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1. ABSTRACT

In this paper, we present a novel speaker change detection and
speaker diarization algorithm using spatial information in the form
of features derived from estimated Room Impulse Response (RIR)s.
A blind system identification approach is used to obtain an estimate
of the RIRs, from which the C5 feature is derived and used in the
labeling algorithm. Experimental results using 2 speakers for differ-
ent locations within a fixed room show that our approach achieves
a higher hit rate in the speaker change detection task and a lower
variance in the diarization error rate when compared with a baseline
algorithm.

Index Terms— Blind system identification, speaker diarization,
speaker change detection

2. INTRODUCTION

Beamforming is a common technique in hearing-aids and assitive
listening technologies to improve speech intelligibility [1]. It ex-
ploits the spatial diversity of the signals at different microphones
and combines the multi-channel input into a single-channel output
so that the signal coming from the steering direction is enhanced.
However, the accuracy of the estimated Direction-of-Arrival (DOA),
which decreases as the level of noise and reverberation increases [2],
has a significant impact on the performance [3].

In a multi-speaker scenario, such as a meeting, knowing when
the identity of the active speaker changes is a valuable piece of infor-
mation for assistive listening devices as it can be used to re-steer a
beamformer. Determining ‘who spoke when?’ is the goal of speaker
diarization. That consists of detecting speaker changes and labeling
with a unique label speech segments spoken by the same person.

Spatial-information-based diarization has been investigated
in [4] and [5]. The diarization system in [5] is based on Time-
Difference-of-Arrival (TDOA) features: an Unsupervised Discrimi-
nant Analysis (UDA) is applied to estimated TDOA between every
pair of microphones to separate the speakers in the new feature
space as it is known that the TDOA estimates obtained from the
Generalized Cross-Correlation (GCC)-Phase Transform (PHAT) al-
gorithm are sometimes spurious. This, however, requires at least 3
microphones.

In this paper, we propose a novel application of Blind System
Identification (BSI) which performs speaker change detection and
diarization by exploiting the room acoustic information encapsulated
in the estimated RIRs. The proposed diarization system relies on
spatial features extracted from estimated RIRs. The robustness to
BSI errors of the proposed method is also evaluated.

Fig. 1: Block diagram of the diarization system

The remainder of this paper is organized as follows. In section
3, the diarization system is described. In section 4, the experimental
setup is detailed and the results shown in section 5.

3. THE SPEAKER DIARIZATION SYSTEM

3.1. Signal model

In a typical meeting scenario, only one speaker is active at any given
moment in time. Even though several speakers are present in the
audio stream, the system in practice has a Single-Input-Multiple-
Output (SIMO) structure. Hence, for P speakers and M micro-
phones, at any time n, the signal ym(n) recorded at the mth mi-
crophone is given by eq. (1):

ym(n) = hm,p(n) ∗ sp(n) + νm(n) (1)

where p represents the identity of the active speaker, hm,p(n) is the
RIR relating the pth speaker to the mth microphone and νm(n) the
additive noise present at the mth microphone.

3.2. The overall diarization system

We used the diarization system described in [5]. Its block diagram
is shown in Fig. 1. It consists of a Voice Activity Detector (VAD)
detecting the non-speech parts, a feature extraction algorithm and a
labeling step.

The VAD, based on the P.56 standard [6, 7], takes the summed
microphone signals as the input and detects active speech segments.
The output consists of estimated time instants indicating the begin-
ning and the end of segments of active speech. A post-processing
step is added so that the estimated active speech segments separated
by less than 100ms of estimated pause are merged together.

A window of duration te sliding with an offset ts is then applied
within each of these active speech segments to obtain frames. Fea-
tures are extracted from each of these frames. The type of features
as well as the method to obtain them from the input signals will be
described in section 3.3 and section 3.4.
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The features are then labeled using a k-means initialized Hid-
den Markov Model (HMM), the details of which will be given in
section 3.5.

3.3. Spatial feature extraction of the baseline

The method described in [5] is taken as the baseline as diariza-
tion is also achieved based on spatial features only. More precisely,
the TDOAs between every pair of microphones are estimated using

the GCC-PHAT algorithm. Therefore, for each frame,

(
M

2

)
=

M(M−1)
2

estimated TDOAs are obtained. In the case where M is
greater or equal to 3, dimension reduction techniques aiming at re-
ducing the impact of estimation noise are possible. In [5], a UDA [8]
is used for that purpose.

In the implementation of the feature extraction scheme, the
estimates of the TDOAs were obtained by computing the cross-
correlation function in the frequency domain. To improve the noise
robustness of the algorithm, ym(n) is processed so that the cross-
correlation function is computed only on the the 60% largest samples
in absolute values. If we denote by ỹm(n) the processed ym(n) and
ỹ
m
(f) its Fourier transform, the cross-correlation function between

the ith and jth microphones is given by:

g
i,j
(f) =

ỹ
i
(f)[ỹ

j
(f)]∗

|ỹ
i
(f)[ỹ

j
(f)]∗| (2)

where ∗ and |.| respectively represent the complex conjugate and the
module operators and f is the frequency bin index.

The TDOA is then obtained by finding the position of the peak
of the inverse Fourier transform of g

i,j
(f).

3.4. Spatial Feature extraction of the suggested method

The microphone signals ym(n) can be viewed as a combination of
two independent quantities: the dry speech signal sp(n) and the
RIRs {hm,p(n)},m ∈ {1, 2, . . . ,M}. While the dry speech con-
tains the characteristics of the speaker, the set of RIRs holds infor-
mation about the relative position of that speaker to the microphone
array. Therefore spatially characterizing localized speakers is possi-
ble by blindly estimating the RIRs.

Because of the SIMO structure, BSI is theoretically possible
provided that the conditions for the system to be identifiable are ful-
filled [9]. Examples of algorithms tackling the problem can be found
in [10], [11] or [12].

Nevertheless, since the estimated RIRs are not accurate nor con-
sistent enough to directly use them for diarization, we suggest to ex-
tract a feature, referred as Cx, which is analogous to the well-known
C50. It represents the ratio between the energy in the first x ms of a
RIR and that of the remaining taps, i.e.

Cx(ĥm) =

∑nx−1
j=0 ĥ2

m(j)∑Lm−1
j=nx

ĥ2
m(j)

(3)

where nx is the sample corresponding to xms, ĥm the estimated
RIR at the mth microphone and Lm its length in samples.

Diarizations based on Cx for x ∈ {5, 10, 15, 50} showed that
C5 yields the best speaker discrimination. This may be due to its
similarity to the Direct-to-Reverberant Ratio (DRR) [14] which is
well correlated with the distance between a speaker and a micro-
phone [15].
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Fig. 2: Example speech from simulated meeting

3.5. Feature labeling

The extracted features were then labeled using a k-means initialized
P -state HMM [16]. The features belonging to each state were mod-
eled by a single Gaussian distribution with a diagonal covariance
matrix. The initial guesses of the transition and prior probabilities
followed a uniform distribution.

An iterative scheme was then used to estimate the most likely
path:

1. Given an assignment of each feature to a state, compute the
observation likelihood.

2. Given the prior and transition probabilities as well as the ob-
servation likelihood, compute the most likely path using the
Viterbi algorithm.

3. Given the new feature-to-state assignment, update the param-
eters of the Gaussian distributions of each state.

4. Given the estimated path and the new statistics of each state,
update the prior and transition probabilities using the Baum-
Welch algorithm.

4. SIMULATIONS

4.1. Speech input generation

The simulated meeting data were obtained using 20 utterances spo-
ken by 2 speakers from the test set of the TIMIT database [17]. Two
sets of RIRs were generated using the image method [18], one set
corresponding to each speaker. Each utterance was then convolved
with the corresponding set of RIRs. The reverberant utterances were
then combined to produce an interleaved signal, where the speakers
speak in turn. The whole speech data had a duration of approxi-
mately 60 s. The simulated data were free of instants where both
speakers are talking at the same time.

White Gaussian noise was added to the dry reverberant meeting
signal to achieve a Signal-to-Noise Ratio (SNR) of 30 dB. An ex-
cerpt of the simulated speech signal at the first microphone is shown
in Fig. 2.

4.2. Experimental setup

The considered room is of dimension 5 m × 6 m × 3 m. Through-
out the experiments, the reverberation time is set to T60 = 0.5 s,
leading to RIRs of length L = 4000 for a sampling frequency fs =
8000 kHz. The microphones of the microphone array with M = 2
were placed at coordinates (2± 0.2, 3, 1.5) expressed in a Cartesian
system.

For each of the VAD based estimated active speech segments, a
sliding analysis window of te = 1 s is applied with a sliding offset

5744



of ts = 100ms. This leads to frames of duration te = 1 s overlap-
ping by 900ms. A given frame contains either no speaker, only one
of the speakers or both. When no speaker is present in the frame,
i.e. the VAD failed in detecting the pause, the estimation of the RIRs
should not correspond to any the ground truth RIRs. Therefore, the
estimated RIRs are given by one of the two sets of ground truth
RIRs, randomly chosen and corrupted by additive noise following
the model described in [13] so that the Normalized Projection Mis-
alignment (NPM) has a small value (10−6 dB). As shown in eq. (4),
such a low value means that the estimation is almost orthogonal to
the RIRs and therefore holds no information.

NPM(h, ĥ) =
||h− hT ĥ

ĥT ĥ
ĥ||22

hTh
(4)

where h is the stacked true RIRs, ĥ an estimate of h.
In the case where only one speaker is present, the estimated RIRs

were given by the ground truth RIRs corresponding to that speaker
corrupted by additive noise so that a desired NPM εs is achieved. In
the case where both speakers are present, the estimated RIR at each
microphone is given as an average impulse response weighted by the
proportion of the active time of each speaker in the considered frame.
Noise was also added in the latter case to achieve an NPM of εs. A
different realization of the additive noise is computed for each frame
so that RIR estimates obtained from a BSI algorithm periodically
reinitialized are simulated. Estimates of C5 are then obtained from
these sets of RIRs, one per microphone.

Accuracy of BSI. In the first experiment, the speakers were
respectively localized at coordinates (3.18, 4.88, 1.57) and (2.33,
3.98, 1.53). For that particular configuration, the true TDOAs were
−0.398ms and 0.199ms for the first and second speaker respec-
tively. The values of C5 were respectively (−5.82,−4.37) and
(−1.05,−3.50), in dB, for the first and second speakers. In that
setup, the robustness of the proposed method to BSI errors was
investigated by evaluating the Diarization Error Rate (DER) for εs
taking 20 linearly spaced values between −10 dB and −1 dB.

Monte-Carlo simulation. In the second experiment, the loca-
tions of the speakers were randomly drawn under the constraint that
they had to be at least 50 cm away from the walls, the microphone
array and each other. The accuracy of the estimated RIRs for frames
effectively containing speech was set to achieve εs = −10 dB. The
performance of the system was evaluated over 100 different speaker
locations.

Since the implemented method to estimate the TDOA features
operates in the frequency domain, a Hamming window was applied
to reduce windowing artifacts. As that method outputs integers and
that the UDA cannot be applied due to the small number of micro-
phones (M = 2), it is not always possible to directly fit a Gaus-
sian distribution model over the estimated TDOA in the HMM. To
overcome that issue, a small amount of white Gaussian noise, the
variance σ2 of which was equal to 0.01, was added.

4.3. Evaluation

The performance of the diarization system was evaluated in terms of
DER as defined in [19]. The score represents the fraction of duration
attributed to a wrong speaker or non-speech. To take the inaccuracy
of the hand labels into account, a tolerance threshold of 250ms was
used.

Hit, miss and false alarm rates were used to evaluate the per-
formance of the system for speaker change detection. These were
defined as follows:

• The Hit Rate (HR) corresponds to the percentage of estimated
speaker changes lying within 250ms around a true speaker
change

• The Miss Rate (MR) corresponds to the percentage of true
changes not estimated within 250ms

• The False Alarm Rate (FAR) is the percentage of estimated
speaker changes that do not correspond to a true speaker
change

A key point in the success of the diarization system is the sepa-
rability of the features. When these features follow a Gaussian dis-
tribution, which is assumed in our HMM, that separability can be
measured by the Bhattacharyya distance [20]:

B(Di, Dj) =
1

8
(µi − µj)

TΣ(i, j)−1(µi − µj)

+
1

2
log

(
|Σ(i, j)|√
|Σi||Σj |

)
(5)

where µk and Σk are the mean and covariance matrix of the cluster
Dk. |.| is the determinant operator and Σ(i, j) is given by Σ(i, j) =
Σi+Σj

2
. The Bhattacharyya score between two clusters increases

these clusters are more separable.

5. EXPERIMENTAL RESULTS

5.1. Fixed location, varying NPM

Figure 3 shows the evolution of the DER of the proposed method for
each value of NPM from −10 dB to −1 dB . Although the values
of the NPM decreases from −10 dB to −1 dB, the proposed diariza-
tion system seems to be strongly affected for values of NPM below
−2 dB. However, the Bhattacharyya score decreases as the NPM
increases as shown in Fig. 4.

Figure 5 is an example of the C5 feature points for an NPM of
−5 dB. As the NPM increases, the clusters seem to merge, which
results in a higher DER and a lower Bhattacharyya score.

The TDOA based diarization system achieved a DER of 37%
with a Bhattacharyya distance of 0.8.
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Fig. 3: DER as a function of NPM for 2 speakers at given locations
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Fig. 4: Bhattacharyya score as a function of NPM for 2 speaker at
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5.2. Fixed NPM, changing locations

Figure 6 shows the DER obtained from 100 different speaker loca-
tions for an NPM of −10 dB. The proposed method leads to less
variability of the DER than that of the approach using TDOA fea-
tures only and has a mean DER of 8.95% against 17.5% for the
baseline.

Table 1 shows the mean and standard deviation of the diarization
system evaluated using the hit, miss and false alarm rate metrics. It
can be seen that on average the proposed method yields a higher HR
and a lower MR and FAR than that of the baseline method while
consistently yielding a smaller standard deviation.

Method HR MR FAR

mean Suggested 72.8% 32.83% 27.82%
Baseline 69.06% 39.15% 41.39%

std. Suggested 6.54% 6.55% 6.18%
Baseline 8.25% 7.64% 16.13%

Table 1: Performance of the diarization system in terms of speaker
change detection
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Fig. 6: Box diagram of the DER obtained from 100 different speaker
locations. The estimated RIRs had an NPM of −10 dB

6. DISCUSSION AND CONCLUSION

In this paper, a novel use of spatial features from estimated RIRs
for speaker change detection and diarization was proposed and com-
pared with a baseline approach using TDOA features. Our approach
was shown to outperform the baseline on average and shown to have
a lower error variance. Furthermore, the proposed method was eval-
uated with different levels of errors in the BSI. The proposed method
was shown to be robust to BSI errors up to an NPM of −2 dB.
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