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ABSTRACT

The objective of the speech distortion weighted multichannel Wiener
filter (MWF) is to reduce background noise while controlling speech
distortion. This can be achieved by means of a trade-off parameter,
hence, selecting an optimal trade-off parameter is of crucial impor-
tance.

Aiming at incorporating knowledge about the resulting speech dis-
tortion and noise power, in this paper we propose to compute the
trade-off parameter as the point of maximum curvature of the para-
metric plot of noise power versus speech distortion. To determine a
narrowband trade-off parameter, an analytical expression is derived
for computing the point of maximum curvature, whereas to deter-
mine a broadband parameter an optimization routine is used. The
speech distortion and the noise power terms can also be weighted in
advance, e.g. based on perceptually motivated criteria. Experimen-
tal results show that using the proposed method instead of the MWF
improves the intelligibility weighted SNR without significantly de-
grading the speech distortion.

Index Terms— noise reduction, speech distortion, MWE, trade-
off parameter, L-curve

1. INTRODUCTION

In many speech communication applications such as teleconferenc-
ing applications, hearing aids, and voice-controlled systems, the mi-
crophone signals are often corrupted by additive background noise,
which can significantly impair speech intelligibility. To tackle this
problem several multichannel noise reduction techniques have been
investigated, which exploit both spatial and spectro-temporal infor-
mation to reduce the background noise while limiting speech distor-
tion [1, 2, 3, 4, 5]. A commonly used noise reduction technique is
multichannel Wiener filtering (MWF) which minimizes the mean-
square error between the output signal and the speech component
in one of the microphones [6, 7]. The error typically consists of a
noise power term and a speech distortion term. While the MWF as-
signs equal importance to both terms, the speech distortion weighted
MWF (MWFspw) incorporates a trade-off parameter which provides
a trade-off between noise reduction and speech distortion [1, 2]. Due
to the arising trade-off, the choice of this parameter in the MWFspw
is of crucial importance.

Typically a fixed trade-off parameter, empirically selected, has been
used which can be advantageous in preventing the filter coefficients
from changing excessively, hence avoiding spectral peaks that might
be perceived as musical noise. However, using a fixed parameter can
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be suboptimal since it does not reflect the typically changing speech
and noise powers in different time-frequency bins [8, 9, 10, 11].
Hence, in [8, 9, 10] it has been proposed to use a soft voice activity
detector [12] to weight the speech distortion term by the probabil-
ity that speech is present and the noise power term by the probabil-
ity that speech is absent. This principle has been further extended
in [11] where an empirical strategy for the selection of a narrowband
trade-off parameter has been proposed based on the instantaneous
masking threshold [13].

In this paper a systematic method for selecting a narrowband trade-
off parameter as well as a broadband one is established. Aiming at
incorporating knowledge about the resulting speech distortion and
noise power, it is proposed to use the parameter that yields small and
approximately equal relative changes in both quantities. Mathemati-
cally this parameter is defined as the point of maximum curvature of
the parametric plot of noise power versus speech distortion. Further-
more, the speech distortion and noise power terms can be weighted
in advance, based on what is more important to the speech com-
munication application under consideration or based on perceptually
motivated criteria. An analytical expression in terms of the signal-to-
noise ratio (SNR) is derived for the narrowband trade-off parameter,
whereas an optimization routine needs to be used to compute the
broadband trade-off parameter. The narrowband trade-off parame-
ters in [8, 11] can then be derived within the proposed method by
selecting appropriate weighting functions.

2. CONFIGURATION AND NOTATION

Consider an M -channel acoustic system, where the m-th micro-
phone signal Y7, (k, 1) at frequency index k and time index [ consists
of a speech component X, (k, 1) and a noise component Vi, (k, 1),
ie., Y (k,1) = Xm(k,1)+ Vi (k,1). For the sake of readability the
time index ! will be omitted in the remainder of this paper, except
where explicitly required. In vector notation, the M -dimensional
vector y (k) of the received microphone signals can be written as

[y (k) = x(k) + v(k) | ()

with y(k) = [Y1(k) ...Yar(k)]”, and the speech and noise vec-
tors x(k) and v (k) similarly defined. Defining the vector of filter
coefficients w(k) similarly as y(k), the output signal Z(k) is given
by

Z(k) = w (k)y(k) = w" (k)x(k) + w" (k)v(k) | (2)

The MWF aims at noise reduction by minimizing the mean-square
error between the output signal and the received speech component
in the m-th microphone, i.e., reference microphone. In the MWFspw
a trade-off parameter (k) has been incorporated, which allows to
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trade-off between noise reduction and speech distortion [1, 2]. As-
suming that the speech and noise components are uncorrelated, the
MWFspw cost function can be written as

min E{|w" (k)x(k) —ex(k)[*}+u(k) E{lw" (k)v(k)*}
—_—

Px (k) Py (k)

3)
with & the expected value operator, e,,, the M -dimensional selector
vector, i.e., a vector of which the m-th element is equal to 1 and
all other elements are equal to 0, ¥x(k) the speech distortion, and
1y (k) the noise power. The filter minimizing the cost function in (3)
is given by

w(k) = [Rx(k) + pu(k)Ro (k)] " Rx(k)em, 4)

with Rx (k) and Ry (k) being the speech and noise correlation ma-
trices respectively, defined as

&)
(6)

R (k) = E{x(k)x" (k)}
Ry (k) = E{v(k)v" (k)},

P.(k)a(k)a" (k),

where Ps(k) = E{|S(k)|*} is the power spectral density of the
speech source and a(k) = [A1(k) ... An(k)]T is the vector of
the acoustic transfer functions (ATFs). The MWEF in (4) can be de-
composed into a Minimum Variance Distortionless Response Beam-
former (MVDR) wwmvypr (k) and a single channel Wiener postfilter
G (k) applied to the MVDR output [14], i.e.,

Wik — A° Ry (k)a(k) p(k)
0= A iR at) 5 +o®) | "
wmvpR (k) Gk

with p(k) being the SNR at the output of the MVDR beamformer,
ie.,

p(k) = Pi(k)a™ (k)R (k)a(k) (8)

Using (k) = 0in (7), the MWFspw yields the MVDR beamformer,
which reduces the noise while keeping the speech component in the
reference microphone undistorted, i.e., wiypra(k) = A (k). Us-
ing pu(k) # 0, the residual noise at the output of the MVDR beam-
former can be further suppressed at the cost of introducing speech
distortion. Using u(k) = 1, the MWFspw results in the MWF which
assigns equal importance to the speech distortion and noise power
terms. If (k) > 1, the noise power is reduced further in compar-
ison to the MWF at the expense of increased speech distortion. On
the contrary, if u(k) < 1 speech distortion is reduced further at the
expense of increased noise power. Hence the selection of the trade-
off parameter in the MWFspw is of crucial importance.

3. SELECTION OF THE TRADE-OFF PARAMETER

In the following, the L-curve method used for the automatic selection
of the regularization parameter in least squares problems [15, 16] is
adapted to select a trade-off parameter in the MWFspw.

3.1. Narrowband trade-off parameter

Applying the filter w(k) from (7) and using the definition of Rx (k)
in (5), the speech distortion 1)« (k) can be expressed as

G (k) = Pu(k)| Aun () g‘Q(’“)

(k) + p(k)]?
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Furthermore, the noise power can be expressed as

o (k) = Pu (k)| Am (k)| (10)

Clearly it is desirable to use a trade-off parameter p(k) that yields
no speech distortion and no noise power, i.e., perfect noise reduc-
tion. However, given the inversely proportional relationship between
1« (k) and 1)+ (k), this is not achievable. Fig. la depicts a typical
parametric plot of ¥ (k) versus 1« (k) for 50 trade-off parameters
linearly spaced between 10~* and 5, with the marked points show-
ing the exact value of p(k) at the given positions. Due to the arising
trade-off between 1 (k) and 1« (k), this parametric plot has an L-
shape, with the corner (i.e., point of maximum curvature) located
where the filter w(k) changes in nature from being dominated by
large noise power to being dominated by large speech distortion. At
the point of maximum curvature, i.e., u(k) = 0.5 in the depicted
example, speech distortion and noise power are simultaneously min-
imized. Hence we propose to select the trade-off parameter (k) as
the point of maximum curvature of the parametric plot of v (k) ver-
sus ¥« (k).

Using such a parameter inherently implies that maintaining a low
speech distortion and a high noise reduction performance is equally
valuable to the speech communication system. However, in certain
systems speech intelligibility is of central importance, hence one
could allow for a higher noise reduction performance at the cost
of increased speech distortion. In communication systems where
speech quality is of central importance, noise reduction could be
sacrificed to maintain a lower speech distortion. Furthermore, the
importance of maintaining a low speech distortion or a high noise re-
duction performance also varies between different frequency bands,
e.g. based on auditory masking properties. To account for these dif-
ferences, we propose introducing a weighting function to the speech
distortion and noise power terms, i.e.,

Yax (k) = a(k)¥x(k) and sy (k) = B(k)Yv(k),  (11)

with a(k) and (k) being the speech distortion and noise power
weighting functions, defined e.g. based on psychoacoustically mo-
tivated measures such as average masking threshold [13] or speech
intelligibility weighting [17] (cf. Section 4). Introducing a weighting
function changes the point of maximum curvature. Fig. 1b depicts
the parametric plot of ¥gy (k) versus ¥ax (k) when the speech dis-
tortion term is weighted more, i.e., a(k) = 2, (k) = 1, and when
the noise power is weighted more, i.e., a(k) = 1, (k) = 2. As
it can be seen, putting more emphasis on the speech distortion term
yields a lower trade-off parameter, i.e., the point of maximum curva-
ture is 41(k) = 0.1. On the other hand putting more emphasis on the
noise power yields a higher trade-off parameter, i.e., (k) = 2. The
location of these points is also marked in the original plot in Fig. 1a,

. ou(k) =05 | ~ % — 20 (k) vs Py (k)
205 eu(k) =0.1 52;05 )L Y (k) Vs 20y (K)
= w(k) =20 &7 +..2.0
| | | | | * 1
0% 05 1 15 00 05 1 15
U (k) Yax(k)
(a) (b)

Fig. 1: Typical parametric plot of (a) noise power versus speech
distortion and (b) (weighted) noise power versus (weighted) speech
distortion



showing how weighting the speech distortion or noise power more
changes the resulting trade-off in comparison to when no weights are
applied.

The curvature (k) of the parametric plot of 1y (k) versus 1ax (k)
is defined as [18]

() = Lom(EVR () = (R (k)
{[Was ()] + W, (R)]2}2

12)

where {}' and {-}” denote the first and second derivative with re-
spect to (k) respectively. The computation of the derivatives yields

u(k)p(k)

Yax (k) = 2a(k)Ps(k)|Am (k)| W7 (13)
" - 24 2p(k)[72:u(k)+p(k)]
(k) = 20()P (1) 4, (b LB 14
/ _ 2 P(k)

V() = 2BMP.) A o (9)
Wl () = 68(k) Pa (k) | A ()2 L) (16)

[1(k) + p(k)]*

Substituting (13) to (16) in (12), the expression for the curvature can
be simplified to

a(k)B(k) (k) + p(k)]*

Kk(k
*) 2P (k)| Am (k) |?p(k) 02 (k)p? (k) + B2 (k)]

an

3
2

To compute the optimal trade-off parameter p(k), the curvature
in (17) is maximized by setting its derivative to 0, i.e.,

1= SR +p(0)[8° ()~ (u(k)p(k)] _
P (k)| Am (k )|2p(/€)[a2(k) (k)+52(k))2
= g ( ) — a®(k)u(k)p(k) = 0. (18)
The solution to (18) yields
_ Bk
Hoh) = o o(®) 4

It should be noted that 1, (k) only depends on the weighting func-
tions a(k), B(k), and on the SNR at the output of the MVDR beam-
former p(k). The SNR can be estimated using e.g. the decision-
directed approach in [19] or the cepstro-temporal smoothing-based
estimator in [20].

Fig. 2 depicts the postfilter gain G(k) for different choices of the
trade-off parameter as the SNR varies from —20 dB to 20 dB. For
SNRs lower than 0 dB, using the proposed trade-off parameter when
no weights are applied, i.e., a(k) = 1,8(k) = 1, yields a more
aggressive gain function than the MWE, i.e., a higher noise reduc-
tion performance as well as a higher speech distortion. For SNRs
greater than 0 dB the proposed method yields a less aggressive gain
function than the MWF, i.e., a lower noise reduction performance
as well as lower speech distortion. Weighting the speech distortion
term more, i.e., a(k) = 2, (k) = 1, or the noise power term more,
ie., a(k) =1, (k) = 2, shifts the gain function to the left or right
respectively.

3.2. Broadband trade-off parameter

Using the narrowband parameter in (19) is advantageous in order
to account for the SNR differences in different frequency bands.
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Fig. 2: Postfilter gain as a function of the SNR for n(k) = 1 and for

the proposed parameter 1, (k) with different choices of the weight-

ing functions

However in case of large SNR differences the trade-off parameter
might vary significantly, resulting in large variations in G(k). Such
large variations might lead to undesirable spectral outliers. Hence in
the following, we propose extending the method discussed above to
compute a broadband trade-off parameter (.

The weighted broadband speech distortion W, and the weighted
broadband noise power Vg, are defined as the summation of their
respective narrowband counterparts, i.e.,

K—

[un

K—-1

and Wy = > gy (k)

Yax (k) (20)

k=0

with K denoting the total number of frequency bins and tax (k) and
Yav (k) expressed as a function of u. The curvature of the paramet-
ric plot of Wg, versus W, is defined similarly as in (12), where
the derivatives can be computed as the summation of the respective
narrowband derivatives in (13) to (16). Since no analytical solution
can be found for the parameter . that maximizes the curvature of
W g, versus W, an iterative optimization technique has been used.
The analytical expression for the gradient of the curvature has been
provided to the optimization routine in order to improve its numeri-
cal robustness and convergence speed. However, this expression has
been omitted here due to space constraints.

4. EXPERIMENTAL RESULTS

In this section the performance when using the MWEF, i.e., n = 1, is
compared to the performance when using the proposed method for
the selection of the trade-off parameter in the MWFspw.

4.1. Trade-off parameters

Within the proposed method, the following 3 alternative choices of
the narrowband trade-off parameter are evaluated:

i) no weights are applied to the speech distortion and noise
power terms, i.e., uy = 1/p(k, 1),

ii) the speech distortion term is weighted more, i.e., piysp =
1/[a?(k)p(k,1)] with a(k) > 1,

iii) the noise power term is weighted more,
B2(k)/p(k, 1) with B(k) > 1

with a(k) and (k) determined using the following simple approach
based on the speech intelligibility index [17]. In [17] each frequency
bin is assigned an intelligibility index to reflect how much a perfor-
mance improvement in that bin contributes to the overall speech in-
telligibility improvement. In this work the intelligibility indexes are
scaled between 1 and 10, which are lower and upper bounds selected
such that the trade-off parameter stays within reasonable values. By
setting «(k) and B(k) to the scaled intelligibility indexes, speech
distortion or noise power are weighted more in frequency bins with
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Fig. 4: Intelligibility weighted speech distortion using the fixed parameter ;. = 1 and the proposed parameters

a high speech intelligibility index. Furthermore, using the method
described in Section 3.2 also the broadband trade-off parameters for
cases i) — iii) have been computed, referred to as pi;, pp p, and

Hpsp-

4.2. Setup and performance measures

We have considered a scenario with M/ = 2 microphones placed
5 cm apart and a single speech source located at 0°. The speech
components were generated using measured room impulse responses
with reverberation time Tg9 ~ 450 ms [21]. The noise components
consisted of nonstationary babble speech generated using the algo-
rithm in [22] under the assumption that the sound field is diffuse. The
performance for several intelligibility weighted input SNRs ranging
from —5 dB to 10 dB has been investigated. The MVDR filter coef-
ficients have been computed using anechoic steering vectors assum-
ing knowledge of the direction-of-arrival of the speech source and
a theoretically diffuse noise correlation matrix. The signals were
processed at a sampling frequency fs = 16 kHz using a weighted
overlap-add framework with a block size of 512 samples and an
overlap of 50% between successive blocks. The cepstro-temporal
smoothing-based approach in [20] has been used to estimate the
SNR at the output of the MVDR beamformer. The minimum gain
of the postfilters has been set to —10 dB. In order to avoid temporal
outliers, a moving average smoothing over 5 time blocks has been
applied to the obtained trade-off parameters. The minimum value
allowed for the trade-off parameters has been set to 0.1. Since the
performance of the MVDR beamformer is not relevant within the
scope of this paper, the performance for the different trade-off pa-
rameters has been evaluated with respect to the beamformer output
using the intelligibility weighted SNR improvement ASNR; and the
intelligibility weighted speech distortion SD; computed as in [6].

4.3. Results

Fig. 3a and 4a depict the ASNR; and the SDy values for x = 1 and
for the different choices of the narrowband parameter. It is shown
that using p¢,; results in a systematic improvement of 1 dB or higher
in intelligibility weighted SNR in comparison to using 4 = 1. For
high input SNRs, this improvement causes no additional speech
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distortion as can be seen in Fig. 4a. However, for low input SNRs
using un causes a higher speech distortion than x4 = 1 since the
applied gain function is more aggressive. Furthermore, putting more
emphasis on the speech distortion term, i.e., using pty s, yields a
lower ASNR; in comparison to using ;4 = 1 while decreasing the
speech distortion. On the other hand, putting more emphasis on
the noise power, i.e., using iy yp, results in a significantly higher
improvement in intelligibility weighted SNR at the cost of increased
speech distortion. At low input SNRs however, ASNR; using (i, «p
is not higher than when using p,;, which we believe occurs due to
errors in the SNR estimation at low input SNRs.

In order to evaluate the performance when using the proposed
method to select a broadband trade-off parameter, Fig. 3b and 4b
depict the ASNR; and the SD;y for = 1 and for the different
choices of the broadband parameter. Similarly as for the narrow-
band comparisons, using p, yields a higher ASNR; than ¢ = 1
at the cost of increased speech distortion. When more emphasis is
put on the speech distortion term, i.e., using py o, the noise reduc-
tion performance and the speech distortion are slightly decreased
in comparison to using ¢ = 1. On the other hand, when the noise
power term is weighted more, i.e., using fi; p, the noise reduction
performance is increased at the cost of increased speech distortion.
Finally, comparing the performance of the narrowband and broad-
band parameters, it can be said that using a narrowband trade-off
parameter is more advantageous since it typically yields a higher
noise reduction performance (cf. Fig. 3a and 3b) at a lower speech
distortion (cf. Fig. 4a and 4b). However, subjective listening tests
are necessary in order to establish whether these differences are
significant.

5. CONCLUSION

In this paper it has been proposed to select the trade-off parameter
in the MWFspw as the one that maximizes the curvature of the para-
metric plot of noise power versus speech distortion. The speech dis-
tortion and the noise power terms can be weighted in advance, e.g.
based on perceptually motivated criteria. Experimental results have
shown that in comparison to the MWEF, using the proposed trade-off
parameter improves the intelligibility weighted SNR without signif-
icantly affecting the speech distortion at positive SNRs.
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