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Abstract—This paper presents two single-channel speech dere-
verberation methods to enhance the quality of speech signals that
have been recorded in an enclosed space. For both methods, the
room acoustics are modeled using a non-negative approximation
of the convolutive transfer function (N-CTF), and to additionally
exploit the spectral properties of the speech signal, such as the
low-rank nature of the speech spectrogram, the speech spectro-
gram is modeled using non-negative matrix factorization (NMF).
Two methods are described to combine the N-CTF and NMF
models. In the first method, referred to as the integrated method,
a cost function is constructed by directly integrating the speech
NMF model into the N-CTF model, while in the second method,
referred to as the weighted method, the N-CTF and NMF based
cost functions are weighted and summed. Efficient update rules
are derived to solve both optimization problems. In addition, an
extension of the integrated method is presented, which exploits the
temporal dependencies of the speech signal. Several experiments
are performed on reverberant speech signals with and without
background noise, where the integrated method yields a consid-
erably higher speech quality than the baseline N-CTF method
and a state-of-the-art spectral enhancement method. Moreover,
the experimental results indicate that the weighted method can
even lead to a better performance in terms of instrumental quality
measures, but that the optimal weighting parameter depends on
the room acoustics and the utilized NMF model. Modeling the
temporal dependencies in the integrated method was found to be
useful only for highly reverberant conditions.
Index Terms—Non-negative convolutive transfer function,

non-negative matrix factorization, spectral modeling, speech
dereverberation.

I. INTRODUCTION

R ECORDING a sound source in an enclosed space with a
microphone placed at a distance from the sound source

typically results in a signal that is reverberant, i.e., affected by
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the acoustic reflections against walls and objects within the en-
closure. Reverberation may highly degrade the quality and in-
telligibility of speech [1], [2], and hence, in many speech com-
munication applications, such as hearing aids, hands-free tele-
phony, and automatic speech recognition, it is important to re-
cover the (non-reverberant) clean speech signal [1].
Several methods have been developed for speech derever-

beration, i.e., for estimating the clean speech signal from the
reverberant microphone signals. These methods can be broadly
classified into spectral enhancement methods, probabilistic
model-based methods, and acoustic multichannel equalization
methods. Spectral enhancement methods [3]–[8] are usually de-
signed to only suppress the late reverberation and are typically
based on a room acoustic model parameterized by the rever-
beration time and the direct-to-reverberation ratio (DRR).
These methods first estimate the power spectral density (PSD)
of the late reverberation, and then use spectral enhancement,
e.g., Wiener filtering, to estimate the clean speech spectrogram.
Probabilistic model-based methods [9]–[11] typically use an
autoregressive process to model the reverberation, where the
clean speech spectral coefficients are modeled using a Gaussian
or a Laplacian distribution. Speech dereverberation is then per-
formed blindly by estimating the unknown model parameters,
including the reverberation model parameters and the clean
speech spectral coefficients. Finally, in acoustic multichannel
equalization methods, the room impulse responses (RIR) be-
tween the source and the microphones are blindly estimated
and used to design an equalization system [12]–[14], where
in theory perfect dereverberation can be achieved. However,
multichannel equalization methods are only able to provide
a good dereverberation performance if accurate estimates of
the RIRs are available [15]. Although significant progress has
recently been made, designing effective and robust speech
dereverberation methods still remains a challenging task.
In this paper, we focus on single-channel dereverberation in

the magnitude spectrogram domain. We assume that the mag-
nitudes (or powers) of the short-time Fourier transform (STFT)
coefficients of the reverberant signal at each frequency bin are
obtained by convolving the STFT magnitudes (or powers) of
the clean speech signal and the STFT magnitudes (or powers)
of the RIR at that frequency bin [16], which is referred to
as the non-negative convolutive transfer function (N-CTF)
model hereafter. Although the N-CTF model only holds ap-
proximately, it can be advantageous as it does not require to
model the RIR phase, which is difficult to be robustly modeled
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[16]. Recently, speech dereverberation methods based on this
model have been proposed [16]–[20], which simultaneously
estimate the power spectrograms of the clean speech signal
and the RIR, where a sparsity constraint is usually imposed on
each frequency bin of the speech spectrogram. Hence, since
individual frequency bins are processed independently, these
methods completely ignore the spectral structure of the speech
signal. The main contribution of this paper is to propose blind
single-channel speech dereverberation methods that jointly
model the room acoustics using the N-CTF model and the
speech spectrogram using non-negative matrix factorization
(NMF).
NMF is a method to obtain a low-rank approximation of a

non-negative matrix [21]. In speech processing, NMF is usu-
ally applied on the speech magnitude (or power) spectrogram,
where the spectrogram is approximated by the product of two
non-negative matrices, i.e., a basis matrix and an activation ma-
trix. The basis matrix represents the repeating spectral patterns,
while the activation matrix represents the presence of these pat-
terns over time. As a result, it has been shown that NMF can
be used to efficiently exploit the low-rank nature of the speech
spectrogram and its dependency across the frequencies, and has
been successfully applied for different problems in speech pro-
cessing, e.g., [22]–[27].
In this paper, we present two methods to combine the

N-CTF-based acoustic model and the NMF-based spectral
model, resulting in two different cost functions. In the first
method, referred to as the integrated method, the speech NMF
model is integrated into the N-CTF model resulting in a com-
bined cost function, while in the second method, referred to as
the weighted method, the NMF- and N-CTF-based cost func-
tions are weighted and summed. By minimizing the obtained
cost functions, we derive new update rules to simultaneously
estimate the spectrograms of the clean speech signal and
the RIR. To additionally exploit the temporal dependencies
of the speech signal (and hence spectro-temporal modeling
of the speech signal) we use a frame-stacking method [26].
The estimated speech spectrogram is then used to compute a
real-valued spectral gain in order to estimate the clean speech
signal from the reverberant signal. It should be mentioned that
while the proposed weighted method in this paper is novel,
some preliminary results for the integrated method and mod-
eling temporal dependencies have been discussed in [28]. In
this paper, both dereverberation methods are compared with
each other for several reverberant conditions, where we also
investigate the dereverberation performance in the presence
of background noise. For both dereverberation methods, the
quality of the dereverberated signals is evaluated using three
instrumental measures. Experimental results show that by ad-
ditionally modeling the speech spectrogram using NMF in the
N-CTF-based dereverberation, the instrumental speech quality
measures substantially improve compared to the baseline
N-CTF-based method, and that the proposed speech derever-
beration methods outperform a state-of-the-art dereverberation
method based on spectral enhancement [6]. Results indicate
that the weighted method can lead to higher performance mea-
sures than the integrated method, but that the optimal weighting
parameter between the NMF- and N-CTF-based cost functions

depends on the room acoustics and the utilized NMF model.
Finally, modeling the speech temporal dependencies using a
frame-stacking method was only found to be useful for highly
reverberant conditions when the low-rank NMF basis matrix
was learned offline from clean speech training data.
The paper is organized as follows. The N-CTF model and

its underlying assumptions are discussed in Section II. In
Section III a single-channel dereverberation method using the
N-CTF model minimizing the generalized Kullback–Leibler di-
vergence is reviewed. The dereverberation methods, combining
the N-CTF and NMF models, are presented in Section IV and
their performance is experimentally evaluated in Section V.

II. NON-NEGATIVE CONVOLUTIVE TRANSFER FUNCTION
We consider an acoustic scenario, where a single speech

source is recorded using one microphone in a reverberant enclo-
sure without background noise1. Let and denote the
discrete-time clean speech signal and the -tap RIR between
the speech source and the microphone, where denotes the
time index. The reverberant speech signal is obtained by
convolving and , i.e.,

(1)

In the STFT domain, (1) can be equivalently represented as [29]:

(2)

where , , and denote the complex-valued STFT coeffi-
cients of the microphone signal, the clean speech signal, and
the RIR, and denote the frequency index, denotes the
total number of frequency bins, denotes the frame index,

, and denotes the RIR length in the STFT domain
[29]. An approximation of (2), referred to as the convolutive
transfer function (CTF), has been proposed in [30], where only
band-to-band filters, i.e., , are used:

(3)

where has been replaced with
for simplicity. Based on (3), it has been proposed in

[16] to approximate the power spectrogram of the reverberant
signal as (see Appendix A for details):

(4)

In this paper, we use a generalization of (4), i.e.

(5)

where , with (magnitude spectro-
gram) or (power spectrogram), and and are defined

1Please note that in Section V-B we will investigate the influence of back-
ground noise on the dereverberation performance.
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Fig. 1. N-CTF model approximation: The reverberant and clean speech mag-
nitude spectrograms and are obtained using an STFT with a frame length
equal to 64 ms and 50% overlapping frames. is computed from a known RIR
according to [29], where the off-diagonal elements have been set to zero. The
N-CTF model in (6) is used to approximate as .

similarly as . In (5), the spectrogram of the reverberant speech
signal is modeled as the convolution of the (non-nega-
tive) spectrogram of the clean speech signal with non-
negative coefficients representing the acoustical envi-
ronment, such that (5) is referred to as the non-negative convolu-
tive transfer function (N-CTF) based acoustic model. Although
(5) has been derived assuming , it is im-
portant to note that in the remainder of the paper we will use the
N-CTF model in (5) without necessarily relating the non-nega-
tive coefficients to the time-domain RIR . In matrix
notation (5) can be written as:

(6)

where is a -dimensional matrix,
is the resulting approximation for , the

-dimensional matrix and the -dimensional matrix
are defined similarly, and denotes a row-wise convolution

of two matrices.
Fig. 1 shows an example to visualize the quality of

the approximation for the N-CTF model when using
to approximate the reverberant magnitude

spectrogram in (5), where a measured RIR ( ms,
direct-to-reverberation ratio (DRR) around 0 dB) is used. The
spectrogram is computed by applying an STFT to with
a frame length equal to 64 ms and 50% overlapping frames
(with a sampling frequency equal to 16 kHz). Similarly, the
spectrogram is computed by applying an STFT to the clean
speech signal . For the RIR, the representation from [29]
resulting in with is first obtained, then the
off-diagonal elements ( ) are set to zero and is com-
puted as the magnitude of the resulting complex spectrogram.
It has to be noted that computing by setting the off-diagonal
elements of to zero does not necessarily lead to
the most accurate approximation of in (6). Nevertheless,

Fig. 1 shows that the N-CTF model, using the obtained ,
results in a quite good, albeit smooth, approximation of the
reverberant spectrogram. In the following sections we will
use the N-CTF model in (5) and blindly estimate both
and to obtain the best approximation of the reverberant
spectrogram .

III. REVIEW OF DEREVERBERATION BASED
ON THE N-CTF MODEL

The spectrogram of the clean speech signal can be esti-
mated by minimizing a cost function measuring the approxima-
tion error between the reverberant speech spectrogram
and its approximation in (5). As a cost function we will
use the generalized Kullback-Leibler (KL) divergence [21] be-
tween and , which is a commonly used similarity measure to
compare spectrograms, i.e.

(7)

Where

(8)

The generalized KL divergence has been successfully applied
for NMF-based speech enhancement and source separation [24],
[26], [31], and has been used in [20] for dereverberation. In
general, clean speech spectrograms can be assumed to be sparse,
such that similarly to [16] it may be beneficial to add a sparsity-
promoting term to (7), obtaining the regularized cost function:

(9)

where denotes the sparsity weighting parameter. Note that the
cost function does not include any criterion on the structure
of the speech spectrogram (except its sparsity), e.g., individual
frequency bins are treated independently.
Under the non-negativity constraints and

, and can be estimated by minimizing
the cost function in (9). By applying the iterative learning
method using auxiliary functions, which is briefly reviewed
in Appendix B, the following iterative update rules can be
obtained for and . Here, denotes the iteration
index, and and denote the estimates of
and at the -th iteration, respectively:

(10)

(11)
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where is computed using the
last available estimates of and . To implement
these update rules (and the ones in the next sections), a small
positive number is typically added to the denominator to avoid
division by zero. After convergence of the iterative learning
method, the clean speech signal is estimated using the es-
timated spectrogram and inverse STFT, where the rever-
berant phase and the overlap-add procedure are used.

IV. DEREVERBERATION BASED ON ACOUSTIC
AND SPECTRAL MODELS

To exploit a-priori knowledge about the speech spectrogram,
e.g., the low-rank nature of the spectrogram and its struc-
ture across frequencies, we propose to add a spectral model
of the clean speech signal to the acoustic model in (5). For
this purpose, an NMF-based spectral model is introduced in
Section IV-A. In the subsequent sections, two methods are
presented to combine the N-CTF-based acoustic model in
(5) with the NMF-based spectral model. These two methods
exploit the NMF model in a different way, resulting in dif-
ferent cost functions and update rules. Section IV-B presents
the integrated method, where the NMF model is directly
integrated into the N-CTF model. In addition, an extension
of the integrated method is described in Section IV-B which
exploits temporal dependencies using a frame-stacking method.
Section IV-C presents the weighted method, where the N-CTF-
and NMF-based cost functions are weighted and summed.

A. NMF-based Spectral Model

Motivated by the successful modeling of speech spectrogram
using non-negative matrix factorization (NMF) in different ap-
plications, we propose to use an NMF-based spectral model of
the clean speech signal, i.e.,

(12)

where and are both non-negative, and denotes
the number of basis vectors in the -dimensional basis
matrix . In matrix notation, (12) can be written
as , where and denote the
speech spectrogram and the activation matrix, respectively.
is typically chosen to be smaller than the dimensions of , so
that (12) results in a low-rank approximation of .
Given a speech spectrogram , the basis matrix and the

activation matrix can be estimated by minimizing a cost
function measuring the distance between and . Common
choices for the cost function are based on the generalized Kull-
back-Leibler (KL) divergence, the Euclidean distance, or the
Itakura–Saito divergence. The obtained cost functions usually
correspond to different probabilistic frameworks explaining
how is generated given . For a given cost function,
different optimization methods exist to iteratively estimate

and , where typically gradient-descent update rules are
applied for a number of iterations until a local minimum of
the cost function has been reached. Multiplicative update rules

are popular methods for this purpose, which are obtained for a
particular choice of the step size in the gradient-descent update
rules [21].

B. Integrated Method to Combine N-CTF and NMF

As the first method, we propose to directly integrate the NMF
approximation of in (12) into (5). Consequently, the fol-
lowing cost function is obtained [28]:

(13)
where the sparsity constraint is now imposed on the activations
since does not directly appear in (13). This helps to obtain

sparse estimates for , considering the relation between and
in (12). The cost function in (9) is a special case of the cost func-
tion in (13) when the basis matrix is a -dimensional
identity matrix. Moreover, the cost function utilized in [20] is
obtained as another special case, when is a fixed matrix.
To minimize (13), the iterative learning method using aux-

iliary functions from Appendix B can be used, leading to the
following multiplicative update rules for , , and :

(14)

(15)

(16)

where and
are computed using the last available

estimates of the parameters. These update rules can be
efficiently implemented using the fast Fourier transform (FFT)
[16]. To remove the scale ambiguity2, after each iteration
each column of is normalized to sum to one, and the
columns of are element-wise divided by the first column of

(resulting in an all-ones vector in the first column of ).
Moreover as suggested in [20], is clamped to satisfy

for all .
Let , , and denote the obtained estimates after con-

vergence of the iterative method. One possible estimate for the
clean speech spectrogram is given by

(17)

2Note that if , , and are a solution to (13), the same value for can
be obtained using , , and for all non-negative numbers .
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Alternatively, the clean speech spectrogram can be estimated
using a time-varying gain function as ,
where the gain function is given by

(18)

which was found to be particularly advantageous when the basis
matrix was learned offline from speaker-independent clean
speech training data. Since (17) directly uses the basis matrix to
estimate the speech spectrogram, artifacts may be introduced,
especially for unseen speakers. On the other hand, multiplying
the reverberant spectrogram with the gain function in (18) only
uses the basis matrix in an indirect way with appearing
both in the nominator and denominator, leading to less artifacts.
Algorithm 1 summarizes the integrated method.

Algorithm 1 Integrated method.to combine N-CTF and NMF

Input: reverberant speech signal , output:
dereverberated speech signal
1) Set the model parameters: (number of basis vectors),

(number of iterations), (sparsity parameter), (RIR
length in the STFT domain), and (power).

2) Initialize , and with non-negative numbers
(see Section V-A for more details).

3) Compute the complex spectrogram and the
non-negative spectrogram by
applying an STFT to .

4) FOR to
a) Compute using (14)
b) Compute using (15)
c) Compute using (16)
ENDFOR

5) Compute the time-varying gain function using
(18) and , , and .

6) Compute the dereverberated speech signal by
applying an inverse STFT and the overlap-add procedure
to .

The presented integrated method does not exploit temporal
dependencies of the clean speech signal, i.e., consecutive
frames are processed independently. Temporal dependencies
are however an important aspect of speech signals and have
been shown to be very beneficial for speech enhancement and
source separation [24], [27], [32]. In order to investigate the
benefit of modeling temporal dependencies for dereverber-
ation, we propose an extension of the presented integrated
method in Appendix C using the frame-stacking method [26].
In this method, a sliding window of size frames is used
to divide the speech magnitude spectrogram into a number of
overlapping windows. All the consecutive frames within each
window are then stacked to obtain a high-dimensional vector,
using which a high-dimensional matrix is constructed. Finally,
NMF is applied to the obtained high-dimensional matrix to
learn a high-dimensional basis matrix, which contains both
spectral and temporal information of the speech signal. This
frame-stacking method is one of the important components
in exemplar-based speech recognition [26]. In Section V,
the integrated methods with and without modeling temporal
dependencies are evaluated and compared.

C. Weighted Method to Combine N-CTF and NMF

Since both the N-CTF acoustic model in (5) and the NMF
spectral model in (12) only hold approximately, it may be ben-
eficial to be able to give different weights to the corresponding
cost functions, which is not possible in the integrated method.
This allows to give a larger weight to the more accurate approxi-
mation. For the N-CTF acoustic model in (5) we can use the cost
function in (9), whereas for the NMF spectral model in (12) we
can use a similar cost function based on generalized KL diver-
gence, i.e.

(19)

where we have additionally used a sparsity-promoting term to
encourage sparse estimates for the activations . The total
cost function is now defined as the weighted sum of in (9)
and in (19):

(20)

where denotes the weighting parameter. Note that
the same sparsity weighting parameter is used in and
as both sparsity constraints used in and are related to the
sparsity of the speech spectrogram (cf. (12)).
In the following, we use the iterative learning method using

auxiliary functions from Appendix B to derive update rules to
minimize w.r.t. , , , and . Here, we only derive the
update rules for since the update rules for the other parameters
can be derived similarly. Let denote all terms depending
on in (20), where , , and are held fixed at , , and ,
respectively:

(21)

where . Minimizing w.r.t.
can be solved using Theorem 1.
Theorem 1: The function in non-increasing under the

following update rule:

(22)

where is the Lambert W function [33], which is defined as:

(23)



MOHAMMADIHA AND DOCLO: SPEECH DEREVERBERATION USING N-CTF FUNCTION AND SPECTRO-TEMPORAL MODELING 281

and

(24)

(25)

where .
Proof: Since is a convex function, using

Lemma 2 from Appendix B with and
, we can write:

(26)

Let us define the function as:

(27)

Using (26) it can be shown that . Since
, is an auxiliary function for .

Differentiating w.r.t. and rearranging the terms
we obtain:

(28)

where and are defined in (24) and (25), respec-
tively. Defining and setting (28)
equal to zero we obtain:

(29)

The solution to (29) is given by

(30)

Substituting with leads to (22).
The theorem is now proved using Lemma 1 from Appendix B.

In a similar way, the multiplicative update rules for , , and
can be derived as:

(31)

(32)

(33)

where and , defined after (21) and (25), are com-
puted using the last available estimates of the parameters. Al-
gorithm 2 summarizes the proposed weighted method.

Algorithm 2Weighted method to combine N-CTF and NMF

Input: reverberant speech signal , output:
dereverberated speech signal
1) Set the model parameters: (number of basis vectors),

(number of iterations), (sparsity parameter), (RIR
length in the STFT domain), (power), and (weighting
parameter).

2) Initialize , , and with non-negative numbers
(see Section V-A for more details).

3) Compute the complex spectrogram and the
non-negative spectrogram by
applying an STFT to .

4) FOR to
a) Compute using (31)
b) Compute using (22)
c) Compute using (32)
d) Compute using (33)
ENDFOR

5) Compute the time-varying gain function as

(34)

6) Compute the dereverberated speech signal by
applying an inverse STFT and the overlap-add procedure
to .

V. EXPERIMENTAL RESULTS

This section presents the evaluation setup and the results
of several experiments to evaluate the performance of the
proposed single-channel speech dereverberation methods.
Section V-A describes the acoustic setup, the used performance
measures and the implementation details of the proposed
methods, e.g., parameter values and initialization. Experimental
results for the integrated method with and without temporal
modeling are presented in Section V-B, where the performance
of the integrated method is also compared to the performance
of a state-of-the-art spectral enhancement method and the
dereverberation performance in the presence of background
noise is investigated. Section IV-C compares the performance
of the integrated and weighted methods. Experimental results
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to analyze the effect of the parameters on the performance of
the developed methods are described in Section V-D.

A. Evaluation Setup and Implementation Details
To evaluate the performance of the dereverberation methods

for a wide variety of acoustic conditions, the reverberant mi-
crophone signals were generated by convolving clean speech
signals with three different measured RIRs with reverberation
times ms, ms, and ms, and
direct-to-reverberation ratios (DRR) around 5, 0, and 12 dB, re-
spectively. As clean speech signals, 16 different sentences (ut-
tered by 16 speakers) from the TIMIT database [34] were used
to make the results independent of the speechmaterial. The sam-
pling frequency was 16 kHz and the STFT frame length and
overlap length were equal to 64 ms and 32 ms, respectively,
where a square-root Hann window was used both for the STFT
analysis and synthesis.
The dereverberation performance is evaluated using the

following instrumental measures: the perceptual evaluation of
speech quality (PESQ) [35] and the cepstral distance (CD) [36],
both using the clean speech signal as the reference signal, and
the reverberation decay tail (RDT) [37]. The RDT is defined
as the ratio of the amplitude and decay rate of the exponential
curves, which are fitted to the bark spectral difference between
the reverberant and the clean signal, normalized to the ampli-
tude of the direct component. A higher value for PESQ and a
lower value for CD and RDT indicate a better performance.
These measures exhibit a high correlation with subjective lis-
tening tests evaluating the quality of the dereverberated speech
signals [38]. The improvements obtained in PESQ, denoted
by , and the reductions obtained in CD and RDT,
denoted by and , respectively, for the considered
dereverberation methods are shown in the subsequent sections
for better readability. To compute these differential scores, the
score of the dereverberated signal is compared to the score of
the reverberant microphone signal.
The proposed integrated and weighted methods are applied

on the magnitude spectrogram of the reverberant microphone
signals, i.e., , since using the magnitude spectrogram re-
sulted in a better dereverberation performance compared to the
power spectrogram (cf. Section V-D). For both integrated and
weighted methods, two different ways were used to learn the
basis matrix :
• The basis matrix , with columns, was esti-
mated from the reverberant speech signal. These variants
are referred to as N-CTF+NMF and N-CTF+NMF (w), re-
spectively, where the suffix ‘(w)’ is used throughout the
experiments to indicate the weighted method.

• The basis matrix was learned offline from clean speech
training data, consisting of 250 sentences uttered by 27
speakers, disjoint from the test data, and was held fixed in
the experiments. We consider two types of speaker-inde-
pendent NMF models: 1) a low-rank NMF model with

(N-CTF+NMF+LR), and 2) an overcomplete NMF
model with (N-CTF+NMF+OC). The basis ma-
trix of this overcomplete model was constructed by sam-
pling from the magnitude spectrogram of the training data
using a uniform random walk method [39].

The RIR length in the STFT domain was set to 10, corre-
sponding to 320ms, independent of the reverberation time. Each
row of was initialized identically using a linearly-decaying
envelope, while and were first initialized by random non-
negative numbers and then updated by iterating the standard
NMF update rules on the spectrogram of the reverberant signal
for 10 times. For the weighted method, was initialized with
. The parameter in the frame-stackingmethod tomodel the

temporal dependencies was set to 6. For both methods, the spar-
sity parameter was set to and to encourage
sparser solutions, after each iteration the estimates of and
were raised to a power as proposed in [40]. The maximum
number of iterations was experimentally set to 20 for the inte-
grated method and 70 for the weighted method.
The proposed methods are compared to the baseline N-CTF

method (cf. Section III), which does not use any spectral model,
and a state-of-the-art speech spectral enhancement method,
where the late reverberant spectral variance was estimated
using [6] based on oracle and DRR values computed
from the RIR, and the log-spectral amplitude estimator [41]
was used to estimate the clean speech STFT coefficients; this
method is referred to as the SE method in the following. It
should be noted that the N-CTF-based dereverberation methods
including the proposed methods are batch methods, i.e., the
whole reverberant microphone signal corresponding to a short
utterance is used to estimate the clean speech signal, while
the SE method using [6] is an on-line method. Developing
an on-line N-CTF-based dereverberation method, similar to
on-line NMF-based speech enhancement such as [27] remains
a question for future research.

B. Integrated Method
Fig. 2 depicts exemplary spectrograms (for the RIR with

ms and dB) of the noiseless rever-
berant and clean speech signals together with the spectrograms
of the dereverberated speech signals using the proposed
N-CTF+NMF+OC method and the SE method. As can be
observed, reverberation effects have been substantially reduced
using the proposed method.
To quantitatively compare the dereverberation performance

in the absence of background noise, , , and
values obtained using several variants of the integrated

method, averaged over the 16 speech utterances, are shown in
Fig. 3, Fig. 4, and Fig. 5 for the three considered RIRs. Also,
Fig. 6 shows the average results over all 48 test utterances (3
RIRs and 16 speech utterances per RIR). In all figures, the
suffix ‘(t)’ is used to indicate that the methods use the temporal
dependencies. Several conclusions can be drawn by studying
these results:
1) Using NMF-based Spectral Model in N-CTF: By addi-

tionally using an NMF-based spectral model, i.e., using the
N-CTF+NMF method, the performance of the N-CTF-based
dereverberation method substantially improves for all RIRs. A
consistent improvement is observed for all three measures for
all considered RIRs using the N-CTF+NMF method compared
to the N-CTF method.
2) N-CTF-based Methods Versus Spectral Enhancement

Method: The dereverberation method using only the N-CTF
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Fig. 2. Spectrograms of (a) reverberant microphone signal, (b) dereverber-
ated signal using N-CTF+NMF+OC, (c) dereverberated signal using spectral
enhancement (SE), (d) clean speech signal ( ms and
dB). (a) Reverberant speech signal (b) Dereverberated speech signal using

N-CTF+NMF+OC (c) Dereverberated speech signal using SE (d) Clean speech
signal.

model leads to a higher but a lower compared
to the spectral enhancement (SE) method, which implies that
the N-CTF method introduces less distortion but also leaves

Fig. 3. Instrumental measures for the proposed methods for a RIR with
ms and dB.

Fig. 4. Instrumental measures for the proposed methods for a RIR with
ms and dB.

Fig. 5. Instrumental measures for the proposed methods for a RIR with
ms and dB.

more late reverberation in the dereverberated speech signals.
Considering PESQ, which evaluates the overall speech quality,
the N-CTF method results in slightly better scores compared
to the SE method. The proposed N-CTF+NMF method outper-
forms the SE method for all considered RIRs and instrumental
measures. For example, the proposed N-CTF+NMF method
outperforms the SE method by more than 0.25 PESQ-MOS
points for all considered RIRs.
3) Offline- versus Online-learned Basis Matrices: The

results consistently show that the performance of the
N-CTF+NMF+LR method with offline-learned basis
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Fig. 6. Instrumental measures for the proposed methods, averaged over the
three considered RIRs.

vectors is worse than the performance of the online counterpart
N-CTF+NMF. However, by using a larger basis matrix with

offline-learned basis vectors (N-CTF+NMF+OC)
the performance improves and is comparable to the perfor-
mance of the N-CTF+NMF method. Both these methods result
in comparable scores; the N-CTF+NMF+OC method
results in a lower but a higher compared to the
N-CTF+NMF method. This can be explained by the fact that in
the N-CTF+NMF+OC method the NMF basis matrix is learned
offline using speaker-independent training data and is held
fixed. This may lead to some artifacts in the dereverberated
speech signal due to the mismatch between training and testing
data. At the same time, since the basis matrix is held fixed,
the model is able to better separate the reverberant component
from the clean component, which leads to a larger reduction of
the reverberant tail.
4) Using Temporal Dependencies: The experiments

show that modeling the temporal dependencies using the
frame-stacking method only appears to be useful for highly
reverberant conditions when the N-CTF+NMF+LR method is
used. As can be seen in Fig. 5, using the temporal dependencies
in the N-CTF+NMF+LR method (i.e., the N-CTF+NMF+LR
(t) method) leads to an additional improvement in the instru-
mental measures. By using the temporal dependencies the
reverberant tail is significantly reduced but the cepstral distance
is not changed noticeably. However, for the N-CTF+NMF+OC
method, no improvement is observed by additionally using
the temporal dependencies (i.e., using the N-CTF+NMF+OC
(t) method). It should be mentioned that the N-CTF+NMF (t)
method (not shown in the figures) resulted in a similar perfor-
mance as the N-CTF+NMF method, and hence it is omitted in
the figures for readability.
The experimental results shown in Fig. 3–6 are obtained

without considering any background noise. To investigate the
robustness of the proposed dereverberation methods to the pres-
ence of background noise, experiments were performed where
speech-shaped noise was added to the reverberant microphone
signals at two reverberant-signal-to-noise ratios (10 dB and
20 dB). Fig. 7 shows the average and values
over all 48 test utterances. Due to space limitation, results for
individual RIRs are not shown in the paper. It should be noted
that due to the presence of background noise the input

Fig. 7. Instrumental measures for the proposed methods for two background
noise levels, averaged over the three considered RIRs (a) Reverberant signal to
noise ratio dB (b) Reverberant signal to noise ratio dB.

and scores are lower in this figure compared to Fig. 6.
The results show that the dereverberation performance of all
the methods degrade when a background noise is added to
the reverberant microphone signals. As can be seen in Fig. 7,
the best performance is obtained using the N-CTF+NMF and
N-CTF+NMF+OC methods. These experiments show that the
proposed methods are quite robust to the presence of back-
ground noise, and that even in the noisy scenarios, the proposed
methods result in higher scores for the dereverberated speech
signals compared to the baseline N-CTF and SE methods. It
is important to note that we have not explicitly modeled the
background noise in the proposed methods. This can be an
interesting extension of the current methods, where Eq. (5)
is modified such that the background noise is also explicitly
modeled, e.g., using a separate NMF model.

C. Weighted Method

In this section the performance of the proposed integrated
and weighted methods is compared, where no background
noise is present. Fig. 8, Fig. 9, and Fig. 10 show the ,

, and obtained using the integrated and weighted
methods as a function of the weighting parameter for different
RIRs. These figures compare the performance of three variants
of the integrated method (N-CTF+NMF, N-CTF+NMF+LR,
and N-CTF+NMF+OC) to the performance of the same vari-
ants of the weighted method, which are identified by the suffix
‘(w)’.
Results show that an optimal value for the weighting param-

eter (denoted by ) can be found, using which the obtained
for the weighted methods is similar or slightly better

than the obtained for the integratedmethods. However,
the optimal weighting parameter depends on the considered
RIR and the variant of the weighted method, i.e. the utilized
NMF model. The results also show that the measure
is substantially higher for the N-CTF+NMF+OC (w) method
using the optimal compared to the N-CTF+NMF+OC
method, while the two methods result in similar values.
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Fig. 8. Instrumental measures for the proposed integrated and weighted
methods for a RIR with ms and dB.

Fig. 9. Instrumental measures for the proposed integrated and weighted
methods for a RIR with ms and dB.

Moreover, using the optimal , the obtained and
values using the N-CTF+NMF (w) and N-CTF+NMF+LR (w)
methods are similar to the and values obtained
using the N-CTF+NMF and N-CTF+NMF+LR methods.
Although it is possible to achieve a better dereverberation per-

formance using the weightedmethod, the experiments show that
the optimal weighting parameter highly depends on both the
room acoustics as well as the NMF spectral model, which is a
disadvantage compared to the integrated method. It can be seen
that for the N-CTF+NMF+OC (w) method, is around

, while for the N-CTF+NMF (w) and N-CTF+NMF+LR (w)
methods, is around . By increasing the value of , a
lower reverberant tail, i.e., higher , and a larger spectral
distance, i.e., lower , are typically achieved. This is more

Fig. 10. Instrumental measures for the proposed integrated and weighted
methods for a RIR with ms and dB.

notable when an overcomplete NMF basis matrix is learned
(N-CTF+NMF+OC (w)). This may be explained by noting that,
in this case, the columns of are sampled from the spectro-
grams of the speaker-independent training clean speech signals.
Therefore, each spectral vector of the dereverberated speech
signal is approximated using very few, strictly speaking only
one, columns of . This leads to a large value for the NMF
cost function in (20), and accordingly a relatively small
leads to the best dereverberation performance. For larger values
of (especially when ) an estimate of the clean speech
spectrogram is obtained that is a combination of the clean spec-
tral vectors, and hence, a higher value is obtained. At
the same time, since a lower weight is given to the acoustic cost
function in (20), the obtained estimate of the clean speech
spectrogram is highly distorted because it is largely indepen-
dent of the observed signal.

D. Influence of the Parameters
In this section the influence of different parameters on the

speech dereverberation performance in the absence of back-
ground noise is investigated. First, experiments show that the
parameter , which determines whether magnitude or power
spectrograms are used, has a significant effect on the perfor-
mance. Additionally, the number of iterations for the update
rules and the STFT frame length were found to be quite in-
fluential. The effect of these parameters on the performance of
the integrated method is separately studied, where only one pa-
rameter is varied and the other parameters are set to the values
mentioned in Section V-A, i.e., (magnitude spectro-
gram), frame length ms, and number of iterations .
The experiments in this section are performed for the RIR with

ms and dB, but similar observations were
made for the other RIRs.
1) Magnitude versus power spectrogram. Fig. 11 shows

and for power and magnitude spectro-
grams using the integrated methods. As can be clearly
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Fig. 11. Dereverberation performance using magnitude spectrogram ( )
and power spectrogram ( ).

Fig. 12. Dereverberation performance as a function of the number of iterations.

seen, a better performance is obtained using the magni-
tude spectrogram for all variants, even though the N-CTF
model in (5) can theoretically be better justified using the
power spectrogram. However, a similar observation has
already been also made in NMF-based source separation
and speech enhancement [31].

2) Number of iterations. Fig. 12 shows and
as a function of the number of iterations, where the
number of iterations . Results show that
a small number of iterations (in the range of 5-20) is
enough to obtain the best dereverberation performance.

3) Frame length.Fig. 13 shows and as a func-
tion of the STFT frame length, where the frame length

ms and 50%-overlapping square-root
Hann windows are used for all cases. As can be seen, the
performance degrades significantly when shorter frames
are used. The best performance is obtained when the frame
length is around 64 ms.

Fig. 13. Dereverberation performance as a function of the STFT frame length
using 50% overlapping square-root Hann windows.

VI. CONCLUSION

In this paper, we have considered single-channel speech
dereverberation methods combining an N-CTF-based acoustic
model and an NMF-based spectral model in order to jointly
exploit the room acoustics and speech spectral structure. Two
methods are presented to combine the N-CTF and NMFmodels,
namely the integrated method, where the NMFmodel is directly
integrated into the N-CTF model, and the weighted method,
where the N-CTF and NMF cost functions are weighted and
summed. For both methods, generalized Kullback-Leibler di-
vergence is used to define the cost functions and iterative update
rules are derived to estimate the clean speech spectrogram.
Experimental results, with and without background noise,

for three different RIRs showed that the performance of the
N-CTF-based dereverberation method was significantly im-
proved by additionally exploiting the NMF-based spectral
model, where considerably better-quality speech signals were
obtained using the magnitude spectrograms compared to the
power spectrograms. It was shown that the integrated method
outperforms a state-of-the-art spectral enhancement method
by 0.25 PESQ-MOS points. Results also showed that using
the weighted method it is possible to achieve even a better
performance, but that the optimal weighting parameter highly
depends on the NMFmodel as well as the room acoustics. Using
temporal dependencies based on a frame-stacking method was
found to be useful only for highly reverberant conditions when
a low-rank NMF basis matrix was learned offline from clean
speech training data.

APPENDIX A
ASSUMPTIONS UNDERLYING THE N-CTF MODEL

Assuming that the phases of at different frames are
mutually independent uniformly-distributed random variables,
(3) leads to [16]:

(35)
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where denotes the mathematical expectation operator, and
denotes absolute value operator. Although this assumption

about the phasemay seem unrealistic, it is interesting to note that
a similar expression has also been used in other state-of-the-art
methods, such as [6], to relate the spectral variance of the re-
verberant speech signal to the spectral variance of the clean
speech signal. In [6], assuming an exponential-decay model for
the complex-valued RIR spectral coefficients , and as-
suming that at different frames are mutually indepen-
dent and zero-mean random variables with Gaussian distribu-
tions, it is shown that

(36)

where it is additionally assumed that the speech spectral coeffi-
cients are independent and identically distributed zero-
mean complex random variables with a certain distribution, and
that the speech and the RIR spectral coefficients and

are mutually independent.
Expression (35) is similar to (36) in that they both describe the

spectral variance of the reverberant speech signal as a convolu-
tion of two non-negative signals, which are related to the mag-
nitude-squared RIR and speech spectral coefficients
and . These expression differ in that instantaneous
magnitude-squared coefficients are used in (35) while expected
magnitude-squared coefficients are used in (36).

APPENDIX B
ITERATIVE LEARNING USING AUXILIARY FUNCTIONS

Iterative learning is a commonly used method to minimize a
cost function with non-negativity constraints. This section pro-
vides a brief review of an iterative learning method based on the
auxiliary function method [21] that is used in this paper.
Consider a cost function , where the unknown param-

eters and are constrained to be non-negative. Using the auxil-
iary function method, we can derive an iterative method to min-
imize in order to obtain an estimate for and . Let
denote the iteration index, and and denote the estimates of
and at the -th iteration, respectively. The main idea behind

the iterative learning method using an auxiliary function is the
following lemma from [21]:
Lemma 1: Let be an auxiliary function for the cost

function such that and
for a given and for all . Let be the new estimate ob-
tained by minimizing with respect to (w.r.t.) . is
non-increasing under this update, i.e., , where
the equality only holds when is a local minimum of .
Considering our problem to minimize , an update rule

for can be derived as follows: assuming that and are
given, can be computed by minimizing
w.r.t. . This is done in two steps: in the first step, an auxil-
iary function is obtained for . In the second step,
the auxiliary function is differentiated w.r.t. , and the
derivative is set to zero, leading to a new value for , referred to
as , which is a function of , , and all the other known pa-
rameters. The method is now continued to compute given

and . These iterations are executed until a local minimum
of the cost function is obtained. Note that this iterative
method can be trivially extended to minimize a function with
more than two unknown parameters. A useful inequality that is
often used to obtain an auxiliary function is stated in the fol-
lowing lemma from [21]:
Lemma 2: If is a convex function and are non-nega-

tive coefficients for which , Jensen’s inequality [42]
can be used to derive the following inequality:

(37)

APPENDIX C
MODELING TEMPORAL DEPENDENCIES IN THE INTEGRATED

METHOD USING FRAME STACKING

Let denote the th column of . We define
the -dimensional stacked vector as

, where denotes matrix trans-
pose. The stacked vector is defined similarly, and the
stacked vector is defined as .
Similarly to (13), a cost function based on the generalized KL
divergence can now be defined as:

(38)

where , and is a
-dimensional matrix. The update rules for and remain

identical to (15) and (16), where the update rule for can be
derived as:

(39)

where and
. By setting , (14) is ob-

tained as a special case of (39).
After convergence of the iterations, the clean speech spec-

trogram is estimated as , where the
time-varying gain function is obtained by averaging the
overlapping segments, i.e.

(40)

where is used to denote the obtained estimates after conver-
gence, and the -dimensional vector is defined as

. As can be seen, (40) reduces
to (18) when .
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