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ABSTRACT

The computational complexity and convergence speed of adaptive
feedback cancellation algorithms depend on the number of adaptive
parameters used to model the acoustic feedback path. To reduce the
number of adaptive parameters it has been proposed to decompose
the acoustic feedback path as the convolution of a (time-invariant)
common part and a (time-varying) variable part. Typically the prob-
lem of estimating all the required coefficients has been formulated as
a least-squares optimization problem. In contrast, in this paper we
propose to formulate the estimation problem as a minmax optimiza-
tion problem and show how this is associated with the maximum
stable gain of a hearing aid. Experimental results using measured
acoustic feedback paths from a two-microphone behind-the-ear hear-
ing aid show that the proposed minmax optimization outperforms the
least-squares optimization in terms of maximum stable gain. Fur-
thermore, the robustness of proposed common part decomposition
for different feedback paths is evaluated.

Index Terms— acoustic feedback cancellation, common part
modeling, invariant part extraction, minmax optimization, hearing
aids

1. INTRODUCTION

The number of hearing impaired persons supplied with open-fitting
hearing aids has been steadily increasing over the last years. Al-
though largely alleviating problems related to the occlusion effect,
open-fitting hearings aids are especially susceptible to acoustic feed-
back, often perceived as whistling or howling. This demands for
robust and fast-adapting feedback cancellation algorithms.

While different strategies can be used to reduce the acoustic
feedback (see e.g. [1, 2]), adaptive feedback cancellation (AFC) is
one of the most promising approaches. In AFC an adaptive filter is
used to estimate the impulse response (IR) of the acoustic feedback
path, theoretically allowing for perfect cancellation of the feedback
signal [1]. In general, the convergence speed and the computational
complexity of the adaptive filter is determined by the number of
adaptive parameters [3, 4]. In order to reduce the number of adaptive
parameters and hence reduce the complexity and improve the con-
vergence speed it has been proposed [5, 6, 7, 8] to model the acoustic
feedback path as the convolution of two filters: a time-invariant com-
mon part and a time-varying variable part. While the time-invariant
common part models parts that are common in several acoustic feed-
back paths, e.g., transducer characteristics and individual ear canal
characteristics, the time-varying variable part enables to track fast
changes, e.g., in the presence of a handheld telephone.
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For modeling the common part different filters have been pro-
posed, i.e., an all-zero filter [6], an all-pole filter [9] and the gen-
eral pole-zero filter [7]. For practical reasons the variable part is
commonly modeled using an all-zero filter to enable easy and stable
adaptation using standard adaptive filtering techniques.

Assuming that the IRs of at least two acoustic feedback paths are
available (e.g., using measurements), the common and variable parts
are usually estimated by minimizing a least-squares (LS) cost func-
tion [6, 7, 8, 9]. This corresponds to optimizing the misalignment
between the true and estimated IRs, which is often used to quantify
the performance of adaptive filters. However, although these ap-
proaches allow for good performance in terms of the misalignment,
the closed-loop transfer function of the hearing aid may already be
unstable for smaller gains. Therefore, in this paper we propose to di-
rectly optimize the maximum stable gain (MSG) [10], i.e., the max-
imum applicable gain that leads to a stable closed-loop response of
the hearing aid. After reviewing the commonly used technical mea-
sures to assess the performance of AFC algorithms in Section 3, in
Section 4 we show how the problem of maximizing the MSG can be
formulated as a minmax optimization problem. The resulting non-
linear minmax cost function is then minimized by an alternating op-
timization procedure. Experimental results using measured acous-
tic feedback paths from a two-microphone behind-the-ear hearing
aid indicate that: 1) using the proposed minmax optimization pro-
cedure to estimate the common pole-zero filter of acoustic feedback
paths yields an increase in MSG compared to existing LS techniques,
and 2) a reduction of the number of variable part parameters can be
achieved even for unknown feedback paths.

2. PROBLEM FORMULATION

Consider a single-input-multiple-output (SIMO) system with M
outputs as depicted in Figure 1a. Such a SIMO system arises,
e.g., in a single-loudspeaker multiple-microphone setup in a multi-
microphone hearing aid. The m-th output signal Ym(z) is related to
the input signal X(z) by the m-th acoustic transfer function (ATF)
Hm(z) as Ym(z) = Hm(z)X(z). We assume that the true ATFs
Hm(z) are causal all-zero filters of finite order Nh

z each. To reduce
the number of coefficients required to model all ATFs, the following
approximation (depicted in Figure 1b) is introduced:

H1(z)
...

HM (z)

 ≈
 Ĥ1(z)

...
ĤM (z)

 = Ĥc(z)

 Ĥ
v
1 (z)
...

Ĥv
M (z)

 , (1)

where Hc(z) denotes the microphone-independent common part
and Hv

m(z) the microphone-dependent variable parts. Assuming
the common part can be modeled as a pole-zero filter with Nc

p poles
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Ĥv
2 (z)

.

.

.

Ĥv
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Fig. 1. System models.

and Nc
z zeros and each of the M variable parts can be modeled as

an all-zero filter with Nv
z zeros, their transfer functions are defined

as

Ĥc(z) =
Bc(z)

Ac(z)
=

∑Nc
z

l=0 b
c[l]z−l

1 +
∑Nc

p

l=1 a
c[l]z−l

, (2)

Ĥv
m(z) = Bvm(z) =

Nv
z∑

l=0

bvm[l]z−l, (3)

where ac[j], bc[j] and bvm[j] denote the coefficients of the polynomi-
als associated with the common poles, common zeros and variable
zeros, respectively. Note that ac[0] = 1, i.e., Ac(z) is assumed to be
a monic polynomial. The coefficients in vector notation are defined
as

hm = [ hm[0] hm[1] . . . hm[Nh
z ] ]T , (4)

ac = [ ac[1] ac[2] . . . ac[Nc
p ] ]T , (5)

bc = [ bc[0] bc[1] . . . bc[Nc
z ] ]T , (6)

bvm = [ bvm[0] bvm[1] . . . bvm[Nv
z ] ]T , (7)

where [·]T denotes transpose operation. We also define the concate-
nation of the variable part coefficient vectors bvm as

bv = [ (bv1)T (bv2)T . . . (bvM )T ]T . (8)

3. TECHNICAL MEASURES OF FEEDBACK
CANCELLATION PERFORMANCE

To characterize the performance of AFC algorithms two measures
are commonly used [1, 6]: the normalized misalignment ε and the
MSGM. The normalized misalignment εm in them-th microphone
indicates the performance of the estimated feedback paths in terms
of its Euclidean distance to the true feedback paths, i.e.,

εm =
‖hm − ĥm‖22
‖hm‖22

, (9)

where ĥm is the estimated IR.
The MSGM indicates the gain that can be applied in a hearing

aid until instability of the closed-loop system and hence howling or
whistling occur. Assuming a broadband hearing aid gain, the MSG
Mm of the m-th feedback path can be computed as [10]

Mm = 20 log10

1

max0≤Ω≤π |Hm(ejΩ)− Ĥm(ejΩ)|
, (10)

where Ω denotes normalized frequency. Note that the system is actu-
ally only unstable if also the phase at the frequency of the maximum
absolute difference is a multiple of 2π [11] and hence (10) provides
the worst-case assumption.

4. OPTIMIZING THE MAXIMUM STABLE GAIN

In [6, 7, 8, 9] LS procedures minimizing the misalignment in (9)
have been presented to estimate the coefficients vectors ac, bc, bv

of the common and variable parts. In contrast in this section we pro-
pose to estimate the coefficient vectors ac, bc, bv of the common
and variable parts in order to maximize the MSG in (10). This leads
to a novel optimization procedure for the approximate SIMO system
depicted in Figure 1b. MaximizingMm in (10) corresponds to min-
imizing the maximum absolute difference of the frequency response
of the true and estimated ATFs. Thus maximizing Mm for all M
IRs of the considered approximate SIMO system can be formulated
as a minmax optimization problem, where we aim to minimize

JMM (ac,bc,bv) = max
0≤Ω≤π

1≤m≤M

∣∣Ẽm(ejΩ)
∣∣ (11)

with the so-called output-error Ẽm(ejΩ) defined as

Ẽm(ejΩ) = Hm(ejΩ)− Ĥm(ejΩ) (12)

= Hm(ejΩ)− Bc(ejΩ)

Ac(ejΩ)
Bvm(ejΩ). (13)

For conciseness we will omit the variable ejΩ in the remainder of
this paper. Note that the cost function in (11) aims at maximizing
the minimumMm for the considered set of M IRs, which is a rea-
sonable assumption since this will presumably dominate the MSG
in, e.g., multi-microphone hearing aids. The output-error Ẽm is non-
linear inAc,Bc andBvm and thus minimization of (11) is not straight
forward. To ease the optimization we rewrite the output-error as

Ẽm =
1

Ac
Em =

1

Ac
(
AcHm −BcBvm

)
, (14)

whereEm is the so-called equation-error which is non-linear in only
Bc and Bvm. This formulation suggests the following iterative opti-
mization procedure to approximate (11) where at iteration i we aim
to minimize

JWM (aci ,b
c
i ,b

v
i ) = max

0≤Ω≤π
1≤m≤M

1

|Aci−1|
|Em,i| (15)

where the equation-errorEm,i is weighted by the inverse frequency-
response of Aci−1 from the previous iteration. Thus at convergence
ideallyAci ≈ Aci−1 and hence (Aci−1)−1Em,i ≈ Ẽm approximating
the desired output-error minimization. This approach is similar to
the well-known Steiglitz-McBride method [12] for LS identification
of single-input-single-output (SISO) systems, which was also suc-
cessfully applied to LS estimation of the approximate SIMO system
in [8]. It should be noted that the Steiglitz-McBride method [12]
as well as the approach in [8] use iterative LS estimation whereas
minimizing (15) yields an iterative minmax optimization problem.
A similar iterative optimization procedure was presented in [13] in
the context of SISO digital filter design.

The cost function in (15) is non-linear in Bc and Bvm and hence
yields a non-linear optimization problem. However, to minimize
(15) the problem can be split into two separate convex subprob-
lems. Hence, we employ a two-step alternating optimization proce-
dure similar to the two-step alternating optimization procedure pro-
posed to minimize the LS equation-error in [7] or the the weighted
LS equation-error in [8].
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Step 1: We assume ac and bc fixed to be fixed to values from
the previous iteration and estimate the coefficient vector bv that min-
imizes

JWM (bvi ) = max
0≤Ω≤π

1≤m≤M

1

|Aci−1|
|Evm,i| (16)

with

Evm,i = Aci−1Hm −Bci−1B
v
m,i. (17)

This equation-error can be written in the time-domain as [7]

evm,i = h̃m + H̃maci−1 − B̃c
i−1b

v
m,i (18)

where h̃m is the (Ñh
z + Nc

p + 1)-dimensional zero-padded version
of hm with Ñh

z = max{Nh
z , N

c
z + Nv

z } + 1, H̃m is the (Ñh
z +

Nc
p + 1)×Nc

p -dimensional convolution matrix of h̃m and B̃c
i−1 is

the (Ñh
z +Nc

p + 1)× (Nv
z + 1)-dimensional convolution matrix of

bci−1. The minimization of (16) can be reformulated as the following
linear program (LP) [14]

min
t,bv

i

t

s.t. t ≥ 0

|cT (Ω)
( 1

Aci−1(q−1)
evm,i

)
| ≤ t ∀m,Ω

|sT (Ω)
( 1

Aci−1(q−1)
evm,i

)
| ≤ t ∀m,Ω

(19a)

(19b)

(19c)

(19d)

with q−1 the unit delay operator [1], i.e., q−1hm[k] = hm[k − 1],
k the sample index, hence essentially a filtering operation on the
equation-error evm,i is performed and

c(Ω) = [ 1 cos Ω . . . cos(Ñh
z +Nc

p)Ω ]T , (20)

s(Ω) = [ 0 sin Ω . . . sin(Ñh
z +Nc

p)Ω ]T . (21)

The expressions in (19c) and (19d) essentially compute the absolute
values of the real and the imaginary part of the frequency response of
the weighted equation-error in (16). This LP can then be efficiently
solved using convex optimization methods, e.g., CVX [15, 16].

Step 2: We assume bv fixed to be fixed to the value from the
previous step and estimate the coefficient vectors ac and bc that min-
imize

JWM (aci ,b
c
i ) = max

0≤Ω≤π
1≤m≤M

1

|Aci−1|
|Ecm,i| (22)

with

Ecm,i = AciHm −BciBvm,i (23)

Note that stability of the IRs estimated by minimizing (22) is not
guaranteed. Hence, the location of the poles, i.e., the roots ofAci (z),
needs to be constrained. In general, stability of a causal pole-zero
filter is guaranteed if all poles are located strictly inside the unit-
circle. A sufficient condition for stability of 1

Ac
i (z)

is that the real
part of its frequency response is strictly positive [17], i.e.,

Re{Aci} > 0, ∀Ω. (24)
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Fig. 2. Frequency response and phase responses of the IRs m =
1, 2, 3, 4 used in the experimental evaluation.

To control the strength of the constraint a small positive constant δ
is typically introduced [17], i.e.,

Re{Aci} ≥ δ, ∀Ω. (25)

In order to rewrite the cost function in (22) subject to the constraint
in (25) as an LP we again first rewrite Ecm,i in the time-domain as
[7]

ecm,i = h̃m + H̃maci − B̃v
m,ib

c
i (26)

with B̃v
m,i the (Ñh

z +Nc
p + 1)×Nc

z + 1-dimensional convolution
matrix of bvm,i. This allows to reformulate the minimization of (22)
subject to the stability constraint in (25) as the following LP

min
t,ac

i ,b
c
i

t

s.t. t ≥ 0

|cT (Ω)
( 1

Aci−1(q)
ecm,i

)
| ≤ t ∀m,Ω

|sT (Ω)
( 1

Aci−1(q)
ecm,i

)
| ≤ t ∀m,Ω

−
Nc

p∑
l=1

ac[l]cos(lΩ) ≤ 1− δ ∀Ω

(27a)

(27b)

(27c)

(27d)

(27e)

where in (27e) the stability constraint (25) has been reformulated to
be applicable to linear programming.

The LPs in (19) and (27) are solved alternatingly until some
convergence criterion is achieved or a maximum number of itera-
tions is exceeded. Furthermore, the continuous variable Ω is dis-
cretized by using an equidistant grid of N frequencies Ωn in the
range 0 ≤ Ωn ≤ π.

5. EXPERIMENTAL EVALUATION

In this section the proposed minmax estimation procedure maximiz-
ing the MSG is evaluated and compared to the LS estimation proce-
dure of [8] minimizing the misalignment. Acoustic feedback paths
were measured using a two-microphone behind-the-ear hearing aid
with an open-fitting ear mold on a dummy head with adjustable ear
canals [18]. The IRs were sampled at fs = 16 kHz and truncated to
order Nh

z = 99. The frequency and phase responses of four acous-
tic feedback paths used in the evaluation are depicted in Figure 2.
Two IRs (m = 1, 2) were measured without obstruction and two
IRs (m = 3, 4) were measured with a telephone receiver in close
distance.

The performance was evaluated in terms of the MSG defined
in (10). Evaluations were made for the following set of parame-
ters: Nc

p , N
c
z ∈ {0, 4, 8, . . . , 24}, Nv

z ∈ {6, 12, . . . , 48}. In the
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Fig. 3. MSG improvements of the proposed minmax optimization
(MM) and LS optimization of [8] using Nc = 8 compared to using
Nc = 0.

following Nc denotes the number of common part parameters, i.e.,
Nc = Nc

p + Nc
z . Note that different combinations of Nc

p and Nc
z

can lead to the same value of Nc. We used N = 1025 discrete
frequencies and δ = 10−6 to control the stability margin in (27e).
Since it was experimentally found that a good initialization for the
proposed minmax optimization procedure is crucial, we used the so-
lution obtained from the LS approach proposed in [8] to initialize the
coefficient vectors ac and bc.

5.1. Improved maximum stable gain

Figure 3 shows exemplary average MSG improvements for IRsm =
1, 2 when using Nc = 8 compared to using Nc = 0, i.e., not us-
ing any common part information, for the proposed minmax (MM)
optimization and the LS optimization of [8]. The average has been
computed for a given combination of common part parameters Nc

p

and Nc
z across both IRs. Note that three different choices of Nc

p

and Nc
z from the considered parameter set lead to Nc = 8 where

only the combination with the maximum improvement is depicted
in Figure 3. The results indicate that using common part knowledge
improves the MSG for both the proposed minmax optimization and
the LS optimization. In general these large improvements are ex-
pected due to the fact that by including common part information
the total number of available parameters is increased. In addition
improvements decrease towards larger Nv

z since most the energy of
the IRs is located within the first 50 samples. Nevertheless, the pro-
posed minmax optimization clearly outperforms the LS optimization
of [8] in terms of MSG.

To compare the two optimization procedures for different
choices of Nc Figure 4 depicts the MSG improvement of the min-
max optimization compared to the LS optimization for different
choices of Nc. Here the average improvement is computed across
the different combinations of Nc

p and Nc
z leading to the same Nc

and both IRs (m = 1, 2). Furthermore the error bars indicate the
minimum and maximum improvement. Again the minmax opti-
mization procedure outperforms LS optimization procedure in terms
of MSG with average improvements as large as 4dB. Improvements
appear to be rather constant in the range of 2-3 dB across different
values of Nv

z and tend to increase for larger values of Nc and Nv
z .

5.2. Robustness to unknown feedback paths

Modeling of the acoustic feedback path as the combination of a com-
mon part and variable part(s) is motivated by the goal to reduce the
number of adaptive parameters, i.e., the number of parameters Nv

z

used to model the variable part, to reduce complexity and increase
convergence speed.

Here we thus investigate the robustness of the common part es-
timate to unknown feedback paths, i.e., feedback paths that were
not included during optimization, in terms of the minimum number
of variable part coefficients Nv

z required to achieve a desired MSG.
Compared to the IRs depicted in Figure 2 four additional IRs were
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Fig. 5. Minimum number of variable part parameters Nv
z as a func-

tion ofNc given a desired MSG of 40 dB for different acoustic feed-
back paths.

included in the evaluation. Two IRs (m = 5, 6) were measured af-
ter repositioning of the hearing aid without any obstruction (similar
to IRs m = 1, 2), while two IRs (m = 7, 8) where measured with
a telephone receiver at a distance of approximately 24cm. First the
common part Hc(z) is estimated with the proposed minmax opti-
mization procedure using only IRs m = 1, 2. Keeping the com-
mon part fixed the variable parts for IRs m = 3, 4, m = 5, 6 and
m = 7, 8 are then estimated using (16).

Figure 5 depicts the minimum number of variable part parame-
ters Nc

z required to achieve a desired MSG of 40 dB as a function of
the number of common part parameters. Note that Nc = 0 corre-
sponds to using no common part information. For IRsm = 1, 2 best
performance is achieved as could be expected as those were included
during optimization. Similar results are obtained for IRs m = 5, 6
indicating that the common part is robust to minor changes of the
hearing aids position. However, in the presence of a telephone re-
ceiver the performance degrades depending on the positioning. Nev-
ertheless, for low Nc a reduction of the variable part parameters is
still possible for both telephone positions. These results indicate that
even for changing acoustic conditions the proposed common part de-
composition can achieve a reduction for the variable part parameters
given a desired MSG.

6. CONCLUSION

In this paper the problem of estimating a common pole-zero filter
from a set of measured acoustic feedback paths was formulated as a
minmax optimization problem aiming to maximize the MSG. The re-
sulting non-linear cost function was minimized using alternating op-
timization techniques. Experimental results using measured acoustic
feedback paths indicate that the proposed estimation procedure leads
to a higher MSG compared to existing LS optimization procedures
minimizing the misalignment. Furthermore, for a desired MSG the
proposed minmax optimization is able to reduce the number of the
variable part parameters even for unknown feedback paths.

652



7. REFERENCES

[1] A. Spriet, S. Doclo, M. Moonen, and J. Wouters, “Feedback
Control in Hearing Aids,” in Springer Handbook of Speech
Processing, pp. 979–999. Springer-Verlag, Berlin, Germany,
2008.

[2] T. van Waterschoot and M. Moonen, “Fifty Years of Acoustic
Feedback Control: State of the Art and Future Challenges,”
Proc. IEEE, vol. 99, no. 2, pp. 288–327, Feb. 2011.

[3] S. Haykin, Adaptive Filter Theory, Prentice Hall, 3rd edition,
1996.

[4] A. H. Sayed, Fundamentals of Adaptive Filtering, John Wiley
& Sons, 2003.

[5] J. M. Kates, “Feedback Cancellation Apparatus and Methods,”
US Patent, 6,072,884, 2000.

[6] G. Ma, F. Gran, F. Jacobsen, and F. Agerkvist, “Extracting
the invariant model from the feedback paths of digital hearing
aids.,” J. Acoust. Soc. Am., vol. 130, no. 1, pp. 350–63, July
2011.

[7] H. Schepker and S. Doclo, “Modeling the common part
of acoustic feedback paths in hearing aids using a pole-zero
model,” in Proc. Int. Conf. Acoust. Speech Signal Process.
(ICASSP), Florence, Italy, May 2014, pp. 3693–3697.

[8] H. Schepker and S. Doclo, “Estimation of the common
part of acoustic feedback paths in hearing aids using iterative
quadratic programming,” in Proc. Int. Workshop Acoust. Sig-
nal Enhancement (IWAENC), Antibes - Juan Les Pins, France,
Sept. 2014.

[9] Y. Haneda, S. Makino, and Y. Kaneda, “Common acousti-
cal pole and zero modeling of room transfer functions,” IEEE
Speech Audio Process., vol. 2, no. 2, pp. 320–328, 1994.

[10] J. M. Kates, “Room reverberation effects in hearing aid feed-
back cancellation,” J. Acoust. Soc. Am., vol. 109, no. 1, pp.
367–378, Jan. 2001.

[11] H. Nyquist, “Regeneration theory,” Bell System Technical
Journal, vol. 11, no. 1, pp. 126–147, 1932.

[12] K. Steiglitz and L. McBride, “A technique for the identification
of linear systems,” IEEE Trans. Autom. Control, vol. 10, no. 4,
pp. 461–464, 1965.

[13] W.S. Lu and A. Antoniou, “Design of digital filters and filter
banks by optimization: A state of the art review,” in Proc.
European Signal Proc. Conf., Tampere, Finland, 2000.

[14] S. P. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge university press, 2004.

[15] Michael Grant and Stephen Boyd, “Graph implementations for
nonsmooth convex programs,” in Recent Advances in Learning
and Control, V. Blondel, S. Boyd, and H. Kimura, Eds., Lec-
ture Notes in Control and Information Sciences, pp. 95–110.
Springer-Verlag Limited, 2008.

[16] Michael Grant and Stephen Boyd, “CVX: Matlab soft-
ware for disciplined convex programming, version 2.1,”
http://cvxr.com/cvx, Mar. 2014.

[17] A. Chottera and G.A. Jullien, “A linear programming approach
to recursive digital filter design with linear phase,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 29, no. 3, pp. 139–149, Mar
1982.

[18] M. Hiipakka, M. Tikander, and M. Karjalainen, “Modeling the
External Ear Acoustics for Insert Headphone Usage,” J. Audio
Eng. Soc., vol. 58, no. 4, pp. 269–281, Apr. 2010.

653


