in a noiseless scenario, in the
presence of additive noise this noise may even be amplified,
since the noise statistics are not explicitly taken into account in
the reshaping filter design [13], [28].

In this paper, we propose two time-domain techniques
to achieve joint dereverberation and noise reduction based
on acoustic multi-channel equalization. The first technique,
namely RPMINT for joint dereverberation and noise reduc-
tion (RPM-DNR), extends RPMINT by explicitly taking the
noise statistics into account. In addition to the regularization
parameter used in RPMINT, the RPM-DNR technique intro-
duces an additional weighting parameter, enabling a trade-off
between dereverberation and noise reduction performance. The
second technique, namely MWF for joint dereverberation and
noise reduction (MWF-DNR), takes both the speech and the
noise statistics into account and uses the RPMINT filter to
compute a dereverberated reference signal for the MWF. The
reason behind using the RPMINT filter to compute a derever-
berated reference signal for the MWF-DNR technique lies in
the high dereverberation performance of the RPMINT tech-
nique, as has been experimentally validated in [13]. Similarly

Fig. 1. Acoustic system configuration.

to the RPM-DNR technique, the MWF-DNR technique also
introduces a weighting parameter, now enabling a trade-off
between speech distortion and noise reduction, with speech dis-
tortion being the deviation of the output speech signal from
the dereverberated reference signal. Some preliminary results
for the MWF-DNR technique have been presented in [29]. The
optimal regularization and weighting parameters yielding the
best performance for the proposed RPM-DNR and MWF-DNR
techniques can only be determined intrusively, i.e., exploiting
knowledge of the true RIRs and the true speech and noise
statistics, limiting their practical applicability. In this paper
we therefore also propose a novel automatic procedure based
on the L-hypersurface [30] for jointly selecting the regulariza-
tion and weighting parameters in the RPM-DNR technique. To
automatically select the regularization and weighting param-
eters in the MWF-DNR technique it is proposed to use two
decoupled optimization procedures based on the L-curve [31].
Extensive simulations for different levels of additive noise, RIR
perturbations, and correlation matrix estimation errors show
by means of instrumental measures that the RPM-DNR tech-
nique can achieve a better noise reduction performance while
not degrading the dereverberation performance of the RPMINT
technique. Furthermore, it is shown that the MWF-DNR tech-
nique yields a significantly better noise reduction performance
than the RPM-DNR technique at the expense of a worse dere-
verberation performance (depending on the correlation matrix
estimation errors).

The paper is organized as follows. In Section II the consid-
ered acoustic configuration and the used notation is introduced.
In Section III state-of-the-art acoustic multi-channel equal-
ization techniques are briefly reviewed. In Section IV two
novel time-domain techniques for joint dereverberation and
noise reduction based on acoustic multi-channel equalization
are proposed, for which automatic procedures for selecting
the regularization and weighting parameters are proposed in
Section V. The dereverberation and noise reduction perfor-
mance of all considered techniques is extensively compared in
Section VI using instrumental measures.

II. CONFIGURATION AND NOTATION

We consider a reverberant and noisy acoustic system with a
single speech source andM microphones, as depicted in Fig. 1.
The m-th microphone signal ym(n), m = 1, . . . ,M , at time
index n is given by
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ym(n) =

Lh−1∑
l=0

hm(l)s(n− l) + vm(n) (1)

= xm(n) + vm(n), (2)

where hm(l), l = 0, . . . , Lh − 1, are the coefficients of the
Lh-taps long RIR between the speech source and the m-th
microphone, s(n) is the clean speech signal, xm(n) is the
reverberant speech component, and vm(n) is the additive noise
component. Denoting the direct path and early reflections of
the RIR by hd,m(l) and the late reverberant tail by hr,m(l), the
m-th microphone signal in (1) can also be expressed as

ym(n) =

Ld−1∑
l=0

hd,m(l)s(n− l)

+

Lh−Ld−1∑
l=0

hr,m(l)s(n− l) + vm(n)

= xd,m(n) + xr,m(n) + vm(n), (3)

where Ld denotes the length of the direct path and early
reflections, xd,m(n) is the m-th direct speech component, and
xr,m(n) is the m-th late reverberant speech component. Using
the filter-and-sum structure in Fig. 1, the output signal z(n) is
equal to the sum of the filtered microphone signals, i.e.,

z(n) =
M∑

m=1

Lw−1∑
l=0

wm(l)xm(n− l)

+

M∑
m=1

Lw−1∑
l=0

wm(l)vm(n− l)

= zx(n) + zv(n), (4)

where wm(l), l = 0, . . . , Lw − 1, are the coefficients of the
Lw-taps long filter applied to them-th microphone, zx(n) is the
output speech component, and zv(n) is the output noise com-
ponent. The output speech component can also be written as

zx(n) =
M∑

m=1

Lw−1∑
l=0

wm(l)xd,m(n− l)

+

M∑
m=1

Lw−1∑
l=0

wm(n)xr,m(n− l)

= zd(n) + zr(n), (5)

with zd(n) the output direct speech component and zr(n) the
output late reverberant speech component.

In vector notation, the RIR hm and the filter wm can be
described as

hm = [hm(0) hm(1) . . . hm(Lh − 1)]T , (6)

wm = [wm(0) wm(1) . . . wm(Lw − 1)]T . (7)

Using the MLw-dimensional stacked filter vector w =
[wT

1 wT
2 . . . wT

M ]T , the equalized impulse response
(EIR) vector c of length Lc = Lh + Lw − 1, i.e., c =
[c(0) c(1) . . . c(Lc − 1)]T , can be expressed as

c = Hw, (8)

with H being the Lc ×MLw-dimensional multi-channel con-
volution matrix, i.e., H = [H1 H2 . . . HM ], and

Hm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hm(0) 0 . . . 0

hm(1) hm(0)
. . .

...
... hm(1)

. . . 0

hm(Lh − 1)
...

. . . hm(0)

0 hm(Lh − 1)
. . . hm(1)

...
. . .

. . .
...

0 . . . 0 hm(Lh − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Using the MLw-dimensional stacked vector of the microphone
signals y(n), i.e.,

y(n) = x(n) + v(n), (10)

with

y(n) = [yT
1 (n) yT

2 (n) . . . yT
M (n)]T , (11)

ym(n) = [ym(n) ym(n− 1) . . . ym(n− Lw + 1)]T ,
(12)

and x(n) and v(n) similarly defined as in (11) and (12), the
output signal can be expressed in vector notation as

z(n) = wTx(n) +wTv(n) = (Hw︸︷︷︸
c

)T s(n) +wTv(n),

(13)

with s(n) = [s(n) s(n− 1) . . . s(n− Lc + 1)]T and

x(n) = HT s(n). (14)

The correlation matrices of x(n), v(n), and y(n) are defined as

Rx = E{x(n)xT (n)}, (15)

Rv = E{v(n)vT (n)}, (16)

Ry = E{y(n)yT (n)}, (17)

with E denoting the expected value operator. Using (14), the
reverberant speech correlation matrix Rx can be expressed as

Rx = E{HT s(n)sT (n)H} = HTRsH, (18)

with Rs being the clean speech correlation matrix. Assuming
that the speech and the noise components are uncorrelated,
Ry = Rx +Rv. For conciseness, the time index n will be
omitted when possible in the remainder of this paper.

III. ACOUSTIC MULTI-CHANNEL EQUALIZATION

Acoustic multi-channel equalization techniques aim only at
speech dereverberation by designing a reshaping filter w such
that the resulting EIR in (8) equals a target dereverberated EIR
ct, where typically the presence of the additive noise v(n) is
completely disregarded. In practice, only perturbed RIRs ĥm
are available, i.e., ĥm = hm + em, where em represents the
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RIR perturbations due to fluctuations (e.g., temperature or posi-
tion fluctuations [23]) or due to the sensitivity of BSI and
SSI methods to near-common zeros or interfering noise [14],
[24]–[26]. Hence, for the reshaping filter design the perturbed
convolution matrix Ĥ = H+E is used, where E represents
the convolution matrix of the RIR perturbations. It should be
noted that BSI methods result in a convolutive RIR perturba-
tion instead of an additive one [32]. However, the discussion in
the remainder of this paper is independent of the type of per-
turbations, as long as a model can be developed to characterize
these perturbations.

In this paper we will focus on the PMINT technique pro-
posed in [13], which aims at suppressing the late reverberation
and preserving the perceptual speech quality. To this purpose,
the late reverberant taps of the target EIR ct are set equal to
0, while the remaining taps are set equal to the direct path and
early reflections of one of the available RIRs. Without loss of
generality, the RIR of the first microphone, i.e., ĥ1, is used to
define the target EIR as

ct = [0 . . . 0︸ ︷︷ ︸
τ

ĥ1(0) . . . ĥ1(Ld − 1) 0 . . . 0]T , (19)

with τ a delay introduced to relax the causality constraints
on the filter design [33]. The PMINT filter is computed by
minimizing the least-squares cost function

J
P
= ‖Ĥw − ct‖22. (20)

As shown in [10], assuming that the available RIRs do not share
any common zeros and using Lw ≥ �Lh−1

M−1 �, the PMINT filter
minimizing the least-squares error in (20) to 0 is equal to

w
P
= Ĥ+ct, (21)

where {·}+ denotes the matrix pseudoinverse. Since the per-
turbed convolution matrix Ĥ is assumed to be a full row-
rank matrix, its pseudoinverse can be computed as Ĥ+ =
ĤT (ĤĤT )−1.

When the true RIRs are available, i.e., Ĥ = H, the PMINT
filter yields perfect dereverberation, i.e., Hw

P
= ct [13].

However, in the presence of RIR perturbations, applying the
PMINT filter to the true convolution matrix yields

Hw
P
= Ĥw

P
−Ew

P
= ct −Ew

P
. (22)

The first term in (22) is the target EIR, whereas the second
term represents distortions due to RIR perturbations. In order to
increase the robustness of acoustic multi-channel equalization
techniques against RIR perturbations, regularized techniques
such as the RPMINT technique have been proposed [13]. As
shown in [33], when taking the RIR perturbations into account,
an optimal reshaping filter in the minimum mean-square error
sense can be computed by minimizing the cost function

J = ‖Ĥw − ct‖22 +wTE{ETE}w, (23)

where it is assumed that E{E} = 0. The matrix E{ETE} in
(23) obviously depends on the energy and the type of RIR
perturbations, e.g., perturbations arising due to microphone

position fluctuations [12], [23], or perturbations arising from
BSI or SSI methods [24]–[26]. While statistical models can be
developed for the correlation structure of different types of per-
turbations, the exact E{ETE} cannot be known in practice.
To account for inaccuracies in modeling E{ETE}, regular-
ized acoustic multi-channel equalization techniques introduce
a regularization parameter δ and use E{ETE} = δRe, with Re

constructed based on a perturbation model [12], [26]. When no
knowledge about the perturbations is available, they are often
assumed to be spatially and temporally white, i.e., E{ETE} =
δI, with I denoting the MLw ×MLw-dimensional identity
matrix [13], [33]. This assumption has been used for the
experimental results in Section VI.

Using E{ETE} = δRe in (23), the RPMINT cost function
is given by [13]

J
RP

= ‖Ĥw − ct‖22 + δwTRew (24)

= εc + δεe, (25)

where εc denotes the dereverberation error energy and εe
denotes the distortion energy due to RIR perturbations. Clearly,
the dereverberation performance, i.e., the deviation of the
resulting EIR from the target EIR ct, depends on both the
dereverberation error and distortion energies (cf. (22)), and the
regularization parameter δ provides a trade-off between the two.
Minimizing (24) yields the RPMINT filter

w
RP

= (ĤT Ĥ+ δRe)
−1ĤT ct, (26)

where δ can be automatically computed using the procedure
based on the L-curve proposed in [13] (cf. Section V). While the
PMINT filter fails to achieve dereverberation in the presence of
RIR perturbations, it has been shown in [13] that the RPMINT
filter yields a significantly better dereverberation performance,
i.e.,

wT
RP

x ≈ cTt s, (27)

outperforming other regularized techniques such as regularized
CS and regularized RMCLS. Furthermore, the RPMINT tech-
nique is able to partly avoid the noise amplification at the output
of the system [13] (cf. Section VI), however, its noise reduction
performance is limited since the actual noise statistics are not
explicitly taken into account.

IV. JOINT DEREVERBERATION AND NOISE REDUCTION

BASED ON ACOUSTIC MULTI-CHANNEL EQUALIZATION

Since acoustic multi-channel equalization techniques design
reshaping filters for dereverberation without taking the presence
of additive noise into account, the output noise power εv , i.e.,

εv = E{(wTv)2} = wTRvw, (28)

is not explicitly controlled and may even be amplified com-
pared to the noise power in the microphone signals. In this
section, two time-domain techniques aiming at joint derever-
beration and noise reduction based on acoustic multi-channel
equalization are proposed, namely RPMINT for joint derever-
beration and noise reduction taking the noise statistics into
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account (cf. Section IV-A) and MWF for joint dereverbera-
tion and noise reduction taking both the speech and the noise
statistics into account (cf. Section IV-B).

A. RPMINT for Joint Dereverberation and Noise Reduction
(RPM-DNR)

Aiming at controlling the dereverberation error energy εc,
the distortion energy εe, as well as the output noise power εv ,
we propose to extend the RPMINT cost function in (24) by
explicitly taking the noise statistics into account. The RPMINT
cost function for joint dereverberation and noise reduction
(RPM-DNR) can then be written as

JRDNR = JRP + μεv (29)

= ‖Ĥw − ct‖22 + δwTRew + μwTRvw, (30)

with δ the regularization parameter controlling the weight given
to the distortion energy and μ an additional weighting parame-
ter controlling the weight given to the output noise power. The
RPM-DNR filter minimizing (30) is equal to

w
RDNR

= (ĤT Ĥ+ δRe + μRv)
−1ĤT ct. (31)

As is experimentally validated in Section VI-B, the dereverber-
ation and noise reduction performance of the RPM-DNR filter
in (31) depend on the regularization and weighting parameters
δ and μ. Increasing the regularization parameter δ results in a
higher suppression of the distortion energy at the expense of a
higher dereverberation error energy and a larger output noise
power. Increasing the weighting parameter μ results in a better
noise reduction performance at the expense of a worse dere-
verberation performance, which simultaneously depends on the
dereverberation error and distortion energies. While in sim-
ulations the optimal values for the parameters δ and μ can
be intrusively determined using knowledge of the true RIRs
and of the true noise statistics, in practice an automatic non-
intrusive procedure is required. In Section V a novel procedure
is proposed for the joint automatic selection of both parameters.

B. MWF for Joint Dereverberation and Noise Reduction
(MWF-DNR)

The RPM-DNR technique proposed in Section IV-A aims at
joint dereverberation and noise reduction by considering only
the perturbed RIRs and the noise statistics. Taking also the
reverberant speech statistics into account, we propose a second
technique to achieve joint dereverberation and noise reduction
by minimizing the mean-square error between the output signal
and a dereverberated reference signal sref , i.e.,

J = E{(wTy − sref)
2}. (32)

The cost function in (32) is the well-known MWF cost func-
tion [34], where the reference signal now is the dereverberated
speech signal. The estimation of several reference signals has
been considered for the MWF, e.g., the clean speech signal, the
reverberant speech component at an arbitrarily chosen micro-
phone, or a spatially pre-processed reference signal [19], [35],

[36]. Considering the high and robust dereverberation perfor-
mance of the time-domain RPMINT technique (cf. (27)), in this
paper we propose to use the RPMINT filter to generate the dere-
verberated reference signal in (32), i.e., sref = wT

RP
x ≈ cTt s.

Assuming that the speech and the noise components are uncor-
related and using a weighting parameter μ to enable a trade-off
between speech distortion and noise reduction, the cost func-
tion of the proposed MWF for joint dereverberation and noise
reduction (MWF-DNR) can be written as

JMDNR = E{(wTx−wT
RP

x)2}+ μE{(wTv)2} (33)

= εx + μεv, (34)

with εx being the speech distortion, which refers to the devia-
tion of the output speech component from the dereverberated
reference signal wT

RP
x. The MWF-DNR filter minimizing (33)

is equal to

wMDNR = (Rx + μRv)
−1RxwRP . (35)

Using the RPMINT filter from (26) in (35), the MWF-DNR
filter can also be written as

wMDNR = (Rx + μRv)
−1Rx(Ĥ

T Ĥ+ δRe)
−1ĤT ct. (36)

As is experimentally validated in Section VI-B, the dereverber-
ation and noise reduction performance of the MWF-DNR filter
in (36) depend on the regularization and weighting parameters
δ and μ. The regularization parameter δ affects the dere-
verberation performance of the RPMINT filter w

RP
, hence,

the dereverberation performance of the MWF-DNR reference
signal wT

RP
x. The weighting parameter μ affects the speech dis-

tortion εx (as a result, the dereverberation performance of the
MWF-DNR filter) as well as the noise reduction performance.
While in simulations the optimal values for the parameters
δ and μ can be intrusively determined using knowledge of
the true RIRs and of the true speech and noise statistics, in
practice an automatic non-intrusive procedure is required. In
Section V we propose to automatically select the regulariza-
tion and weighting parameters δ and μ using two decoupled
optimization procedures based on the L-curve.

C. Insights on the RPM-DNR and MWF-DNR Techniques

The main difference between the RPM-DNR and MWF-
DNR filters in (31) and (36) consists in the fact that the
MWF-DNR filter uses the reverberant speech correlation matrix
Rx, which implicitly depends on the true convolution matrix
H and on the clean speech correlation matrix Rs, cf. (18),
whereas the RPM-DNR filter uses only the perturbed convolu-
tion matrix Ĥ. Substituting (18) in (36), the MWF-DNR filter
can be written as

wMDNR = (HTRsH+ μRv)
−1HTRsH(ĤT Ĥ+ δRe)

−1

× ĤT ct. (37)

As can be seen in (37), unlike the RPM-DNR filter, the MWF-
DNR filter indirectly incorporates knowledge of the true convo-
lution matrix H and of the clean speech correlation matrix Rs.
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In the following, it is shown that only when assuming that i) the
clean speech signal is uncorrelated, ii) the true RIRs are avail-
able, and iii) the regularization parameter δ approaches 0, i.e.,
δ → 0, the RPM-DNR and MWF-DNR filters are equivalent.

First, assuming that the clean speech signal is uncorrelated,
i.e., Rs = σ2

sI, with σ2
s the clean speech variance, the MWF-

DNR filter is equal to

w
MDNR

= (HTH+
μ

σ2
s

Rv)
−1HTH(ĤT Ĥ+δRe)

−1ĤT ct.

(38)

Hence, even for an uncorrelated clean speech signal (which
is generally not the case in practice), the MWF-DNR filter in
(38) differs from the RPM-DNR filter in (31) by indirectly
incorporating the true convolution matrix H.

Second, assuming that the true RIRs are available, i.e., Ĥ =
H, the RPM-DNR filter in (31) and the MWF-DNR filter in
(38) can be written as

w
RDNR

= (HTH+ δRe + μRv)
−1HT ct, (39)

wMDNR = (HTH+
μ

σ2
s

Rv)
−1HTH(HTH+δRe)

−1HT ct.

(40)

Finally, assuming that the regularization parameter δ
approaches 0, i.e., δ → 0, the RPM-DNR filter in (39)
and the MWF-DNR filter in (40) can be written as

w
RDNR

= (HTH+ μRv)
−1HT ct, (41)

w
MDNR

= (HTH+
μ

σ2
s

Rv)
−1HT ct, (42)

where (42) is derived from (40) using the fact that
limδ→0 (H

TH+ δRe)
−1HT ct = H+ct. Comparing (41) and

(42), it can be observed that under the assumptions of an uncor-
related clean speech signal, knowledge of the true RIRs, and
δ → 0, the RPM-DNR and MWF-DNR filters are equivalent
(up to the scaling of the weighting parameter μ by the clean
speech variance σ2

s ). However, in practice the clean speech
signal is not uncorrelated, i.e., Rs �= σ2

sI, and most impor-
tantly, the true RIRs are not known. As is experimentally
validated in Section VI-D, by incorporating the true speech
statistics Rx in the MWF-DNR technique, the noise reduc-
tion and the overall joint dereverberation and noise reduction
performance can be significantly improved in comparison to
the RPM-DNR technique. The importance of incorporating the
true reverberant speech correlation matrix Rx is further vali-
dated in Section VI-D by the performance degradation of the
MWF-DNR technique in the presence of estimation errors.

V. AUTOMATIC SELECTION OF REGULARIZATION

AND WEIGHTING PARAMETERS

The optimal value of the regularization and weighting param-
eters in the RPM-DNR and MWF-DNR techniques depends on
the acoustic system, the RIR perturbations, the additive noise,
as well as on what is more important for the considered appli-
cation, i.e., dereverberation or noise reduction performance.

While in simulations these parameters can be determined intru-
sively, i.e., using knowledge of the true RIRs and of the speech
and noise statistics, in practice an automatic non-intrusive
procedure is required. In [13] an automatic procedure has
been proposed for selecting the regularization parameter in
RPMINT. This procedure will be reviewed in Section V-A and
further adapted to the automatic selection of the regulariza-
tion and weighting parameters for the MWF-DNR technique in
Section V-C. Furthermore, in Section V-B a novel procedure is
proposed for the joint automatic selection of the regularization
and weighting parameters in the RPM-DNR technique.

D. Automatic Parameter Selection in RPMINT

As mentioned in Section III, the regularization parameter δ in
RPMINT enables a trade-off between the dereverberation error
energy εc and the distortion energy εe, with

εc = ‖Ĥw
RP

− ct‖22, (43)

εe = wT
RP

RewRP . (44)

An appropriate regularization parameter should incorporate
knowledge about both the dereverberation error energy and the
distortion energy, such that both terms are appropriately con-
trolled. In order to automatically compute the regularization
parameter in RPMINT, it has been proposed in [13] to use a
parametric plot of the distortion energy εe versus the derever-
beration error energy εc for different values of the regularization
parameter δ. Due to the arising trade-off, this parametric plot
has an L-shape, with the corner (i.e., the point of maximum cur-
vature) located where the RPMINT filter w

RP
in (26) changes

from being dominated by over-regularization to being domi-
nated by under-regularization. It has therefore been proposed
in [13] to automatically select the regularization parameter δ in
RPMINT as the point of maximum curvature of this L-curve.
The curvature κ of the parametric plot of the distortion energy
versus the dereverberation error energy can be analytically
computed as [31]

κ =
ε′cε

′′
e − ε′′c ε

′
e

(ε′c + ε′e)
3
2

, (45)

with {·}′ and {·}′′ denoting the first- and second-order deriva-
tives with respect to δ. The first- and second-order derivatives
can also be analytically computed and substituted in (45), such
that the curvature κ can be analytically expressed as a func-
tion of the regularization parameter δ. In order to determine
the unique point of maximum curvature, a one-dimensional
optimization procedure can then be used. The analytical deriva-
tive and curvature expressions have been omitted in this paper
since using an optimization procedure to maximize the cur-
vature not only results in a high computational complexity,
but is also prone to numerical errors. Therefore the trian-
gle method proposed in [37], which is a numerically robust
geometric procedure, has been used to determine the point
of maximum curvature of the L-curve, similarly as in [13].
Experimental results in [13] have shown that this automatic
parameter selection procedure yields a very similar robust-
ness against RIR perturbations as intrusively selecting the
regularization parameter.



686 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 4, APRIL 2016

Fig. 2. Exemplary parametric surface of the output noise power εv versus
dereverberation error energy εc and distortion energy εe for the RPM-DNR
technique.

B. Automatic Parameter Selection in RPM-DNR

Different regularization and weighting parameters δ and
μ obviously result in different RPM-DNR filters in (31),
which yield different dereverberation error energy εc, distortion
energy εe, and output noise power εv , with

εc = ‖Ĥw
RDNR

− ct‖22, (46)

εe = wT
RDNR

RewRDNR
, (47)

εv = wT
RDNR

RvwRDNR
. (48)

Similarly to the RPMINT technique, appropriate parameters
δ and μ should incorporate knowledge about the dereverber-
ation error energy, the distortion energy, and the output noise
power, such that all three terms are appropriately controlled.
Motivated by the simplicity and the applicability of the L-curve
for regularizing least-squares techniques [31], the so-called L-
hypersurface has been proposed in [30] as a multi-parameter
generalization of the L-curve. Similarly to the L-curve proce-
dure where the optimal parameter is selected as the point of
maximum curvature, we propose to select the regularization
and weighting parameters δ and μ as the point of maximum
Gaussian curvature of the L-hypersurface, obtained by plot-
ting the output noise power εv versus the dereverberation error
energy εc and the distortion energy εe for several values of the
parameters δ and μ. Fig. 2 depicts an exemplary L-hypersurface
obtained by plotting εv versus εc and εe for several regulariza-
tion and weighting parameters δ and μ for the RPM-DNR tech-
nique, with the square denoting the point of maximum Gaussian
curvature. Although the Gaussian curvature of a surface can
be analytically computed, numerical inaccuracies due to the
manipulation of large-dimensional matrices can occur when
maximizing it [38], such that a numerically stable algorithm
is required. In this paper, the minimum distance method pro-
posed in [38] has been used to compute the point of maximum
Gaussian curvature.

C. Automatic Parameter Selection in MWF-DNR

Similarly to the RPM-DNR technique, different regulariza-
tion parameters δ and μ result in different MWF-DNR filters
in (36), which obviously yield different dereverberation error
energy εc, distortion energy εe, speech distortion εx, and output
noise power εv . To automatically select the regularization and

Fig. 3. Exemplary parametric plot of the output noise power εv versus speech
distortion εx for the MWF-DNR technique. The marked points show the value
of μ.

weighting parameters δ and μ for the MWF-DNR technique, we
propose to use two decoupled optimization procedures based
on the L-curve. First, in order to obtain a dereverberated refer-
ence signal wT

RP
x, the parameter δ is automatically computed

using the L-curve procedure described in Section V-A. For a
fixed regularization parameter δ, i.e., a fixed w

RP
, changing

the parameter μ in the MWF-DNR technique yields a different
speech distortion εx and output noise power εv , i.e.,

εx =wT
MDNR

RxwMDNR
− 2wT

MDNR
RxwRP

+wT
RP

RxwRP
,

(49)

εv =wT
MDNR

RvwMDNR
, (50)

with (49) derived by expanding εx = E{(wTx−wT
RP

x)2}
from (33). Similarly to before, an appropriate weighting param-
eter μ should incorporate knowledge about the speech dis-
tortion and the output noise power, such that both terms are
appropriately controlled. Fig. 3 depicts an exemplary paramet-
ric plot of the output noise power versus speech distortion for a
set of parameters μ. This parametric plot has an L-shape, with
the point of maximum curvature, i.e., the corner of the L-curve,
located where the MWF-DNR filter changes from being dom-
inated by large speech distortion to being dominated by large
output noise power. Hence, we propose to select the weight-
ing parameter μ in the MWF-DNR technique as the point of
maximum curvature of this parametric plot. Although from the
exemplary plot in Fig. 3 it may seem straightforward to deter-
mine the point of maximum curvature, numerical problems
typically occur as described in Section V-A, such that a numer-
ically stable algorithm is required. In this paper, the triangle
method proposed in [37] has been used to determine the point
of maximum curvature of the L-curve.

VI. EXPERIMENTAL RESULTS

In this section the dereverberation and noise reduction perfor-
mance of the proposed RPM-DNR and MWF-DNR techniques
is investigated using instrumental measures. In Section VI-
A the considered acoustic systems, algorithmic settings, and
instrumental measures are introduced. In Section VI-B the
influence of the regularization and weighting parameters on
the performance of the proposed techniques is investigated. In
Section VI-C, the automatically parametrized RPM-DNR and
MWF-DNR techniques are compared to acoustic multi-channel
equalization techniques. In Section VI-D the performance of
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the automatically parametrized RPM-DNR and MWF-DNR
techniques is extensively investigated for different noise lev-
els, RIR perturbations, and correlation matrix estimation errors
using simulated acoustic systems and simulated RIR per-
turbations. Finally, in Section VI-E the performance of the
automatically parametrized RPM-DNR and MWF-DNR tech-
niques is investigated using recorded acoustic systems with
different noise levels and RIR perturbations arising from the
least-squares SSI [14].

A. Acoustic Systems, Algorithmic Settings, and Performance
Measures

1) Simulated Acoustic System and Algorithmic Settings: To
be able to directly control the level of RIR perturbations,
we have considered a simulated acoustic system with M = 4
equidistant microphones and a speech source placed in broad-
side direction at a distance of 2 m from the microphones. The
distance between the microphones is 4 cm and the room rever-
beration time is T60 ≈ 610 ms [39]. The RIRs between the
source and the microphones are measured using the swept-
sine technique and the RIR length is Lh = 5100 at a sampling
frequency fs = 8 kHz. The speech components in the micro-
phone signals are generated by convolving clean speech signals
from the HINT database [40] with the measured RIRs. The
noise consists of a directional interference and spatially diffuse
noise which is simulated using [41]. The directional interfer-
ence is located in endfire direction at a distance of 2 m from
the microphones. The broadband input speech-to-interference
ratio (SIR) is varied between −5 dB and 10 dB and the
broadband input speech-to-diffuse noise ratio is 10 dB. The
speech-plus-noise signal is 18 s long and is preceded by a 14 s
long noise-only signal, such that the noise statistics can be esti-
mated during speech absence (cf. (57)). The noise-only signal
is not taken into account during evaluation. In order to sim-
ulate RIR perturbations, the measured RIRs are perturbed by
proportional Gaussian distributed errors as proposed in [42],
such that a desired level of normalized projection misalignment
(NPM), i.e.,

NPM = 10 log10

∣∣∣hm − hT
mĥm

ĥT
mĥm

ĥm

∣∣∣2
2

‖hm‖22
[dB], (51)

is generated. The considered NPMs are

NPM ∈ {−33dB,−27dB, . . . ,−3dB}. (52)

For all considered techniques the filter length is set to Lw =
�Lh−1
M−1 � = 1700 (cf. Section III), the length of the direct path

and early reflections is set to Ld = 0.01fs, and the delay is set
to τ = 192, cf. (19). The matrix Re modeling the perturbations
is set to Re = I as in [13], [33], which results in controlling the
reshaping filter energy since εe = wT Iw = ‖w‖22.

2) Recorded Acoustic System and Algorithmic Settings: To
investigate the performance of the different techniques in a
more realistic acoustic scenario, we have considered a recorded
acoustic system with reverberation time T60 ≈ 450 ms and
M = 4 equidistant microphones with an inter-microphone dis-
tance of 2.5 cm. A speech source is placed at an angle θ ≈ 10◦

and a distance of 2 m from the microphone array. The noise con-
sists of ambient noise, microphone self-noise, and a directional
interferer placed at an angle θ ≈ 70◦ and a distance of 2.5 m
from the microphone array. The speech and the noise compo-
nents in the microphone signals are recorded by playing back
a clean speech signal from HINT the database and a noise sig-
nal over loudspeakers. The broadband input SIR is again varied
between −5 dB and 10 dB and the broadband input speech-
to-ambient noise ratio is 25 dB. The speech-plus-noise signal is
18 s long and is preceded by a 14 s long noise-only signal.

The true RIRs hm are measured using the swept-sine tech-
nique, with RIR length Lh = 4000 at a sampling frequency
fs = 8 kHz.1 For each input SIR, RIR estimates are obtained
using SSI by minimizing the least-squares cost function [14]

J = ‖Shm − ym‖22, m = 1, . . . , M, (53)

where S denotes the Ls × Lh-dimensional convolution matrix
of the clean speech signal, with Ls = 18fs. The minimization
of (53) yields

ĥm = (STS)−1STym. (54)

Due to the noise in ym, the estimated RIRs ĥm differ from the
true RIRs hm [14], i.e.,

ĥm = hm + (STS)
−1

STvm︸ ︷︷ ︸
em

. (55)

As illustrated by (55), the RIR perturbations em depend on the
clean speech and noise statistics, such that they are typically not
Gaussian distributed and also depend on the SIR.

The simulation parameters for all considered techniques are
Lw = �Lh−1

M−1 � = 1333, Ld = 0.01fs, τ = 192, and Re = I.
3) Correlation Matrix Computation: The correlation matri-

ces are computed as follows:
i. Perfectly estimated from the speech and noise signals in

order to evaluate the full potential of the proposed tech-
niques by avoiding correlation matrix estimation errors
(Sections VI-B and VI-C), i.e.,

Rx =
1

K

K∑
k=1

xkx
T
k , Rv =

1

K

K∑
k=1

vkv
T
k , (56)

with K denoting the number of available speech-plus-
noise signal vectors.

ii. Erroneously estimated as Rx = Ry −Rv, with Ry

estimated during the speech-plus-noise period and Rv

estimated during the noise-only period in order to
achieve a realistic evaluation of the proposed techniques
(Section VI-D and VI-E), i.e.,

Ry =
1

K

K∑
k=1

yky
T
k , Rv =

1

Kv

Kv∑
k=1

vkv
T
k ,

Rx = Ry −Rv, (57)

1Please note that referring to the measured RIRs as the true RIRs is not
entirely correct. The RIRs are measured at a different time instant than the
recorded speech, hence, environmental conditions (such as temperature) may
have changed, possibly yielding a different true RIR.
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with Kv denoting the number of available noise-only
signal vectors. Due to the fact that the speech and
noise signals are not perfectly uncorrelated and the noise
is temporally nonstationary, computing the reverberant
speech correlation matrix as Rx = Ry −Rv may not
yield a positive semi-definite matrix, particularly at low
input SIR. The estimated Rx is forced to be a pos-
itive semi-definite matrix by computing its eigenvalue
decomposition and setting the negative eigenvalues to 0.

4) Performance Measures: The dereverberation perfor-
mance is evaluated in terms of the reverberant energy sup-
pression and the perceptual speech quality improvement. As
is commonly done in acoustic multi-channel equalization tech-
niques, the reverberant energy suppression is evaluated as the
improvement in direct-to-reverberant ratio (ΔDRR) [43], i.e.,
ΔDRR = oDRR− iDRR [dB], with

oDRR = 10 log10

Ld−1∑
n=0

c2(n)

Lc−1∑
n=Ld

c2(n)

[dB], (58)

iDRR = 10 log10

Ld−1∑
n=0

h21(n)

Lh−1∑
n=Ld

h21(n)

[dB], (59)

where c(n) is the resulting EIR defined in (8). The percep-
tual speech quality is evaluated using the instrumental measure
PESQ [44], which generates a similarity score between a test
signal and a reference signal in the range of 1 to 4.5. It has
been shown in [45] that instrumental measures relying on audi-
tory models such as PESQ exhibit the highest correlation with
subjective listening tests when evaluating the quality of dere-
verberated (noiseless) speech. The reference signal employed
here is xd,1(n) = s(n)∗hd,1(n), i.e., the direct path and early
reflections speech component in the first microphone. The
improvement in perceptual speech quality ΔPESQ is com-
puted as the difference between the PESQ score of the output
speech component zx(n) and the PESQ score of the reverberant
speech component in the first microphone signal x1(n).

The noise reduction performance is evaluated in terms of the
noise reduction factor ψ

NR
, i.e.,

ψ
NR

= 10 log10
E{v21(n)}
E{z2v(n)}

[dB], (60)

with v1(n) the noise component in the first microphone and
zv(n) the output noise component defined in (4).

The joint dereverberation and noise reduction perfor-
mance is evaluated in terms of the improvement in signal-
to-reverberation-and-noise ratio (ΔSRNR), i.e., ΔSRNR =
oSRNR− iSRNR [dB], with

iSRNR = 10 log10
E{x2d,1(n)}

E{x2r,1(n)}+ E{v21(n)}
[dB], (61)

oSRNR = 10 log10
E{z2d(n)}

E{z2r (n)}+ E{z2v(n)}
[dB], (62)

where xd,1(n) and xr,1(n) are the direct and the late reverber-
ant speech components in the first microphone defined in (3)
and zd(n) and zr(n) are the direct and the late reverberant out-
put speech components defined in (5). In addition, in order to
evaluate the overall quality of the dereverberated and denoised
signal, the frequency-weighted segmental SNR (fwSSNR) [46]
is used, with xd,1(n) as reference signal. The improvement in
overall quality ΔfwSSNR [dB] is computed as the difference
between the fwSSNR of the output signal z(n) and the fwSSNR
of the first microphone signal y1(n).

B. Influence of the Regularization and Weighting Parameters
on the Performance of RPM-DNR and MWF-DNR

In this section the influence of the regularization and weight-
ing parameters δ and μ on the performance of the RPM-DNR
and MWF-DNR techniques is investigated using the simulated
acoustic system for an exemplary scenario of SIR = 0 dB and
NPM = −33 dB. The considered regularization and weighting
parameter values are

δ, μ ∈ {10−7, 10−6, . . . , 10−1, 1, 10}, (63)

and the speech and noise correlation matrices are perfectly
estimated from the speech and noise signals as in (56).

Figs. 4(a) and 4(b) depict the DRR improvement and the
noise reduction factor for the RPM-DNR technique. The fol-
lowing observations can be made:

i. For small values of the regularization and weighting
parameters δ and μ (e.g., δ= 10−7 and μ= 10−7), the
dereverberation performance is high whereas the noise is
amplified. Since the RIR perturbation level is relatively
low, i.e., NPM = −33 dB, also the optimal value of the
regularization parameter δ required for a high dereverber-
ation performance is small (e.g., δ= 10−7). In addition,
a small value of the weighting parameter μ (e.g., μ =
10−7), i.e., (almost) disregarding the noise, leads to noise
amplification.

ii. For a fixed value of the weighting parameter μ (e.g.,
μ= 10−5), increasing the parameter δ initially yields a
slight increase in ΔDRR (not visible in Fig. 4(a)), how-
ever, as the regularization parameter δ is increased beyond
10−5, the ΔDRR values decrease. This is to be expected
since for a relatively low RIR perturbation level, i.e.,
NPM = −33 dB, the optimal value of δ required for a
high dereverberation performance is small.

iii. For a fixed value of the weighting parameter μ (e.g.,
μ = 10−5), increasing the regularization parameter δ also
increases the noise reduction factor. This can be explained
by the fact that for increasing values of δ the energy of the
resulting RPM-DNR filter decreases (since δI is used as
the regularization term), which results in a smaller output
noise power.

iv. For a fixed value of the regularization parameter δ (e.g.,
δ = 10−5), increasing the weighting parameter μ results
in a trade-off between dereverberation and noise reduc-
tion performance, as can be seen by the (slight) decrease
in DRR improvement and the increase in noise reduction
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Fig. 4. Performance of the RPM-DNR technique for several regularization and weighting parameters δ and μ in terms of (a) DRR improvement and (b) noise
reduction factor. The circles denote the automatically selected parameters (simulated acoustic system, SIR = 0 dB, NPM = −33 dB).

Fig. 5. Performance of the MWF-DNR technique for several regularization and weighting parameters δ and μ in terms of (a) DRR improvement and (b) noise
reduction factor. The circles denote the automatically selected parameters (simulated acoustic system, SIR = 0 dB, NPM = −33 dB).

factor. However, for large values of the regularization
parameter δ (e.g., δ = 1), increasing the weighting param-
eter μ hardly has any effect on the dereverberation or the
noise reduction performance, since the resulting RPM-
DNR filter has very low energy.

For the considered example, the procedure proposed in
Section V-B for automatically selecting the weighting param-
eters based on the L-hypersurface yields δ= 10−3 and μ =
1, which are denoted by the circles in Figs. 4(a) and 4(b).
While it is not possible to judge upon the optimality of a
set of parameters, it can be said that the automatic procedure
yields parameters resulting in a reasonable trade-off between
dereverberation and noise reduction performance. This is also
confirmed in Section VI-D for other NPMs and SIRs.

Figs. 5(a) and 5(b) depict the DRR improvement and the
noise reduction factor for the MWF-DNR technique. Similarly
to the RPM-DNR technique, the following observations can be
made:

i. For small values of the regularization and weighting
parameters δ and μ (e.g., δ = 10−7 and μ = 10−7), the
dereverberation performance is high whereas the noise is
amplified.

ii. For a fixed value of the weighting parameter μ (e.g., μ =
10−5), increasing the parameter δ initially yields a slight
increase in ΔDRR (not visible in Fig. 5(a)), however, as
the regularization parameter δ is increased beyond 10−5,
the ΔDRR values decrease.

iii. For a fixed value of the weighting parameter μ (e.g., μ =
10−5), increasing the parameter δ also increases the noise
reduction factor.

iv. For a fixed value of the regularization parameter δ
(e.g., δ = 10−5) increasing the parameter μ results in
a trade-off between dereverberation and noise reduction
performance, as can be seen by the decrease in DRR
improvement and the increase in noise reduction factor.

For the considered example, the automatic procedure for
selecting the regularization parameter δ in RPMINT yields
δ = 10−3. Using this RPMINT filter, the automatic procedure
for selecting the weighting parameter μ in MWF-DNR yields
μ = 10−1. These parameter values are denoted by the cir-
cles in Figs. 5(a) and 5(b). It can be observed that using the
two decoupled L-curve procedures for automatically select-
ing the regularization and weighting parameters in MWF-DNR
yields parameters resulting in a reasonable trade-off between
dereverberation and noise reduction performance. This is also
confirmed in Section VI-D for other NPMs and SIRs.

C. Comparison of the Automatically Parametrized RPM-
DNR and MWF-DNR Techniques to Acoustic Multi-channel
Equalization Techniques

To illustrate the importance of taking the RIR perturbations
and the noise statistics into account, in this section the per-
formance of the automatically parametrized RPM-DNR and
MWF-DNR techniques is compared to the performance of the
PMINT and the automatically regularized PMINT techniques
using the simulated acoustic system for an exemplary sce-
nario of SIR = 0 dB and NPM = −33 dB. The speech and
noise correlation matrices for the RPM-DNR and MWF-DNR
techniques are perfectly estimated as in (56).
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TABLE I
PERFORMANCE OF PMINT AND AUTOMATICALLY PARAMETRIZED

RPMINT, RPM-DNR, AND MWF-DNR (SIMULATED ACOUSTIC

SYSTEM, SIR = 0 DB, NPM = −33 DB)

Table I presents the obtained ΔDRR, ΔPESQ, ψNR ,
ΔSRNR, and ΔfwSSNR values for all considered techniques.
As shown by the negative ΔDRR and ΔPESQ values, PMINT
fails to achieve dereverberation, introducing more reverberant
energy than in the microphone signal. By taking the RIR per-
turbations into account, RPMINT achieves a high reverberant
energy suppression and perceptual speech quality improve-
ment. The proposed RPM-DNR technique achieves a very
similar dereverberation performance as RPMINT, whereas the
proposed MWF-DNR technique yields only a slightly worse
dereverberation performance. Even though one would expect
the dereverberation performance of the RPM-DNR technique
to be worse than the dereverberation performance of RPMINT,
in this scenario the dereverberation performance of both tech-
niques is very similar. This occurs due to the automatic selec-
tion of the regularization parameter, which does not yield the
best dereverberation performance one would otherwise obtain
by intrusively selecting the regularization parameter in the
RPMINT technique. Furthermore, as discussed in Section III
and as illustrated by the negative noise reduction factor, PMINT
leads to a large noise amplification. Due to the decrease in the
reshaping filter energy by incorporating a regularization param-
eter, RPMINT avoids the noise amplification and reduces the
noise by 1.9 dB. By taking the noise statistics explicitly into
account, the proposed RPM-DNR technique improves the noise
reduction factor to 3.2 dB, whereas by taking also the rever-
berant speech statistics into account the proposed MWF-DNR
technique yields a significantly larger noise reduction factor of
13.0 dB. The high dereverberation and noise reduction perfor-
mance of the proposed techniques in comparison to acoustic
multi-channel equalization techniques is also illustrated by the
higher ΔSRNR and ΔfwSSNR values presented in Table I,
where the MWF-DNR technique outperforms the RPM-DNR
technique in terms of both instrumental measures. Summarizing
these results, it can be said that the RIR perturbations and the
noise statistics should be taken into account in order to avoid
noise amplification and to achieve joint dereverberation and
noise reduction. By taking also the reverberant speech statistics
into account, an overall better performance can be achieved.

D. Performance of the Automatically Parametrized RPM-DNR
and MWF-DNR Techniques for Simulated Acoustic Systems

In this section the performance of the automatically
parametrized RPM-DNR and MWF-DNR techniques is exten-
sively investigated using the simulated acoustic system for
different noise levels, RIR perturbation levels, and correlation

matrix estimation errors. The considered NPMs are given in
(52) and the presented performance measures for each SIR
value are averaged over the different considered NPMs. The
performance of the proposed RPM-DNR and MWF-DNR tech-
niques is investigated for perfectly estimated correlation matri-
ces as in (56) and for erroneously estimated correlation matrices
as in (57).

Fig. 6 depicts the performance of the automatically
parametrized RPM-DNR and MWF-DNR techniques for per-
fectly estimated speech and noise correlation matrices. As
shown by the ΔDRR and ΔPESQ values in Figs. 6(a) and 6(b),
the dereverberation performance of both techniques is very sim-
ilar, with the RPM-DNR technique yielding a slightly better
performance. However, as shown by the noise reduction factor
in Fig. 6(c), the MWF-DNR technique achieves a significantly
better noise reduction performance. The similar dereverbera-
tion performance but better noise reduction performance of the
MWF-DNR technique is reflected in the higher ΔSRNR and
ΔfwSSNR values achieved by the MWF-DNR technique, as
depicted in Figs. 6(d) and 6(e). Hence, it can be said that by also
taking the true reverberant speech statistics into account, the
MWF-DNR technique outperforms the RPM-DNR technique,
since it yields a similarly high dereverberation performance but
a significantly higher noise reduction performance.

Fig. 7 depicts the performance of the automatically
parametrized RPM-DNR and MWF-DNR techniques for erro-
neously estimated correlation matrices as in (57). Since the
RPM-DNR technique only requires the noise correlation matrix
Rv and since estimating this matrix from a long enough
spatially stationary noise-only period does not yield a sig-
nificantly different estimate from the previous experiment,
the performance of the RPM-DNR technique for erroneously
estimated correlation matrices is very similar to the perfor-
mance for perfectly estimated correlation matrices (compare
Figs. 6 and 7). However, as shown in Figs. 7(a) and 7(b) the
dereverberation performance of the MWF-DNR technique sig-
nificantly decreases. Due to the fact that the speech and noise
signals are not perfectly uncorrelated and the noise is tem-
porally nonstationary, estimation errors occur in the estimate
of the speech correlation matrix Rx = Ry −Rv, especially
for low input SIR. These estimation errors result in a worse
dereverberated reference signal RxwRP

for the MWF-DNR
technique, hence, significantly decreasing the dereverberation
performance. However, the noise reduction performance for the
MWF-DNR technique is significantly better than for the RPM-
DNR technique as depicted in Fig. 7(c), resulting in higher
overall ΔSRNR and ΔfwSSNR values as depicted in Figs. 7(d)
and 7(e). Furthermore, the noise reduction performance of the
MWF-DNR technique for erroneously estimated correlation
matrices can be better than for perfectly estimated correla-
tion matrices (compare Figs. 6c and 7c for SIR = 5 dB and
SIR = 10 dB). This occurs due to the automatic selection of
the weighting parameter μ in the MWF-DNR technique, which
for erroneously estimated correlation matrices may result in a
higher parameter value, hence a better noise reduction perfor-
mance (at the expense of a worse dereverberation performance).

In summary, when the speech and noise correlation matrices
can be directly estimated from the speech and noise signals, the



KODRASI et al.: JOINT DEREVERBERATION AND NOISE REDUCTION BASED ON ACOUSTIC MULTI-CHANNEL EQUALIZATION 691

Fig. 6. Average performance of the automatically parametrized RPM-DNR and MWF-DNR techniques in terms of (a) ΔDRR, (b) ΔPESQ of the output speech
component, (c) ψNR , (d) ΔSRNR, and (e) ΔfwSSNR (simulated acoustic system, perfectly estimated correlation matrices).

Fig. 7. Average performance of the automatically parametrized RPM-DNR and MWF-DNR techniques in terms of (a) ΔDRR, (b) ΔPESQ of the output speech
component, (c) ψNR , (d) ΔSRNR, and (e) ΔfwSSNR (simulated acoustic system, erroneously estimated correlation matrices).

TABLE II
PERFORMANCE OF THE AUTOMATICALLY PARAMETRIZED RPM-DNR AND MWF-DNR TECHNIQUES (RECORDED ACOUSTIC SYSTEM,

ERRONEOUSLY ESTIMATED CORRELATION MATRICES)

MWF-DNR technique outperforms the RPM-DNR technique
since it yields a similarly high dereverberation performance and
a significantly better noise reduction performance. However,
when the required correlation matrices are prone to estimation
errors, the RPM-DNR technique yields a significantly better
dereverberation performance but still a worse noise reduction
performance than the MWF-DNR technique. The technique to
be used should be chosen depending on what is more important
for the application under consideration, i.e., dereverberation or
noise reduction performance.

E. Performance of the Automatically Parametrized RPM-DNR
and MWF-DNR Techniques for Recorded Acoustic Systems

In this section the performance of the automatically
parametrized RPM-DNR and MWF-DNR techniques is inves-
tigated using the recorded acoustic system for different noise
levels, and hence, different RIR perturbations, cf. (55). The
correlation matrices are erroneously estimated as in (57).

Table II presents the obtained ΔDRR, ΔPESQ, η
NR

, and
ΔfwSSNR values for both proposed techniques. It should be
noted that the presented ΔPESQ values do not only reflect
the improvement in dereverberation performance, but also the

reduction of ambient noise and microphone self-noise (since
for the recorded acoustic system, the individual speech, ambi-
ent noise or microphone self-noise components are not avail-
able). For each considered SIR, the NPM arising between the
measured RIRs and the estimated RIRs is also presented in
Table II. As a baseline, the performance of the RPM-DNR
and MWF-DNR techniques using the measured RIRs (i.e.,
NPM = −∞) for the exemplary scenario of SIR = 10 dB is
also presented.

As illustrated by the ΔDRR and ΔPESQ values and as
expected from the results of Section VI-D, the RPM-DNR
technique yields a better dereverberation performance than the
MWF-DNR technique. Furthermore, as illustrated by the ηNR

values, the MWF-DNR technique yields a better noise reduc-
tion performance than the RPM-DNR technique. The better
noise reduction performance of the MWF-DNR technique also
results in a better overall joint dereverberation and noise reduc-
tion performance, as illustrated by the ΔfwSSNR values. Most
importantly, it can be observed that at SIR = 10 dB the perfor-
mance of both techniques for NPM = −5.5 dB is very similar
to the performance for NPM = −∞ dB, illustrating the robust-
ness of the proposed techniques against RIR perturbations
arising due to least-squares SSI.
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In summary, these simulation results confirm the results of
Section VI-D, i.e., in the presence of correlation matrix esti-
mation errors, the RPM-DNR technique yields a significantly
better dereverberation performance whereas the MWF-DNR
technique yields a significantly better noise reduction and joint
dereverberation and noise reduction performance. Most impor-
tantly, these simulation results show the applicability of the
proposed techniques to more realistic acoustic scenarios, with
realistic RIR perturbations arising from SSI methods.

VII. CONCLUSION

In this paper we have proposed two techniques for joint
dereverberation and noise reduction based on acoustic multi-
channel equalization. The RPM-DNR technique can be seen
as an extension of the RPMINT technique by explicitly tak-
ing the noise statistics into account. The MWF-DNR technique
takes also the reverberant speech statistics into account and uses
the dereverberated output signal of the RPMINT technique as
the reference signal for the MWF. In addition, we proposed an
automatic non-intrusive procedure based on the L-hypersurface
for selecting the regularization and weighting parameters in
the RPM-DNR technique, whereas two decoupled procedures
based on the L-curve were used for the automatic selection
of the parameters in the MWF-DNR technique. Simulation
results demonstrate that the RPM-DNR technique maintains
the high dereverberation performance of acoustic multi-channel
equalization techniques while improving the noise reduction
performance. Furthermore, it is shown that the MWF-DNR
technique yields a significantly better noise reduction perfor-
mance than the RPM-DNR technique at the expense of a
worse dereverberation performance, depending on the amount
of estimation errors in the speech correlation matrix.
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