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Noise Power Spectral Density Estimation
Using MaxNSR Blocking Matrix

Lin Wang, Timo Gerkmann, Senior Member, IEEE, and Simon Doclo, Senior Member, IEEE

Abstract—In this paper, a multi-microphone noise reduction
system based on the generalized sidelobe canceller (GSC) struc-
ture is investigated. The system consists of a fixed beamformer
providing an enhanced speech reference, a blocking matrix pro-
viding a noise reference by suppressing the target speech, and a
single-channel spectral post-filter. The spectral post-filter requires
the power spectral density (PSD) of the residual noise in the
speech reference, which can in principle be estimated from the
PSD of the noise reference. However, due to speech leakage in the
noise reference, the noise PSD is overestimated, leading to target
speech distortion. To minimize the influence of the speech leakage,
a maximum noise-to-speech ratio (MaxNSR) blocking matrix is
proposed, which maximizes the ratio between the noise and the
speech leakage in the noise reference. The proposed blocking
matrix can be computed from the generalized eigenvalue decom-
position of the correlation matrix of the microphone signals and
the noise coherence matrix, which is assumed to be time-invariant.
Experimental results in both stationary and nonstationary diffuse
noise fields show that the proposed algorithm outperforms existing
blocking matrices in terms of target speech blocking ability, noise
estimation and noise reduction performance.
Index Terms—Blocking matrix, diffuse noise, microphone

array, noise power spectral density (PSD) estimation, speech
enhancement.

I. INTRODUCTION

H ANDS-FREE speech communication is desirable for
many applications, such as mobile phones and automatic

speech recognition systems, due to the provided convenience
and flexibility. However, when the signals are recorded by dis-
tant microphones, they may be severely corrupted by interfering
speakers or background noise. Single- or multi-microphone
noise reduction algorithms are then required to enhance the
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desired speech signal. In comparison to single-microphone
algorithms, which can only use temporal and spectral infor-
mation, multi-microphone algorithms can additionally exploit
spatial information and hence generally achieve a higher noise
reduction performance, especially when the speech and the
noise sources are spatially separated. This paper addresses a
multi-microphone speech enhancement problem with one target
speaker talking in a noisy background, which is a scenario
that is often encountered in practice. In recent decades a large
number of multi-microphone speech enhancement algorithms
have been proposed, e.g., fixed and adaptive beamforming
[1]–[19], multi-channel Wiener filtering [20]–[22], and blind
source separation [23]–[27].
Although spatial filtering techniques work quite well for co-

herent interferers (point sources), their performance may de-
crease dramatically in diffuse noise fields, because the corre-
lation of the noise components in the microphone signals is
small. Hence spectral post-filtering is typically employed to en-
hance the output of spatial filtering [28], [29]. Two well-known
post-filters have been proposed in [30], [31], which use the auto-
and cross-power spectral densities (PSDs) of the multi-micro-
phone signals to compute a Wiener post-filter. However, since
the obtained post-filter is essentially constructed from the esti-
mated PSDs of the speech and noise components in the micro-
phone signals, applying it to the output signal after spatial fil-
tering will lead to non-optimal results since the spectrum of the
speech and noise components has been modified by the spatial
filter. Thus, a better way is to estimate the noise PSD at the spa-
tial filtering output and use it to compute the spectral post-filter.
This paper investigates a speech enhancement system based

on the well-known generalized sidelobe canceller (GSC)
structure, which consists of a fixed beamformer providing an
enhanced speech reference, a blocking matrix providing a noise
reference by suppressing the target speech, and a single-channel
spectral post-filter. The spectral post-filter requires the PSD
of the residual noise in the speech reference, which can, in
principle, be estimated from the PSD of the noise reference.
The performance of the blocking matrix (more specifically its
target speech blocking ability) plays a key role in the speech
enhancement performance of the post-filter. Speech leakage at
the output of the blocking matrix will lead to overestimation
of the noise PSD, giving rise to target speech distortion. It can
be shown that the overestimation error is proportional to the
ratio between the speech leakage energy and the noise energy
at the output of the blocking matrix. Since, in general, it is
difficult to cancel the target speech completely with e.g., a
null space blocking matrix, a novel maximum noise-to-speech
ratio (MaxNSR) blocking matrix is proposed in this paper,
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which aims to suppress the target speech by maximizing the
noise-to-speech ratio at its output. Simulation results show
that the noise PSD estimate based on the proposed MaxNSR
blocking matrix is less affected by speech leakage than the tra-
ditional null space blocking matrix. It is further shown that the
output signal of the MaxNSR blocking matrix can essentially
be represented as a linear combination of the output signals
of the null space blocking matrix in the sense of maximum
noise-to-speech ratio. While several ways exist to combine the
output signals of the null space blocking matrix for noise PSD
estimation, the MaxNSR combination shows the best blocking
ability.
The paper is organized as follows. Section II reviews re-

lated work on beamforming, blocking matrices, and noise
PSD estimation. Section III defines the signal model used
in the paper. Section IV introduces the GSC-based speech
enhancement system along with the blocking matrix based
noise PSD estimation. The MaxNSR blocking matrix is pro-
posed in Section V. Extensive experimental results are given
in Section VI to compare the performance of different noise
PSD estimators (MaxNSR blocking matrix, null space blocking
matrix, and single-channel noise PSD estimator) in stationary
and non-stationary diffuse noise environments.

II. REVIEW OF RELATED WORK

A. Beamforming and Blocking Matrices
Beamforming aims to extract a desired signal impinging on

the array from a specific direction while treating all other sig-
nals as interfering sources. Beamformers can be designed ei-
ther as a (data-independent) fixed beamformer, such as a delay-
and-sum beamformer or a superdirective beamformer [8], [18],
or as a (data-dependent) adaptive beamformer, which combines
the spatial focusing of a fixed beamformer with adaptive noise
suppression and hence typically reduces noise more efficiently
than a fixed beamformer. Several criteria can be applied in the
design of an adaptive beamformer [4], [6], [9], [16], e.g., lin-
early constrained minimum variance (LCMV), minimum vari-
ance distortionless response (MVDR), minimum mean-squared
error (MMSE), andmaximum speech-to-noise ratio (MaxSNR).
For these adaptive beamformers, typically an estimate of the
noise correlation matrix is required. A widely used approach is
to calculate the noise correlation matrix in noise-only periods,
with the assistance of a voice activity detector (VAD) [21], [22].
Some other methods that do not rely on a VAD are based on as-
sumptions about the type of the noise field [11], [32], e.g., a
spherically or cylindrically isotropic noise field. Another alter-
native is proposed in [34], where the noise correlation matrix
is estimated based on the correlation between the noisy input
signal and a noise reference. The noise reference is obtained by
steering a null at the target speaker, whose propagation vector
or relative transfer function is assumed to be known.
In recent years some perceptually motivated beamformers

have been proposed, which allow a tradeoff between noise re-
duction and dereverberation [15], between the reduction of dif-
ferent noise types [19], or incorporating spatial cue preserva-
tion [22]. For instance, in [19], the noise correlation matrix,
which is assumed to be known, is decomposed into coherent

and incoherent parts. The decomposed noise correlation ma-
trices are then used to derive a beamformer that provides a better
control between spatially coherent and incoherent noise reduc-
tion. It can be shown that the traditional MVDR, LCMV, and
multi-channel Wiener filter are special cases of this tradeoff
beamformer.
An alternative (adaptive) implementation of the LCMV or

MVDR beamformer is the generalized sidelobe canceler (GSC),
consisting of a fixed beamformer, a blocking matrix, and an
adaptive noise canceler [2]. The fixed beamformer provides a
spatial focus on the speech source, creating a speech reference.
The blocking matrix steers nulls in the direction of the speech
source, creating one or more noise references. The adaptive
noise canceler reduces the residual noise in the speech refer-
ence that is correlated with the noise references. Depending
on the used blocking matrix, speech may however leak into
the noise references of the standard GSC, especially in rever-
berant environments. A typical way to construct the blocking
matrix is to use the projection matrix to the null space of the
acoustic transfer function of the target speaker [7], [12], [13],
[17]. Depending on the assumed acoustic model for the acoustic
transfer function, various types of blocking matrices are ob-
tained. For instance, the delay-and-subtract blocking matrix is
derived assuming a pure-delay model under free-field condi-
tions [2]. Since this model only considers the direct path be-
tween the target speaker and the microphones, the target speech
blocking ability of the delay-and-subtract blocking matrix is
quite limited in reverberant environments. As an improvement,
a blockingmatrix based on the relative transfer functions (RTFs)
of the target speaker between the microphones has been pro-
posed. Since this better captures reverberation, an improved
target speech blocking ability is obtained [7], [17]. In [7] a
least-squares approach is proposed to estimate the RTF by ex-
ploiting the nonstationary characteristics of the desired speech
signal, while in [17] a generalized eigenvector decomposition
approach is proposed to compute the RTF. In addition, the use
of blind source separation to construct the blocking matrix has
recently been proposed [35], [36]. Another way to limit speech
leakage is to use an adaptive blocking matrix, which adapts
when the target speaker is dominant [5], [10], [37], [38].

B. Noise PSD Estimation for Post-filter
The accuracy of the noise PSD estimation will directly de-

termine the performance of the post-filter. Different noise PSD
estimation methods have been proposed in the literature and use
either single-channel or multichannel information.
A commonly used single-channel method is to calculate the

noise PSD during speech pauses. This, however, relies on a
voice activity detector (VAD) and is not suitable for non-sta-
tionary noise. Another well-known method is the minimum sta-
tistics algorithm, which estimates the noise PSD by tracking the
spectral minima of the smoothed power spectrum of the noisy
speech signal [39]. The drawback of the minimum statistics al-
gorithm is that it can only track the noise PSD with a certain
delay. Recently, MMSE-based noise PSD estimators, which can
track the noise PSD with a smaller delay and thus are even able
to handle non-stationary noise to some extent, have been pro-
posed [40], [41].
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In general, it is easier to estimate the noise PSD when mul-
tichannel information is available. Estimating the noise PSD
based on the noise references provided by the blocking matrix in
a GSC-structure has been proposed in [35], [36], [42]–[44]. As-
suming that the noise references contain little speech leakage,
they can be used for computing the PSD of the target noise,
e.g., at the microphones or at the output of a spatial filter. It
has been shown in [36], [42], [43] that the PSD of the noise ref-
erence and the target noise can be related with a frequency-de-
pendent scaling factor, which can be calculated directly from
the coefficients of the spatial filter and the noise coherence ma-
trix. If the noise coherence matrix is assumed to be known and
time-invariant, the multichannel blocking matrix based noise
PSD estimation method can operate during speech-presence pe-
riods, which is advantageous especially in fast-changing non-
stationary noise fields.

III. SIGNAL MODEL AND MAXSNR BEAMFORMER

In this section we first define the used signal model and then
briefly introduce the well-known MaxSNR beamformer, which
will be used for the derivation of the proposed algorithm. All
derivations throughout the paper will be performed in the fre-
quency domain unless otherwise stated.

A. Signal Model
In this paper we aim to enhance a single target speaker

recorded by microphones in a noisy environment. In the
short-time Fourier transform (STFT) domain the noisy mi-
crophone signals, , can be
represented as

(1)

where and denote the frequency and the block in-
dices, respectively; denotes the clean speech signal;

denotes the time-invariant
acoustic transfer function between the target speaker and
the microphones; is
the noise component received by the microphones and

is the speech component
received by the microphones. The superscript represents
the transpose.
The speech and noise components in the microphone signals

are assumed to be uncorrelated with each other, such that

(2)

where

(3)

are the correlation matrices of the noisy speech, speech,
and noise components, respectively; denotes math-
ematical expectation and the superscript denotes the
Hermitian transpose. In addition, based on the single target
speaker assumption, is a rank-1 matrix, i.e.,

with the PSD of the
clean speech signal [22].

The noise field is assumed to be spatially homogeneous, but
can be either directional, isotropic or uncorrelated, with a time-
invariant spatial coherence between the microphones. Under
this assumption the noise correlation matrix can be expressed
as

(4)

where is a time-varying scalar denoting the noise PSD
at each time-frequency bin and is the time-invariant
noise coherence matrix at each frequency. In general,
can be estimated during noise-only periods as

(5)

where represents the trace of a matrix and rep-
resents the noise correlation matrix averaged in noise-only pe-
riods, i.e.,

(6)

where denotes the set of noise-only frames. Alterna-
tively, can also be calculated when prior knowledge about
the noise field is available. For instance, for a spherically diffuse
noise field the coherence matrix can be expressed as [33]

(7)

where the superscript denotes the -th entry of the ma-
trix, is the frequency at the -th frequency bin, is the dis-
tance between the -th and the -th microphone, and denotes
the sound velocity.
Combining (2) and (4), it follows that

(8)

where and are unknown. The goal is to esti-
mate the time-varying noise PSD so that a post-filter
can be constructed to estimate the speech component .

B. MaxSNR Beamformer
The model in (8) is used to derive the MaxSNR beamformer,

which aims to maximize the speech-to-noise ratio at the beam-
former output [6], [17]. This is expressed as

(9)

When the acoustic transfer function and the noise coher-
ence matrix are both time-independent (as defined in the
signal model), the MaxSNR beamformer is also time-indepen-
dent. After derivation, the time-independent MaxSNR beam-
former can be calculated as

(10)
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Fig. 1. A GSC-like speech enhancement system using blocking matrix as a
noise PSD estimator.

where

(11)

where denotes the set of all time frames in the whole
recording period.
For a single target speaker (i.e., is a rank-1 matrix),

the MaxSNR beamformer can be calculated as the (principle)
generalized eigenvector corresponding to the largest general-
ized eigenvalue obtained from the generalized eigenvalue de-
composition (GEVD) of the matrix pair . This
is expressed as

(12)

and

(13)

where is a complex-valued scalar and is the general-
ized eigenvector corresponding to the largest generalized eigen-
value.
In later sections it will be shown that the concept of the

MaxSNR beamformer is useful for deriving the proposed
MaxNSR blocking matrix. For conciseness we will omit the
indices and in the remainder of the paper, except where
explicitly required.

IV. NOISE PSD ESTIMATION BASED ON
BLOCKING MATRIX OUTPUT

The block diagram of the considered speech enhancement
system using a blocking matrix as a noise estimator is shown
in Fig. 1. This GSC-based structure consists of five blocks:
acoustic transfer function estimation (not shown in Fig. 1),
fixed beamformer, blocking matrix, noise PSD estimation,
and spectral post-filter. First, the acoustic transfer functions
between the target speaker and the microphones are estimated
to design the fixed beamformer and the blocking matrix. The
aim of the fixed beamformer is to spatially focus on the target
speaker and thereby reduce background noise not coming from
the direction of the target speaker. The output signal of the fixed
beamformer, , also referred to as speech reference,
consists of enhanced speech and residual noise, as the noise
reduction performance of the fixed beamformer is typically
quite limited. The aim of the blocking matrix is to cancel the
target speech, yielding one or more noise references, ,
containing little speech. When no speech leakage occurs, i.e.,

, the noise reference provides a good reference of the
background noise even during speech-presence periods. The

aim of the noise PSD estimation block is to estimate , i.e.,
the PSD of the residual noise in the speech reference, from the
noise reference. Finally, a spectral post-filter is applied to the
speech reference , yielding the output signal .
Compared with the standard GSC system, e.g., [2], [5], [7],

[17], the considered system in this paper uses noise PSD estima-
tion and post-filter blocks instead of an adaptive noise canceller,
which aims to reduce the residual noise in the speech reference
that is correlated with the noise reference. There are two reasons
for using the considered system. First, in diffuse noise fields
an adaptive noise canceller has limited performance since the
correlation between the residual noise in the speech reference
and the noise reference is typically small. Second, assuming the
noise coherence matrix to be known, an optimal fixed beam-
former can be designed that is able to cancel the correlated noise
components. The framework of using a blocking matrix as a
noise PSD estimator has been investigated intensively in recent
years [35], [36], [42]–[44]. The implementation details of the
different blocks will be given in the following sections, where
we will present several possible ways to combine the noise ref-
erence for target noise PSD estimation (cf. Section IV-D).

A. Acoustic Transfer Function Estimation
Since in practice it is very difficult to blindly estimate the

acoustic transfer function between the target speaker and the
microphones, a simplified model, e.g., a pure-delay model or an
RTF-based model, is generally used instead.
Assuming a free-field scenario and identical omni-directional

microphones, a pure-delay model can be used to represent
the acoustic path based on the geometrical information of the
target speaker and the microphones. The pure-delay model is
expressed as

(14)

where represents the imaginary unit with and ,
, is the relative delay between the -th micro-

phone and the first microphone. Since the pure-delaymodel only
considers the direct path, degraded modeling performance will
be expected for reverberant scenarios.
In reverberant scenarios an RTF model can be used, where

the RTF with respect to the first microphone is defined as

(15)

Generally, the RTFs can be estimated by exploiting the nonsta-
tionarity of speech signals [7] or based on the MaxSNR beam-
former [17]. As pointed out in [17], the relationship between the
MaxSNR beamformer and the acoustic transfer func-
tion can be expressed as

(16)

where is an unknown frequency-dependent complex-valued
scalar. Since the first element of is 1, the influence of the
unknown scalar can be canceled by using

(17)

where the subscript denotes the first element of a vector.
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B. Fixed Beamformer
Given the (acoustic or relative) transfer function of the

target speech and the noise coherence matrix , a minimum
variance distortionless response (MVDR) beamformer can be
constructed as [3]

(18)

where is the regularization constant and is the -di-
mensional identity matrix. Depending on the choice of and

, different types of beamformers can be obtained. In this
paper we will use the MVDR beamformer with the transfer
function estimated using (17) and the noise coher-
ence matrix estimated using (5).
In the simplest case, a delay-and-sum beamformer can be ob-

tained by assuming a free-field model and spatially
uncorrelated noise with , i.e.,

(19)

The speech reference is obtained by applying the fixed beam-
former to the microphone signals, i.e.,

(20)

where and denote the speech component and the residual
noise in the speech reference, respectively.

C. Blocking Matrix
The aim of the blocking matrix is to provide a reference of the

background noise by canceling the target speech in the micro-
phone signals. Similarly to the fixed beamformer, the blocking
matrix depends on the transfer function [7], [12], [13], [17].
A typical way to construct the blocking matrix is to use the or-
thogonal complement matrix of the vector , i.e.,

(21)

We refer to (21) as the null space blocking matrix. Again, de-
pending on the choice of , different types of blocking ma-
trices can be obtained. In the simplest case, a delay-and-subtract
null beamformer is obtained by assuming a free-field model

. In this paper we will use the null space blocking
matrix with .
The blocking matrix in (21) is an -dimensional matrix

(with rank ), i.e., , where each column
vector satisfies .With this blockingmatrix, noise
references are generated as

(22)

where is the -th noise reference, consisting
of a noise component and speech leakage .
If we assume that the target speech is completely cancelled

by the blocking matrix, i.e., no speech leakage occurs (which
will typically not be the case), the noise reference only contains
noise, i.e.,

(23)

D. Noise PSD Estimation

The outputs of the blocking matrix can now be used to esti-
mate the PSD of the residual noise in the speech reference. In
particular, , the PSD of the residual noise in the speech ref-
erence, and , the PSD of the -th noise reference, can be
related with a frequency-dependent but time-invariant scaling
factor [36], [42], [43]. This scaling factor can be calculated
directly from the coefficients of th e two spatial filters (the fixed
beamformer and the blocking matrix vectors ) and the
noise coherence matrix as

(24)

Since the null space blocking matrix in (21) has outputs,
several possibilities now exist to estimate using

(25)

where is the number of noise references been used and is
the combination coefficient defined below.
a) Using one of the outputs to estimate the target noise

PSD as shown in Fig. 2(a), i.e.,

(26)

b) Comb1: Averaging the scaled PSDs of all noise references
as shown in Fig. 2(b), i.e.,

(27)

c) Comb2: Scaling the average PSD of the noise references
as shown in Fig. 2(c), i.e.,

(28)

d) Comb3: Scaling a linear combination of noise refer-
ences as shown in Fig. 2(d). This possibility will be dis-
cussed in more detail in Section V-B.

The combination (d) is a linear combination of noise refer-
ences (signals), whereas the combinations (b) and (c) are linear
combinations of noise PSDs. When no speech leakage occurs,
all four combinations lead to the correct noise PSD estimate.
In case of speech leakage, these different combinations lead
to different noise PSD estimates, hence different performance
(cf. simulations in Section VI-C).

E. Spectral Post-filter

Given the noise PSD estimate , a spectral post-filter is
applied to enhance the speech reference . For instance, in the
well-knownWiener filter, the speech component is estimated
as

(29)



1498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2015

Fig. 2. Several possibilities of using the blocking matrix outputs for noise PSD estimation (a) using one noise reference (b) using noise references (Comb1)
(c) using noise references (Comb2) (c) using noise references (Comb3).

where the spectral gain is computed as

(30)

where is the minimum gain to reduce distortions and
is the estimated a priori SNR, e.g., obtained using the decision-
directed approach [45] as

(31)
where is a smoothing factor.

V. MAXNSR BLOCKING MATRIX

A. Proposed Algorithm
The different noise PSD estimation possibilities outlined in

Section IV-D all work perfectly under the assumption that the
noise reference does not contain residual speech, i.e., .
However, in practice it is typically not possible to completely
cancel the target speech, e.g., due to reverberation. In this case a
speech leakage component will be present in the noise reference,
i.e., . Using (26) as an example, the noise PSD
estimate is then equal to

(32)

This implies that the noise PSD is always overestimated
and depends on the ratio of the PSD of the speech leakage
and the PSD of the noise . To minimize the influence of the
speech leakage on the noise PSD estimation, both issues should
be considered simultaneously, i.e., minimizing while max-
imizing . However, existing null space blocking matrix al-
gorithms only address the first issue by suppressing the target
speech while not controlling the energy of the remaining noise.

We hence propose a novel blocking matrix, which aims to
suppress the target speech while maximizing the noise energy
in the output of the blocking matrix. Inspired by the MaxSNR
beamformer, we introduce a maximum noise-to-speech ratio
(MaxNSR) criterion for designing this blocking matrix. As-
suming only one noise reference, i.e.,

(33)

where denotes the -dimensional blockingmatrix vector,
the cost function to be maximized is equal to

(34)

Maximizing corresponds to minimizing

(35)

such that the MaxNSR blocking matrix can be computed as

(36)

where and are defined in (5) and (11), respectively.
This optimization problem can be solved using the general-

ized eigenvalue decomposition

(37)

with the generalized eigenvalue. The solution minimizing
is the generalized eigenvector corresponding to the
smallest generalized eigenvalue, i.e.,

(38)

where is a complex-valued scalar. Theoretically, can be any
value, but we choose it to be equal to

(39)
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so that the energy of the input and output noise are equal.
The output of the MaxNSR blocking matrix is expressed as

(40)

Note that in comparison to the null space blocking matrix
with outputs, the MaxNSR blocking matrix just generate
one output. The target noise PSD can be estimated from the
MaxNSR blocking matrix output as

(41)

and

(42)

Finally, it is worthwhile noting that both the fixed beamformer
and the blocking matrix can be obtained simultaneously from
the generalized eigenvalue decomposition of : the
fixed beamformer relates to the largest generalized eigenvalue
(cf. (13)) while the blocking matrix relates to the smallest gen-
eralized eigenvalue (cf. (38)).

B. Relationship Between Null Space and MaxNSR Blocking
Matrices
From (21) it can be seen that the null space blocking matrix

has rank and the column vectors span
the orthogonal complement subspace of the vector , i.e.,
any vector that is orthogonal to can be represented as a linear
combination of .
In Appendix A it is shown that the generalized eigenvector

corresponding to the minimum generalized eigenvalue of (37)
satisfies

(43)

Since the MaxNSR vector is a scaled version of
, it is also orthogonal to and can be represented as a

linear combination of the vectors , i.e.,

(44)

with the linear combination vector.
Since minimizes (36), it follows that the optimal

linear combination vector minimizes

(45)

and hence is the generalized eigenvector corresponding to the
smallest generalized eigenvalue of the GEVD

(46)

In summary, with (44)–(46), the MaxNSR vector
can be represented as a linear combination of the null space
vectors in the sense of maximum noise-to-speech ratio.
The MaxNSR vector belongs to the null space of the acoustic
transfer function vector and hence has the same target speech
blocking ability as the traditional null space vectors. The noise

PSD estimation scheme based on a MaxNSR blocking matrix
is equivalent to the scheme shown in Fig. 2(d), where the

outputs of a null space blocking matrix are first linearly
combined with the weighting vector , before being used to
estimate the target noise PSD. Furthermore, as an optimal
combination of these null space vectors, the MaxNSR vector
maximizes the noisy energy in the output and hence minimizes
the influence of speech leakage on the noise PSD estimation,
cf. (32). In case of microphones, the MaxNSR vector
is equivalent to a null space vector. However, the advantage of
the MaxNSR blocking matrix will become evident for
(cf. experiments in Section VI-C).

C. Complete Algorithm
A complete description of the MaxNSR blocking matrix

based noise PSD estimation algorithm is given in Algorithm 1.

Algorithm 1 MaxNSR blocking matrix based noise PSD
estimation

1) Parameter initialization: , , ,
2) VAD
3) Correlation matrix estimation:

Estimate (11)
Estimate (6)
Estimate (5)

4) GEVD: (37)
5) RTF estimation:

(13)
(17)

6) Fixed beamformer:
(18)
(20)

7) Blocking matrix:
(38)–(39)

(40)
8) Noise PSD estimation:

(42)
(41)

9) Postfilter: (29)–(31)

Algorithm 2 Null space blocking matrix based noise PSD
estimation

1)-5): same as Algorithm 1
6) Fixed beamformer:

delay-and-sum
(18)
(20)

7) Blocking matrix:

delay-and-substract
(21)

(22)
8) Noise PSD estimation:

(24)–(28)
9) Postfilter: (29)–(31)

In Step 3) the noisy speech correlation matrix is es-
timated using (11) from the microphone signals in the whole



1500 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2015

TABLE I
SPECIFIC PARAMETERS FOR THE EXPERIMENT

recording period. The noise coherence matrix can either
be computed based on prior knowledge of the noise field (e.g.,
spherically isotropic noise in (7)) or be estimated using (5)-(6)
from the microphone signals in noise-only periods, based on
the output of a voice activity detector (VAD). The first strategy
does not require a VAD, while the second strategy is suitable
when the spatial properties of the noise field are unknown, e.g.,
semi-incoherent noise. In rare cases where no noise is detected
by the VAD and the denominator in (5) equals to zero, the noise
coherence matrix is set to an identity matrix.
In Step 8) the PSD of the noise reference

is calculated by recursively smoothing over
time, i.e.,

(47)
with the smoothing constant.
For reference, the complete description of the null space

blocking matrix based noise PSD estimation algorithm is given
in Algorithm 2. Depending on the choice for the fixed beam-
former can be implemented as an MVDR or a delay-and-sum
beamformer, while the blocking matrix can be implemented as
a null space or a delay-and-subtract blocking matrix. In Step 8),
the PSD of the noise reference is calculated in the same
way as (47).
For both algorithms the computationally most demanding

part is the GEVD in each frequency bin. Algorithm 2 requires
the GEVD to estimate the RTF. Algorithm 1 requires the
GEVD to achieve three objectives simultaneously: RTF esti-
mation, MVDR beamformer, and MaxNSR blocking matrix.
Since both algorithms require the same GEVD operation, their
computational complexity is comparable.
Typical values of the parameters involved in both algorithms

will be given in Table I.

VI. EXPERIMENTAL RESULTS

After introducing the experimental setup, which includes
the acoustic scenario, the algorithmic implementation details,
and objective performance measures, the performance of
the proposed algorithm is examined from several aspects. In
Section VI-B the noise reduction performance of the fixed
beamformer is examined in diffuse noise fields. In Section VI-C,
the target speech blocking ability of different blocking matrices
is compared. In Section VI-D the noise estimation and speech
enhancement performance of the noise PSD estimators using
different blocking matrices are evaluated and compared with
a single-channel noise PSD estimator, both for stationary as
well as for nonstationary noise. Finally, in Section VI-E the

Fig. 3. Illustration of the recording room. The inter-microphone distance is
9 cm.

Fig. 4. Spatial coherence of the recorded diffuse noise for the microphone dis-
tance of 9 cm.

performance of the considered algorithms is investigated with
diffuse babble noise and with a non-ideal VAD.

A. Experimental Setup
1) Acoustic scenario: The experiments have been carried

out using recordings from a room with approximate dimensions
m m m with a reverberation time of approximately

400 ms. Four microphones with an inter-microphone distance
of 9 cm are placed in the center of the room, as shown in Fig. 3.
For the target speaker a loudspeaker placed around 1.8 m away
in the broadside direction of the microphone array is used. All
loudspeakers andmicrophones are 1.3m high. The target speech
component at the microphones is generated by convolving the
clean speech signal with the measured impulse responses. The
speech signal has a length of 32 s, and the used sampling rate is

kHz. In all experiments (except Section VI-E) we have
used diffuse-like noise, which has been generated by playing in-
dependent stationary white noise from four loudspeakers turned
towards the four corners of the room. The spatial coherence of
the recorded diffuse-like noise at two microphones of distance
9 cm is plotted in Fig. 4. It can be observed that the measured
coherence value (cf. (5)) is consistent with the theoretical value
(cf. (7)). Temporally nonstationary noise has been generated by
multiplying the recorded stationary diffuse noise with a modu-
lation function in the time domain. The modulation function is
defined as

(48)

with modulation depth 0.8 andmodulation frequency , which
controls how fast the noise amplitude is varying with time [41].
When , the modulated noise becomes stationary. The
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recorded noise is added to the speech components at different
input SNRs. Throughout the experiment, all four microphones
will be used unless otherwise stated.
2) Algorithmic implementation details: On the one hand, for

the fixed beamformer and the blocking matrix a large STFT
analysis frame length (e.g., = 1024) is required to enable
to capture most of the reverberation. On the other hand, con-
sidering the statistical properties of speech, which can only be
approximated as a quasi-stationary process within a short time
period (20-30ms), a shorter STFT frame length (e.g., )
needs to be used for the single-channel spectral filter. Hence, in
order to deal with the inconsistency between the different STFT
lengths, a compensation scheme is required. For simplicity, we
only consider a single channel, but the scheme can be easily ex-
tended to multiple channels. After spatial filtering (with STFT
length ), we obtain the noise reference , the speech
reference , and the scaling factor . After ap-
plying the scaling factor to the noise reference , the
scaled signal

(49)

is synthesized to the time domain as . Note that in (49)
we use the phase of the speech reference so that after
inverse STFT the scaled signal is closer to the target
noise . The signal is then reanalyzed using the STFT with
frame length as , from which the target noise
PSD is estimated as

(50)

where is calculated similarly to (47).
The noise coherence matrix is estimated from the micro-

phone signals in noise-only periods. A perfect VAD is assumed
to be available in all experiments except Section VI-E.
Finally, all algorithmic parameters used in the experiments

are listed in Table I.
3) Objective performance measures:
3.1) Fixed beamformer: The noise reduction performance of

the fixed beamformer is evaluated using the global SNR im-
provement. For a time-domainmicrophone signal

the global SNR is defined as

(51)

where denotes the speech presence periods. The global SNR
improvement is calculated by comparing the global SNR before
and after the fixed beamformer.
3.2) Blocking matrix: The target speech blocking ability of

a blocking matrix is evaluated using two objective measures:
global NSR ( ) and scaled NSR ( ).
The global NSR is defined in the time domain in a similar

way as the global SNR in (51) by changing the numerator and
the denominator. The global NSR improvement is calculated by
comparing the global NSR before and after the blocking matrix.
The larger the NSR improvement, the better the performance of
the blocking matrix.
As indicated by (32), the influence of speech leakage on noise

PSD estimation is mainly reflected by the energy ratio of the

scaled noise to the scaled speech. Thus, for our noise PSD esti-
mation framework in (25) the scaled NSR of the blockingmatrix
is defined in the whole time-frequency domain as

(52)

where, as defined before, and are the number of frames
and frequency bins respectively, denotes the number of
output channels involved in the noise PSD estimation and

is the -th output of the blocking matrix. The
larger , the better the blocking ability of the blocking
matrix.
3.3) Noise PSD estimation: To evaluate the noise PSD es-

timation performance, two objective measures are employed
which compare the target noise PSD and the estimated
PSD in terms of overestimation and underestimation
error [41]. The total estimation error can be represented as

(53)

where measures the contributions of an overestimation of
the true noise PSD as

(54)

while measures the contributions of an underestimation
of the true noise PSD as

(55)

An overestimation of the true noise PSD is likely to result in
attenuation of the speech signal in a speech enhancement algo-
rithm and thus in speech distortion. On the other hand, an under-
estimation of the true noise PSD results in reduced noise sup-
pression and is likely to yield an increase of musical noise. To
clearly show the influence of the speech leakage on noise PSD
estimation, these two objective measures are calculated sepa-
rately in noise-only periods and speech-presence periods.
3.4) Speech enhancement: For the post-filter with as input the

speech reference and as output
in the time domain, four objective measures are

used to evaluate the noise reduction and speech enhancement
performance in noise-only periods and speech-presence periods
separately.
In speech-presence periods the speech enhancement per-

formance is evaluated using the segmental noise reduction
, the segmental speech distortion , and the seg-

mental SNR , which are defined over non-overlapping
time-domain frames with a length of 15 ms, i.e.,

(56)
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TABLE II
OBJECTIVE EVALUATION MEASURES

(57)

(58)

where denotes the set of frames where speech is present.
It should be noted that the measures and may
punish the possible dereverberation effect of the post-filter,
since the used reference is a reverberant version of the clean
speech signal.
In noise-only periods the noise reduction performance is mea-

sured by

(59)

where denotes the set of noise-only frames.
In addition, PESQ (Perceptual Evaluation of Speech Quality)

is used as a global measure to assess the overall speech quality
after speech enhancement processing [46].
A short summary of all evaluation measures is given in

Table II.

B. Noise Reduction Performance of the Fixed Beamformer
In this experiment the noise reduction performance of two

fixed beamformers (delay-and-sum (19) and MVDR (18)) is
compared for stationary diffuse noise at a global input SNR
of 5 dB. For the delay-and-sum beamformer, in (14) is
calculated assuming the positions of the microphones and the
speaker are known. The global SNR improvement achieved by
the fixed beamformer for different FFT sizes is shown in Fig. 5.
The following observations can be made:
1) The SNR improvement of the delay-and-sum beamformer

remains almost constant with respect to the FFT size. It
only achieves an SNR improvement of about 1 dB because
the used (free-field) transfer function model and (identity)
noise coherence matrix are both inaccurate.

2) As expected, the MVDR beamformer performs better than
the delay-and-sum beamformer by using a better model
for the acoustic transfer function and the noise coherence
matrix. Furthermore, its performance improves when in-
creasing the FFT size, because the RTF model becomes
more accurate in reverberant environments.

Fig. 5. Global SNR improvement for the two fixed beamformers (using 4 mi-
crophones) in stationary diffuse noise at a global input SNR of 5 dB.

Fig. 6. Global NSR improvement for the three blocking matrices (using 4 mi-
crophones) in stationary diffuse noise at a global input SNR of 5 dB.

3) Nonetheless, the SNR improvement of both fixed beam-
formers is still limited in diffuse noise fields: only a few dB
of SNR improvement can be achieved. Hence a post-filter
is required to further enhance the target speech.

C. Blocking Ability of the Blocking Matrix
In this experiment the target speech blocking ability of dif-

ferent blockingmatrices is compared for stationary diffuse noise
at a global input SNR of 5 dB. The MVDR beamformer is used
to generate the speech reference, which is used to compute the

measure in (52).
The global NSR improvement of the delay-and-subtract

blocking matrix (first output), the null space blocking (first
output), and the MaxNSR blocking matrix is shown in Fig. 6.
The following observations can be made:
1) The NSR improvement of the delay-and-subtract beam-

former remains almost constant with respect to the FFT
size.

2) The MaxNSR and the null space blocking matrix can
achieve a larger NSR improvement by using RTFs to
model the acoustic transfer function. The MaxNSR
blocking matrix clearly yields the best performance.

3) Similarly to the fixed beamformer, the performance of the
MaxNSR and the null space blocking matrices increases
with FFT size.

For the scaled NSR measure in (52) the following pos-
sible blocking matrix outputs for noise PSD estimation are
considered:
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Fig. 7. Blocking ability ( ) of the null space blocking matrix and the
MaxNSR blocking matrix (using 4 microphones) in stationary diffuse noise at
a global input SNR of 5 dB. The curves of Comb1, Comb2, and Null1-4 are
practically overlapping.

• Null1-Null4: The PSD each output of the null space
blocking matrix is employed separately for noise PSD
estimation using (26), cf. Fig. 2(a).

• Comb1: The PSDs of the four outputs of the null space
blocking matrix are combined using (27), cf. Fig. 2(b).

• Comb2: The PSDs of the four outputs of the null space
blocking matrix are combined using (28), cf. Fig. 2(c).

• MaxNSR: The MaxNSR blocking matrix which corre-
sponds to a linear combination of the four outputs of
the null space blocking matrix in terms of maximum
noise-to-speech ratio, cf. Fig. 2(d).

• Delay&sub: The first output of the delay-and-subtract
blocking matrix is employed for noise PSD estimation
using (26), cf. Fig. 2(a).

Fig. 7 depicts the scaled NSR for different FFT sizes for all
discussed noise PSD estimation procedures. The following ob-
servations can be made:
1) Similarly to the fixed beamformer, the performance of the

blocking matrix also increases with FFT size for all noise
PSD estimation procedures, except for the delay-and-sub-
tract blocking matrix.

2) All outputs of the null space blocking matrix perform very
similarly. In addition, both Comb1 and Comb2, which
combine the PSDs of the 4 outputs, perform very similarly
to using one output.

3) The MaxNSR blocking matrix clearly outperforms the
other possibilities to the outputs.

Furthermore, Fig. 8 compares the scaled NSR of the blocking
matrix when using two and four microphones, respectively. As
theoretically expected, the null space and MaxNSR blocking
matrices perform similarly for two microphones since both null
space vectors are equivalent to the MaxNSR vector. When the
rank of the null space increases to 3 for four microphones, the
outputs of the null space blocking matrix can be combined to
obtain a better result, as can be observed. Hence, the proposed
MaxNSR blocking matrix is advantageous especially when
more than two microphones are used.

D. Noise Estimation and Speech Enhancement
In this experiment the noise PSD estimation performance of

different blocking matrix based noise PSD estimation proce-
dures and a single-channel noise PSD estimation procedure is

Fig. 8. Blocking ability ( ) of the null space blocking matrix and the
MaxNSR blocking matrix, using 2 and 4microphones in stationary diffuse noise
at a global input SNR of 5 dB. The curves of Null1_2mic and MaxNSR_2mic
overlap.

evaluated for stationary and non-stationary diffuse noise. The
diffuse noise is added to the microphones at a global input SNR
ranging from dB to 15 dB. The following procedures are
compared:
• Delay&sub: Multichannel noise PSD estimation using the
delay-and-subtract blocking matrix.

• Null space: Multichannel noise PSD estimation using the
null space blocking matrix (using the first output).

• MaxNSR: Multichannel noise PSD estimation using the
MaxNSR blocking matrix.

• UMMSE: Single-channel unbiased MMSE noise PSD es-
timation [41], which estimates the noise PSD directly
from the speech reference .

D1. Stationary noise: Fig. 9 compares the noise PSD estima-
tion performance (in terms of overestimation error, underesti-
mation error and total error) in stationary diffuse noise for the
four considered noise PSD estimators in noise-only and speech-
presence periods separately. The following observations can be
made:
1) In noise-only periods the noise PSD estimation perfor-

mance of the four noise PSD estimators is quite similar.
As expected, without any speech leakage present, the three
multichannel estimators achieve almost the same perfor-
mance.

2) In speech-presence periods all four estimators tend to over-
estimate the noise PSD. The overestimation errors of the
blocking matrix based noise PSD estimators are caused
by the speech leakage (cf. (32)). For the single-channel
UMMSE overestimation errors occur especially when the
algorithm falsely detects the speech as noise. For all four
estimators the overestimation error increases with larger
input SNR because the speech leakage increases.

3) In speech-presence periods the MaxNSR noise PSD esti-
mator achieves the lowest overestimation error, especially
at high input SNRs, while achieving a similar underesti-
mation error as the other estimators. It hence performs best
among all the considered noise PSD estimators.

The speech enhancement performance of the four noise PSD
estimators is shown in Fig. 10, in terms of in noise-only
periods, , , in speech-presence periods,
and PESQ. As a reference, the and PESQ of the speech
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Fig. 9. Noise PSD estimation performance of the four considered noise PSD
estimators in stationary diffuse noise at different global input SNRs (for noise-
only and speech-presence periods separately).

Fig. 10. Speech enhancement performance of the four considered noise PSD
estimators in stationary diffuse noise at different global input SNRs.

reference are also given. The following observations can be
made:
1) In noise-only periods all four estimators achieve a similar

noise reduction performance, with approaching
14 dB corresponding to . As expected, without any
leakage present, the three multichannel estimators achieve
almost the same performance.

2) In speech-presence periods the MaxNSR estimator per-
forms better than the other two multichannel estimators
in terms of by introducing less speech distortion
(indicated by ), especially at high input SNRs. The
delay-and-subtract estimator suffers from a lot of speech
leakage, leading to poor performance compared to other
blocking matrix based estimators. The MaxNSR estimator
also slightly outperforms the single-channel UMMSE es-
timator, which achieves better performance than the null
space estimator.

3) In speech-presence periods all four estimators improve the
of the speech reference significantly at low

SNRs. The improvement however becomes less evident or
even negative at high SNRs where the speech distortion

Fig. 11. Noise PSD estimation performance of the four considered noise PSD
estimators in non-stationary diffuse noise with different modulation frequen-
cies, at a global input SNR of 5 dB (for noise-only and speech-presence periods
separately).

caused by overestimation errors becomes dominant in the
measure. The MaxNSR estimator is the only es-

timator which does not show a decreased at high
input SNRs (10 and 15 dB).

4) For all four PSD estimators the PESQ value shows a sim-
ilar trend as the measure, with the MaxNSR esti-
mator achieving the highest PESQ value for all SNRs.

In summary, the speech enhancement results obtained by the
four noise PSD estimators are consistent with the results for
noise PSD estimation.
D2. Non-stationary noise: In this section the noise PSD es-

timation and speech enhancement performance of the four con-
sidered noise PSD estimators are compared in non-stationary
(modulated) diffuse noise. Four modulation frequencies ( in
(48)) are considered, i.e., 0 Hz, 0.2 Hz, 0.5 Hz, and 1 Hz.
Fig. 11 compares the noise PSD estimation performance (in

terms of overestimation error, underestimation error and total
error) of the four noise PSD estimators for different . The
global input SNR is 5 dB. The following observations can be
made:
1) In noise-only periods the noise PSD estimation perfor-

mance of the three multichannel estimators is quite sim-
ilar and appears to be independent of . In contrast, the
performance of the single-channel UMMSE algorithm de-
grades significantly with increased since it tends to
underestimate the noise especially when the noise is fast-
changing.

2) In speech-presence periods all three multichannel estima-
tors tend to overestimate the noise PSD due to the occur-
ring speech leakage. The MaxNSR estimator achieves the
lowest overestimation error, while achieving a similar un-
derestimation error as the other estimators. It performs best
among all three estimators, followed by the null space es-
timator, while the delay-and-subtract estimator performs
worst.



WANG et al.: NOISE PSD ESTIMATION USING MAXNSR BLOCKING MATRIX 1505

Fig. 12. Speech enhancement performance of the four considered noise
PSD estimators in non-stationary diffuse noise with different modulation
frequencies, at a global input SNR of 5 dB.

3) In speech-presence periods the estimation error does not
vary greatly with for the three multichannel estima-
tors where the MaxNSR shows the smallest variation. The
single-channel UMMSE on the other hand tends to both
underestimate and overestimate the noise, and the under-
estimation error in particular grows with increasing .

The speech enhancement performance of the four noise PSD
estimators for two different input SNRs is shown in Fig. 12 and
13, in terms of in noise-only periods, , ,

in speech-presence periods, and PESQ. As a reference,
the and PESQ of the speech reference are also given.
The following observations can be made:
1) In noise-only periods all three multichannel estimators

achieve almost the same noise reduction performance,
which is moreover almost independent of . In contrast,
the single-channel UMMSE algorithm shows a degraded
noise reduction performance with increasing .

2) In speech-presence periods the MaxNSR estimator
achieves larger than the null space estimator
at both high (5 dB) and low ( 5 dB) SNR scenarios.
However, the difference between both estimators becomes
smaller at low SNR. The delay-and-subtract estimator
performs worst among all three multichannel estimators.

3) In speech-presence periods the single-channel UMMSE
estimator performs worse than the MaxNSR estimator in
all scenarios. Surprisingly, it achieves a larger
than the null space estimator at high SNR (5 dB). The
reason is that it tends to underestimate the noise PSD in
speech-presence periods and hence shows less speech
distortion ( ) and also less noise reduction ( ).
In global, it performs better in terms of . However,
this is not observed at low SNR ( 5 dB), where the
null space estimator achieves a larger than the
UMMSE estimator.

4) At low SNR ( 5 dB) all four estimators are able to signifi-
cantly improve the relative to the speech reference
. However, at high SNR (5 dB), only the MaxNSR esti-

mator is able to improve the . The reason is that at
high SNR the speech distortion caused by overestimation
errors becomes dominant in the measure.

5) For all four estimators the PESQ value shows a similar
trend as the measure. Both for high and low SNRs,

Fig. 13. Speech enhancement performance of the four considered noise PSD
estimators in non-stationary diffuse noise with differentmodulation frequencies,
at a global input SNR of dB.

all four estimators obtain improved PESQ values with re-
spect to the speech reference, with the MaxNSR estimator
achieving the highest PESQ value for all cases.

In summary, for nonstationary noise the speech enhancement
performance based on the MaxNSR blocking matrix outper-
forms the other considered blocking matrices, and especially
a single-channel algorithm, whose performance is significantly
affected.

E. Babble Noise and Non-ideal VAD
In order to investigate the performance of the proposed algo-

rithm for even more realistic acoustic scenarios, in this experi-
ment we have used diffuse babble noise and a non-ideal VAD.
The same microphone and target speaker configuration for the
previous experiments is used. The diffuse babble noise is simu-
lated using the method presented in [33], assuming a spherically
isotropic noise field. The diffuse noise is added to the micro-
phones at a global input SNR ranging from dB to 15 dB.
The non-ideal VAD, which is applied to the signal in the first
microphone, has been implemented based on the UMMSE algo-
rithm in [41], which also estimates the a posteriori speech pres-
ence probability at each time-frequency bin. The speech pres-
ence probability is averaged across all the frequencies. A time
frame is flagged as a speech-presence frame when its averaged
speech presence probability is above a threshold (we have used
0.2 as the threshold in the experiment).
Two objective measures are used: and PESQ.

Fig. 14 compares the performance of considered algorithms
with ideal and non-ideal VADs. As a reference, the and
PESQ of the speech reference are also given. The following
observations can be made:
1) With an ideal VAD the performance of the four consid-

ered noise PSD estimators for diffuse babble noise is sim-
ilar to the performance for white noise (cf. Fig. 10). The
MaxNSR estimator performs best in terms of both
and PESQ, followed by the UMMSE and null space es-
timators. Delay&sub performs the worst among all used
algorithms.

2) When a non-ideal VAD is used, the performance of the
fixed beamformer degrades especially at low SNRs, as can
be observed from the degraded and PESQ values
of the speech reference (i.e., fixed beamformer output) in
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Fig. 14. Performance comparison of the four considered noise PSD estimators
with ideal and non-ideal VAD, in diffuse babble noise at different global input
SNRs.

comparison to the ideal VAD case. This is because that
the noise coherence matrix and the RTF, which are used
to construct the MVDR beamformer, are less accurately
estimated due to VAD errors, especially at low SNRs.

3) Among the four noise PSD estimators, the MaxNSR and
null space estimators are affected by VAD and noise coher-
ence matrix estimation errors, as can be observed from the
degraded and PESQ values compared to the ideal
VAD case, especially at low SNRs. Since the UMMSE and
Delay&sub estimators do not depend on the noise coher-
ence matrix, their performance is almost not affected by
VAD errors. However, even when using a non-ideal VAD,
the MaxNSR estimator still outperforms the other estima-
tors at SNRs larger than 5 dB, whereas the performance is
very similar to the null space and UMMSE estimators at
lower SNRs.

In summary, among the four noise PSD estimators, the
MaxNSR estimator still performs best for diffuse babble noise
with an ideal VAD. However, since its performance is sensitive
to VAD errors, an accurate estimation of the noise coherence
matrix is very important for the MaxNSR estimator.

VII. CONCLUSIONS
In this paper a GSC-like speech enhancement system is inves-

tigated for enhancing a single target speaker in diffuse noise.
The PSD of the residual noise in the speech reference is esti-
mated from the PSD of the noise reference using a scaling factor.
To reduce the influence of speech leakage in the noise refer-
ence, a MaxNSR blocking matrix is proposed which aims to si-
multaneously suppress the target speech while maximizing the
noise energy in the output of the blocking matrix. The MaxNSR
blocking matrix can be computed using the generalized eigen-
value decomposition of the noisy speech correlation matrix and
the noise coherence matrix, which is assumed to be known. It
is shown that the vector of the MaxNSR blocking matrix is or-
thogonal to the acoustic transfer function of the target speech

and can be represented as a linear combination of the vectors in
the traditional null space blocking matrix. The following con-
clusions can be drawn from the experiments:
1) When more than two microphones are used, the MaxNSR

blocking matrix can better suppress the speech leakage and
hence performs better in terms of noise PSD estimation and
speech enhancement than the null space blocking matrix.

2) In contrast to the single-channel noise PSD estimator,
which has problems to track the PSD of nonstationary
noise efficiently, the performance of theMaxNSR blocking
matrix based noise PSD estimator is almost not affected by
the nonstationarity of the noise. It therefore outperforms
the single-channel noise PSD estimator especially when
the noise is fast-changing.

3) Although the performance of the MaxNSR blocking ma-
trix based noise PSD estimator is sensitive to noise coher-
ence matrix estimation errors (e.g., due to VAD errors), it
still outperforms the other considered signal- and multi-
channel estimators at SNRs larger than 5 dB, whereas its
performance is very similar at lower SNRs.

APPENDIX A
PROOF OF THE EQUATION (43)

Consider the generalized eigenvalue decomposition (GEVD)

(A-1)

of the matrices and , with and , , the
generalized eigenvalues (in descending order) and generalized
eigenvectors, respectively. For Hermitian matrices and , it
can be easily shown that the generalized eigenvalues are real-
valued, i.e., .
Given the -th and -th generalized eigenvector and

and assuming that the corresponding generalized eigenvectors
and are not equal ( ), it can be shown using (A-1)

that

(A-2)

such that for it follows that

(A-3)

If the matrix is a rank-1 matrix, i.e.,

(A-4)

the generalized eigenvector corresponding to the largest gen-
eralized eigenvalue is related to the vector as

(A-5)

with a complex-valued scalar.
Using (A-3), it follows that all other generalized eigenvectors
( ) are orthogonal to , i.e.,

(A-6)
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