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Abstract—Nonnegative matrix factorization (NMF) has been
actively investigated and used in a wide range of problems in the
past decade. A significant amount of attention has been given to
develop NMF algorithms that are suitable to model time series
with strong temporal dependencies. In this paper, we propose a
novel state-space approach to perform dynamic NMF (D-NMF).
In the proposed probabilistic framework, the NMF coefficients
act as the state variables and their dynamics are modeled using
a multi-lag nonnegative vector autoregressive (N-VAR) model
within the process equation. We use expectation maximization and
propose a maximum-likelihood estimation framework to estimate
the basis matrix and the N-VAR model parameters. Interestingly,
the N-VAR model parameters are obtained by simply applying
NMF. Moreover, we derive a maximum a posteriori estimate of
the state variables (i.e., the NMF coefficients) that is based on a
prediction step and an update step, similarly to the Kalman filter.
We illustrate the benefits of the proposed approach using different
numerical simulations where D-NMF significantly outperforms
its static counterpart. Experimental results for three different
applications show that the proposed approach outperforms two
state-of-the-art NMF approaches that exploit temporal dependen-
cies, namely a nonnegative hidden Markov model and a frame
stacking approach, while it requires less memory and computa-
tional power.

Index Terms—Constrained Kalman filtering, nonnegative dy-
namical system (NDS), nonnegative matrix factorization (NMF),
prediction, probabilistic latent component analysis (PLCA).

I. INTRODUCTION

N ONNEGATIVE matrix factorization (NMF) [1] is an ap-
proach to obtain a low-rank representation of nonnegative

data. In NMF, a nonnegative data matrix is factorized into a
product of two nonnegative matrices and such that
provides a good approximation of with respect to (w.r.t.) a
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predefined criterion. In our notation, each column of cor-
responds to a multivariate observation in time. and are
referred to as the basis matrix and NMF coefficient matrix, re-
spectively, where each row of represents the activity of its
corresponding basis vector over time.
Inmany signal processing applications, e.g., audio processing

and analysis of time series, the consecutive columns of ex-
hibit a strong temporal correlation. In the basic NMF approach,
however, each observation is treated individually. A simple
and useful approach to alleviate this problem is to stack the
consecutive columns of the data matrix into high-dimensional
super-vectors, and to apply NMF to learn high-dimensional
basis vectors. This frame stacking approach is one of the key
ingredients in so-called exemplar-based representations [2].
More rigorously, to model the temporal dependencies in NMF,
three main approaches have been developed in the past: 1)
Convolutive NMF [3], [4], in which the dependencies are
usually imposed on the basis matrix . 2) Smooth NMF [5],
[6, and references therein] where each row of is individually
constrained to evolve smoothly over time. 3) Approaches that
combine NMF and hidden Markov model (HMM) paradigms
[7]–[10]. In the so-called nonnegative hidden Markov model
(N-HMM) [7], [9], the NMF coefficient vectors are assumed
to be sparse and a first-order Markovian chain is considered
over the index of the active coefficients. These approaches are
explained and compared in [11] in a unified framework.
Kalman filtering and its nonlinear extensions [12], [13] have

been extensively studied within the signal processing commu-
nity to exploit temporal correlations in an optimal way. The
basic Kalman filter is based on a linear state-space model in
which both the process noise and observation noise are assumed
to be Gaussian-distributed. The goal of the Kalman filter is then
to find a minimum-mean-square-error (MMSE) estimator of the
state variables given the current and past observations. This es-
timator is obtained by minimizing the Bayesian mean square
error (MSE) where no additional constraints are imposed on the
state variables. If the noise distributions are not Gaussian, the
Kalman filter still provides the optimal linear MMSE estimator
[12].
Recently, there has been some research on developing

Kalman filters subject to state constraints. In addition to the
model reparameterization, the projection and pseudo-observa-
tion approaches are two usual solutions to handle constraints
[14]–[16]. In the projection approach, the unconstrained es-
timate (after the observation update) is projected to satisfy
the constraints. In the pseudo-observation approach, how-
ever, a fictitious observation is considered using which the
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unconstrained estimate is further updated similarly to a real
observation update. For example, in [16] Kalman filtering with
sparseness constraints on the state variables is addressed where
a pseudo-observation approach is developed. In this paper, we
focus on dynamic filtering in a state-space representation where
both the state variables and the observations are considered
to be nonnegative. In this case, the mentioned approaches can
not be used to optimally apply the constraints. This is not
only because the state variables are nonnegative, but also the
distribution of the nonnegative observations may be far from a
Gaussian distribution.
Very recently, nonnegative dynamical systems [17], [18] have

been proposed in which the NMF coefficients act as the state
variables. Compared to N-HMM, the continuous state-spaces
utilized in these approaches provide a richer mechanism to ben-
efit from the temporal dependencies. To use the temporal dy-
namics in the estimation of the NMF coefficients, we proposed
a two-step algorithm in [17] based on a prediction and an update
step. However, none of the estimators for the NMF coefficients
and the dynamic model parameters were optimally derived for
the specified assumptions. In the current work, we further refine
the theoretical foundations of our previous study in [17] and de-
rive new estimators and present new examples and results.
In this paper, we formulate the dynamic NMF using a novel

state-space representation and use the expectation-maximiza-
tion (EM) algorithm to derive optimal update rules for the NMF
coefficients and the model parameters. We consider a proba-
bilistic formulation of NMF [19] and develop a state-space rep-
resentation to model the temporal dependencies in NMF. The
process equation, which describes the evolution of the NMF co-
efficients, is based on an exponential distribution whose param-
eter is given by a multi-lag nonnegative vector autoregressive
(N-VAR) model. The observation equation is similar to static
NMF where the observations are assumed to be drawn from
a multinomial distribution. The choice of these distributions is
based on both their appropriateness to model nonnegative data
and the possibility to derive closed-form solutions. We propose
a maximum a posteriori (MAP) approach to estimate the state
variables . The obtained MAP estimate that consists of a pre-
diction step and an update step is a filtering solution since it
is only conditioned on the current and past observations. Addi-
tionally, we derive maximum likelihood (ML) estimates of the
basis vectors and the N-VAR model parameters. We show
that the ML estimate of the N-VAR model parameters is ob-
tained by simply applying NMF, which is well suited to our
nonnegative framework. We provide numerical simulations for
three examples, i.e., tracking the frequency of a single sinusoid
in noise, separation of two sources with similar basis matrices,
and speaker-dependent and -independent speech denoising ex-
amples. We compare the performance of the proposed D-NMF
approach to the performance of the static NMF approach, the
N-HMM in [7], and the frame stacking approach in [2]. Our
simulations show that the D-NMF approach outperforms these
competing algorithms, while it is less complex and hence it is a
better choice for real-time applications.
The remainder of the paper is organized as follows:

Section II provides a short overview of NMF. The proposed

dynamic NMF using a state-space model is presented in
Section III. Numerical simulations for several problems are
presented in Section IV.

II. NONNEGATIVE MATRIX FACTORIZATION

Nonnegative Matrix Factorization is a method using which
a -dimensional nonnegative matrix is ap-
proximated as , where the -dimensional matrix

and the -dimensional matrix are
both constrained to be nonnegative. The model order , i.e.,
the number of columns in , is usually less than , i.e., the
number of rows in , such that a dimension reduction is also
achieved using NMF. The -th columns of and are de-
noted by and , respectively. The nonnegativeness prop-
erty is usually helpful to interpret the factorization using the
underlying physical phenomena. In the deterministic NMF ap-
proaches [1], a cost function measuring the approximation error
is minimized under the given nonnegativity constraints. Pop-
ular choices for the cost function include Euclidean distance (in
EUC-NMF), Kullback-Leibler divergence (in KL-NMF), and
the Itakura-Saito divergence (in IS-NMF) [1], [5].
In the following, we briefly describe the IS-NMF since we

will use it in our algorithm. Letting , the IS diver-
gence for the NMF problem is defined as:

(1)

A widely used approach to minimize NMF cost functions is
using the multiplicative update rules, which minimize the cost
function in an iterative manner. For the IS-NMF, these update
rules are given as (see, e.g., [5]):

(2)

(3)

where denotes matrix transpose, represents element-wise
multiplication, and the division and powers are performed ele-
ment-wise. These updates are iteratively performed until a local
minimum of the cost function is found.
In contrast to the deterministic NMF approaches, proba-

bilistic formulations facilitate deriving the desired estimates
in a statically optimal manner. In the next section, we present
our D-NMF algorithm that is based on probabilistic latent
component analysis (PLCA)[19].

III. PROPOSED DYNAMIC NMF

A. Statistical Model Description

We propose a state-space approach to perform dynamic non-
negative factorization. In this approach, the NMF coefficients
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are assumed to evolve over time according to the following
nonnegative vector autoregressive (N-VAR) model:

(4)
where denotes a probability density function, denotes
the nonnegative observation vector at time with ,
is the order of the N-VAR model, denotes the -di-

mensional N-VAR model parameters corresponding to the -th
lag (and denotes the union of , ), is the
exponential probability density function over the vector with
independent elements as:

(5)

and represents a multinomial distribution as:

(6)

where denotes the factorial and . The conditional
expected values of and under the model (4) are given by:

(7)

which is used to obtain an NMF approximation of the input data
as .
The distributions in (4) are chosen to be appropriate for non-

negative data. For example, it is well known that the conjugate
prior for the multinomial likelihood is the Dirichlet distribution.
However, it can be shown that the obtained state estimates in
this case are no longer guaranteed to be nonnegative. There-
fore, we propose to use the exponential distribution in (4) for
which, as will be shown in Section III-C, the obtained state esti-
mates are always nonnegative. In addition, a closed-form solu-
tion can be derived under the given statistical assumptions, see
Section III-C.
If we discard the first equation in (4), we recover the basic

PLCA algorithm [19]. This special case (corresponding to
) is referred to as the static NMF as it does not model tem-

poral dependencies. Here, the observations are assumed to
be count data over possible categories. Using the PLCA no-
tation, each vector is a probability vector that represents the
contribution of each basis vector in explaining the observation,
i.e., ( ) where is a latent variable used to index
the basis vectors at time . Moreover, each column of is a
probability vector that contains the underlying structure of the
observations given the latent variable and is referred to as a
basis vector. More precisely, is the probability that the -th
element of will be chosen in a single draw from the multi-
nomial distribution in (4), i.e., with
being a -dimensional indicator vector whose -th element

is equal to one (see [17] for more explanation). Note that (by
definition) is time-invariant. In the following, this notation
is abbreviated to .
It is worthwhile to compare (4) to the state-space model uti-

lized in the Kalman filter and to highlight the main differences
between the two. First, all the variables are constrained to be
nonnegative in (4). Second, the process and observation noises
are embedded into the specified distributions, which is different
from the additive Gaussian noise utilized in the Kalman fil-
tering. Finally, in the process equation, we have used a multi-lag
N-VAR model. In our proposed algorithm, different lags can
have different importance weights, which will be discussed in
Section III-C. It is also important to note that we aim to estimate
both state-space model parameters ( and ) and state vari-
ables , where Kalman filter only estimates , given a priori
determined and .
In Section III-C, we derive an expectation-maximization

(EM) algorithm to compute maximum likelihood (ML) esti-
mates of and and to compute a MAP estimate of the
state variables . In the latter case, the estimation consists of
prediction and update steps, similarly to the classical Kalman
filter. However, we no longer update the prediction with an
additive term but we have a nonlinear update function.

B. Relation to Other Works

The proposed state-space representation in (4) provides a
framework to exploit the correlation between the consecutive
columns of the nonnegative data matrix in NMF. Several
approaches have been proposed in the literature to exploit
the temporal dynamics in NMF, such as frame stacking [2],
convolutive NMF [3], [4], smooth NMF [5], [6], [20], [21], and
state-space representations [7]–[10], [17], [18]. The state-space
representations (including our proposed approach) model the
interdependencies between different rows of the NMF co-
efficient matrix , unlike the smooth NMF approaches that
assume these rows to be independent. Most of these approaches
can be explained in a unified framework [11]. Our proposed
approach is most related to the N-HMM approach in [7] and
the nonnegative dynamical system (NDS) in [18].
Both our proposed D-NMF approach and the N-HMM ap-

proach in [7] use the PLCA framework and provide a state-space
representation to benefit from the temporal dynamics. However,
unlike the N-HMM approach that uses a discrete state-space
representation, our approach is based on a continuous state-
space representation. The principal difference between both ap-
proaches is hence the same as the difference between HMM and
Kalman filter. A continuous dynamical system is superior if the
underlying source signal smoothly transits between many (pos-
sibly infinite) states, whereas a discrete dynamical system can
be more suitable if the source signal switches between a limited
number of states. Hence, N-HMM can for example be a good
model for speech if we assume that a speech signal exhibits a
switching behavior between limited number of phonemes. On
the other hand, a continuous state-space representation is more
appropriate for multitalker babble noise, since it is generated as
the sum of a number of speech signals, and there are in prin-
ciple many states obtained by the combination of the states of
the underlying speech signals. A thorough discussion on this
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example can be found in [9]. Another important difference be-
tween our proposed D-NMF method and the N-HMM methods
in [7], [9] is computational complexity. To analyze a mixture of
two (or more) sources where each source is individually mod-
eled using an N-HMM, a factorial N-HMM has to be used. This
leads to exponential complexity in the number of sources for
N-HMMbased systems, and approximate inference approaches,
e.g., [22], have to be used to keep the complexity tractable. In
contrast, the complexity of the D-NMF approach is linear in the
number of sources and no approximation is needed.
Similar to our D-NMF approach, the NDS approach in [18]

uses a continuous state-space representation that is written as:

(8)
where -dimensional vector and scalar are model parame-
ters, is a -dimensional all-ones-vector, division of vectors is
performed element by element, and corre-
sponds to a gamma distribution over the vector with indepen-
dent elements as

(9)

where is the gamma function. Using (9), the conditional ex-
pected values of the state variables and data are given as

, and , re-
spectively.
There are three main differences between our D-NMF and

the NDS approaches. Firstly, the NDS approach assumes that
each element of the observation vector ( ) is a gamma-dis-
tributed random variable, while in our approach the observa-
tion vectors ( ) are multinomial-distributed. These assump-
tions lead to two different NMF cost functions, where one of
them may be preferred for a specific application [11]. The NDS
method minimizes the IS divergence and hence is a dynamical
IS-NMF, while our method minimizes a weighted KL diver-
gence and hence is the dynamical counterpart for PLCA. Addi-
tionally, the assumed distribution for the NMF coefficients cor-
responds to an exponential and a gamma distribution for the
NDS approach and our D-NMF approach, respectively. Sec-
ondly, our proposed D-NMF approach provides a more gen-
eral multi-lag predictor for the state variables, while the NDS
approach (as well as N-HMM approaches) use a one-lag pre-
dictor, i.e., . Thirdly, our proposed estimation approach
(Section III-C) has appealing properties regarding the estima-
tion of the state variables and the N-VAR model parameters.
Our estimation of the state variables consists of two steps corre-
sponding to a prediction and an update step, similar to a Kalman
filter, which leads to an easy and intuitive explanation of the up-
date rules. Moreover, we show that the N-VAR model parame-
ters can be estimated by applying a separate NMF,which is more
suitable in the nonnegative framework. Neither of these proper-
ties are provided in the NDS approach.

C. Estimation Algorithm

In this section, we derive an EM algorithm to estimate
the nonnegative parameters in (4), which are denoted by

, given a nonnegative data matrix . We aim
to maximize the MAP objective function for the model given
in (4), (5), and (6), i.e., as1:

(10)

Maximizing w.r.t. and results in a MAP esti-
mate of andML estimates of and . For this optimization,
we derive an EM algorithm [23], which is a commonly used ap-
proach to estimate the unknown parameters in the presence of
latent variables. The EM algorithmmaximizes a lower bound on

and iterates between an expectation (E) step and a max-
imization (M) step until convergence. We denote the EM latent
variables by , an indicator variable to index the basis vectors.
In the E step, the posterior probabilities of these variables are
obtained as:

(11)

where denotes the estimated parameters from the previous
iteration of the EM algorithm. In the M step, the expected log-
likelihood of the complete data [23, Chapter 9]2:

(12)

is maximized w.r.t. to obtain a new set of estimates. Note that
using Jensen's inequality, it can be easily proved that

is a lower bound for . Using (5) and (6), can be
equivalently (up to a constant) written as (also see [24]):

(13)

where . As mentioned in Section III-A,
and are probability vectors, and hence, to make sure that they
sum to one, we need to impose two constraints and

. To solve the constrained optimization problem,
we form the Lagrangian function and maximize it:

(14)

1Note that (as part of ) in (10) is not only conditioned on but
also on . The latter conditioning is omitted in this equation to
keep the notations uncluttered.
2For , is set to a vector consisting of ones to prevent accessing

undefined variables.



MOHAMMADIHA et al.: A STATE-SPACE APPROACH TO DYNAMIC NONNEGATIVE MATRIX FACTORIZATION 953

where , and , are Lagrange multi-
pliers. In the following, we describe the maximization w.r.t. ,
, and , respectively.
Equation (14) can be easily maximized w.r.t. to obtain:

(15)

where the Lagrange multiplier
to ensure that sums to one. For the estimation of , we pro-
pose a recursive algorithm, i.e., we estimate sequen-
tially. Therefore, we first predict the state variables as

(16)

where is the prediction result given all the past observa-
tions . In the update step, the current observation
is used to update the state estimate. This is done by maximizing
(14) w.r.t. . Setting the derivative of w.r.t. to zero, we
obtain:

(17)

The Lagrange multiplier has to be computed such that
sums to one, for which we have used an iterative Newton's

method.
Finally, the estimation of the N-VAR parameters is pre-

sented in the following. Note that there are many approaches
to estimate the VAR model parameters in the literature [25],
[26]. However, since most of these approaches are based on
least-squares estimation, they are not suitable for our nonnega-
tive framework.Moreover, they tend to be very time-consuming
for high-dimensional data. First, let us define the -dimen-
sional matrix as: . Accordingly, let
-dimensional vector represent the stacked state variables

as: . The parts of (14) that depend

on are equivalently written as:

(18)

where , denotes the -th entry of its argu-
ment, and is the IS divergence as defined in (1). The
second term in (18) is constant and can be ignored for the pur-
pose of optimization w.r.t. . Hence, the ML estimate of
can be obtained by performing IS-NMF in which the NMF co-
efficient matrix is held fixed and only the basis matrix is
optimized. This is done by executing (3) iteratively until con-
vergence. Alternatively, we can repeat (3) only once resulting
in a generalized EM algorithm. We used the latter alternative in
our simulations.
The proposed estimation approach for the N-VAR parame-

ters is able to automatically capture the importance weight for
each lag, i.e., , are not required to, e.g., be nor-

malized to have the same norm. Hence, different lags may
contribute differently, proportional to their norm, in computing

. This is achieved because the NMF coefficients
are held fixed in the IS-NMF, and we no longer have a scale am-
biguity in the NMF representation.

Algorithm 1 Proposed dynamic NMF: algorithm to learn the
model parameters.

1) Set the predefined variables (number of NMF basis
vectors), (N-VAR model order), and , (see the text).

2) Initialize and for with positive
random numbers. Set .

3) Repeat until convergence:
a) Compute using (15)
b) Compute the state variables

for do
% Predict
if then
Compute using (16).
Anneal the prediction as .

else
Set to all-ones-vector.

end if
% Update
Update the state estimate using (17).

c) Compute the N-VAR parameters
if then
Compute for using (18) and (3).

end if
d)

Algorithm 1 summarizes our proposed D-NMF approach to
estimate all the model parameters simultaneously, which is usu-
ally applied on the training data (cf. Section IV) to learn the
model parameters and . As convergence criterion, the sta-
tionarity of or EM lower bound can be checked, or a fixed
(sufficient) number of iterations can be simply used. In our sim-
ulations, we have used 100 iterations. This algorithm includes
two practical additions. First, since the EM algorithm converges
to a local optimum of the objective function, a good initializa-
tion can improve the performance. Therefore, we have intro-
duced a parameter that is used to postpone the estimation of
until a relatively good ML estimate of the state variables

has been found. We intuitively set to half of the maximum
number of iterations ( ). Additionally, we have defined
a parameter that is used to anneal (or weight) the predictions,
and it was experimentally set to 0.15 in our experiments. Intu-
itively, this heuristic trick takes into account the uncertainties
(as the covariances in the Kalman filtering), and it was found to
be beneficial in our simulations.
Algorithm 2 summarizes our filtering algorithm where the

model parameters (including and ) are learned a priori and
held fixed during the process, as it is done in classical Kalman
filtering. Here, motivated by the simulated annealing, we use
an adaptive annealing of the predictions. Intuitively, the predic-
tions are effectively used in the first iterations to prevent the EM
algorithm to get stuck in a local maximum. Then, the predictions
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are smoothed over the iterations causing the NMF approxima-
tion to be a better fit to the current observation. Moreover, for
practical problems where the dynamics of unseen data can never
be learned accurately, this adaptive annealing makes the algo-
rithm more robust.

Algorithm 2 Proposed dynamic NMF: filtering algorithm
applied at time .

1) Set the predefined variable
2) Initialize with positive random numbers. Load the
model parameters and learned using Algorithm 1.
Set .
% Predict

3) Compute predictions:
a) Compute using (16).
b) Backup the prediction .
%Update

4) Repeat until convergence:
a) Anneal the prediction as .
b) Update the state estimate according to (17).
c) .

IV. NUMERICAL SIMULATIONS

In this section, we present our experimental results using
the proposed D-NMF algorithm. We have performed simu-
lations for three examples, namely tracking the frequency of
a single sinusoid in noise (Section IV-A), separation of two
signals with similar basis (Section IV-B), and speech denoising
(Section IV-C). Since the original time-domain signals in the
described examples can take negative values, we need to trans-
form them to a nonnegative domain. For this purpose, we apply
a discrete Fourier transformation (DFT) to Hann-windowed
(overlapping) short-time frames to obtain a complex-valued
time-frequency representation of the input signals. We then
use the magnitudes of the DFT coefficients to construct the
nonnegative observation matrix to be used with NMF. We com-
pare the performance of the proposed D-NMF approach using
objective measures with the performance of the static NMF
approach [19] and two other NMF approaches that exploit the
temporal dynamics, namely the N-HMM approach in [7] and a
frame stacking approach [2]. The signal-to-noise ratio (SNR) is
used to quantify the noise level in the observations. Denoting
the clean (not known to the algorithms) and noisy time-domain
signals as and , the input SNR is defined as:

(19)

where is the sample index.

A. Tracking the Frequency of a Single Sinusoid in Noise

In this section, the performance of the proposed D-NMF
approach is demonstrated using a tracking example. Estimation
of the frequency and phase of sinusoids in noise is still an
active area of research [27]. In this experiment, we aim to

Fig. 1. Time-frequency representation of the DFT magnitudes of a single si-
nusoid with time-varying frequency. First the frequency increases, and before
reaching the Nyquist frequency (at the 127-th frame) it gradually reduces.

estimate the frequency of a single sinusoid in the presence
of noise with high levels. The target signal is sampled at a
sampling frequency of 8 kHz. The frequency of the sinusoid
is time-varying, and increases from 0.24 radians/sample (300
Hz) to 2.9 radians/sample (3700 Hz) and then reduces to 0.24
radians/sample again. The DFT with a frame length of 128
samples and a (non-overlapping) Hann window was applied
and the obtained magnitude spectrogram was used as the
nonnegative observation matrix3. Fig. 1 depicts the noise-free
observation matrix. Here, the -th element of is proportional
to the signal's energy at a specific frequency given by

.
For the simulations, white Gaussian noise was added to the

target signal at various input SNRs. In the NMF approaches,
the basis matrix was predefined (and was held fixed) as the
identity matrix of size 65 65. We set , and since we
do not expect any large jump of the frequency, we predefined
such that the diagonal elements and their adjacent neighbors

have a value of 1/3 while the rest of the elements are set to
zero. This assumption means that the frequency will either stay
constant or will smoothly increase or decrease to a higher or a
lower value, respectively.
To estimate the frequency in each short-time frame, NMF

or D-NMF ( , in Algorithm 2) was first
applied and then the frequency was computed as

in which is the index
of the maximum entry of . For comparison purposes, the
frequency was also estimated using an N-HMM approach. The
N-HMM consisted of 65 states with one spectral vector per
state. The same basis matrix and were used to predefine
the N-HMM state spectral vectors and transition matrix. This
N-HMM is effectively an HMM where the state-conditional
likelihoods are computed using a multinomial distribution. For
the N-HMM approach, is the index of the state with the

3Although the DFT results in a 128 -dimensional matrix, because of the
symmetry property of the DFT for real-valued signals, we only use the first

as the observation matrix.
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Fig. 2. Empirical mean square errors in tracking the frequency of a single si-
nusoid as a function of the input SNR.

highest posterior probability, which is determined by applying
the forward algorithm [28].
The tracking performance is evaluated using the empirical

mean square error:

(20)

where is the ground-truth frequency, and is the number
of Monte Carlo runs that is set to 50 in our simulations.
Fig. 2 shows the MSE as a function of the input SNR. As can
be seen, the D-NMF approach provides a significantly smaller
error compared to the static NMF and N-HMM approaches,
especially at low input SNRs. The performance of the N-HMM
approach degrades quickly at low input SNRs, which indicates
that the approach is not as robust as D-NMF to high noise
levels. The difference arises from the fact that in the N-HMM
approach, the state-conditional likelihoods are used during the
forward algorithm, which are sensitive to high noise levels
and exhibit a large dynamic range. For the D-NMF approach,
however, the posterior probabilities that are
used to compute (in (17)) have a smaller dynamic range
and the noise effect can be more effectively compensated by
using the temporal continuity. For higher input SNRs, the input
data matrix exhibits a clearer energy distribution (closer to the
noise-free case) such that applying the NMF and the N-HMM
approaches will also lead to good results. The simulation results
shows that at an input SNR of about , applying D-NMF
leads to slightly larger error than static NMF. This error is due
to the additional latency that is imposed by using the previous
observations to predict the current state variables.

B. Separation of Two Signals With Similar Basis

In the second experiment, we applied our proposed D-NMF
approach as a supervised separation approach for separating two
sources that share a similar basis matrix . In this experiment,
two sources (each consisting of two sinusoids with time-varying
frequencies) were added at an input SNR of 0 dB to obtain the

Fig. 3. Original and separated sources using NMF, D-NMF ( ), N-HMM,
and frame stacking approaches.

time-domain mixture. The DFT was applied using overlapping
Hann windows with a frame length of 1024 samples and an up-
date length of 256 samples. The sampling frequency was 16
kHz. The magnitude spectrogram of the two sources are sep-
arately shown in the top panel of Fig. 3. Although these sources
share a similar basis matrix (because they are just time-reversed
versions of each other) they have a very different dynamic be-
havior. The frequencies of source 1 are increasing, while the
frequencies of source 2 are decreasing.
To learn the model parameters, the static NMF and D-NMF

approaches were applied on the observations of each source sep-
arately. The number of basis vectors was set to for
each source both for NMF and for D-NMF. For the D-NMF
approach, in addition to the basis matrix , the N-VAR model
parameters , were learned for .
The annealing parameter was set to 0.1 in Algorithm 2. In ad-
dition to the static NMF and the proposed D-NMF approaches,
an N-HMM approach [7] and a frame stacking approach [2]
were implemented as alternative methods that exploit the tem-
poral dynamics in NMF. For the N-HMM approach, 50 states
with one spectral vector per state were learned for each source.
For the frame stacking approach, 8 consecutive frames were
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stacked to obtain 4096-dimensional vectors and a tall basis ma-
trix with were learned to represent each source.
In this experiment and also in Section IV-C, the high-resolu-
tion DFT-domain magnitude spectral vectors are stacked rather
than the low-resolution mel-domain spectral vectors which is
proposed in [2] because the DFT version outperformed the mel
counterpart. The number of N-HMM states, the number of basis
vectors, and the number of consecutive frames to be stacked
were experimentally set to get the best performance.
To model the mixture, we assume that the DFT magnitude

of the mixture is (approximately) equal to the sum of the
magnitudes of the DFT coefficients of the two sources [3], [6],
[7], i.e., , where the superscripts represent
the source numbers. For the NMF, D-NMF and frame stacking
approaches, the basis matrix of the mixture is constructed by
concatenating the (learned) individual basis matrices, i.e,

. Similarly, for the D-NMF approach, the
N-VAR parameters of the mixture are constructed by con-
catenating the (learned) individual N-VAR parameters, i.e.,

where is a 50 50 zero
matrix. For the N-HMM approach, a factorial N-HMM [7] is
constructed to model the mixture.
For the separation, the basis matrix and N-VAR param-

eters are held fixed and only the NMF coefficients
are estimated. For all the approaches, after

convergence of the estimation algorithm, the magnitude of the
DFT coefficients of the individual sources are estimated using
a Wiener reconstruction [17]:

(21)

where represents the element-wise multiplication, and divi-
sion is performed element by element. The separated signals
using the NMF, D-NMF ( ), N-HMM, and frame stacking
approaches are shown in Fig. 3. As can be seen, the static NMF
approach is not able to separate the sources because of the am-
biguity that is caused by the similarity of the individual basis
matrices. On the other hand, the three other approaches, lead to
a satisfactory separation of the sources by benefiting from the
temporal dependencies, where the D-NMF and frame stacking
approaches have clearly led to a better separation compared to
the N-HMM approach.
To quantify the separation performance, the output SNR was

computed as:

(22)

where is the time-domain signal corresponding to one of the
sources, and is the separated time-domain signal, obtained by
applying the overlap-add procedure to the separated magnitude
spectrogram, where the phase of the mixture signal was used to
compute the inverse DFT.
Fig. 4 shows the output SNR as a function of the N-VAR

model order ( ). Here, corresponds to the static NMF
approach with no temporal modeling. As can be seen, including
temporal dynamics in NMF has improved the output SNR by

Fig. 4. Output SNR as a function of the N-VAR model order . corre-
sponds to the static NMF approach with no temporal modeling.

more than 11 dB. By increasing , the performance slightly
improves, reaching its maximum at for this experi-
ment. Moreover, as also shown in Fig. 3, the D-NMF and frame
stacking approaches have produced higher output SNRs com-
pared to the N-HMM approach, where D-NMF has led to the
best separation performance.

C. Denoising

As the last experiment, we applied our proposed D-NMF
approach to a speech denoising problem. In this experiment,
speech signals are degraded by additive noise and the goal is
to suppress the noise and estimate the speech component given
the noisy observations. The speech signals were degraded with
multitalker babble noise or factory noise at input SNRs in the
range to 5 dB. The speech and noise signals were taken
from the TIMIT [29] and NOISEX-92 [30] databases, respec-
tively. The signals were sampled at a sampling frequency of 16
kHz. The DFT analysis was performed with the same parame-
ters as in Section IV-B.
For each noise type, an NMF model was learned using the

first 75% of the noise signals and the last 25% was used to
test the algorithms. The noise type is assumed to be known to
choose a suitable noise-dependent NMF model for denoising.
This assumption is practical for some applications and the re-
quired information can be provided by state-of-the-art environ-
ment classification techniques (see [6] for a discussion on this
topic). The denoising was performed under two conditions, de-
pending on the available information about the speaker iden-
tity. In the matched condition, the speaker identity is assumed
to be known and speaker-dependent (SD) speech models were
used in all the approaches. These models were learned using 9
speech sentences from each speaker, and another sentence from
the same speaker was used to test the algorithms. Alternatively,
in the mismatched case, a universal speaker-independent (SI)
speech model was learned using 200 speech sentences from dif-
ferent speakers. The denoising experiments were repeated for 20
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Fig. 5. Averaged output SNR over the factory and babble noise types under
the matched speaker-dependent condition. Noise type and speaker identity are
assumed to be known a priori and they are used to select noise- and speaker-
dependent models for denoising.

different speakers, where the training and test data were disjoint
in all the simulations. For all the methods, the speech DFT mag-
nitudes were estimated using the Wiener reconstruction (21).
The number of basis vectors for speech and noise were

experimentally found for each approach to obtain the best
results. For the NMF, D-NMF, and frame stacking approaches,

speech basis vectors were learned for both SD and SI
models, where for the N-HMM approach, 40 and 60 states each
consisting of 10 spectral vectors were respectively learned for
the SD and SI models. For the NMF and D-NMF approaches,
20 basis vectors were learned for each noise type, where for
the frame stacking approach, 100 and 150 basis vectors were
learned for babble and factory noise, respectively. For the
N-HMM approach a single-state model was learned for each
noise type, where the number of spectral vectors was set to 20
(for both noise types in the SD condition) and to 20 and 100 (in
SI condition) for babble and factory noise types, respectively.
For the D-NMF approach, the N-VAR model parameters were
learned for , where the annealing parameter
was experimentally set to 0.3 (for speech) and 0.1 (for both

noise types) in Algorithm 2.
Fig. 5 shows the results (averaged over both noise types) of

our denoising experiment for the matched SD condition (with
for the D-NMF approach). The figure shows the output

SNR, defined in (22), as a function of the input SNR in the
range of to 5 dB. The simulation results show that the
D-NMF and N-HMM approaches have a similar denoising per-
formance, while they significantly outperform the static NMF
approach for all considered input SNRs. The difference is max-
imum at the lowest input SNR ( ), where the D-NMF ap-
proach results in around 4.5 dB higher output SNR. Moreover,
the frame stacking approach has a considerably improved per-
formance compared to the NMF approach, but is worse than the
D-NMF and N-HMM approaches.
The results of the denoising approaches (averaged over both

noise types) for the mismatched SI condition are shown in
Fig. 6. The results show that the D-NMF ( ) approach

Fig. 6. Averaged output SNR over the factory and babble noise types, where a
universal speaker-independent speech model is used for denoising. Noise type
is assumed to be known a priori and is used to select a noise-specific NMF (or
N-HMM) model for denoising.

outperforms both the N-HMM and frame stacking approaches,
where the difference is more than 2 dB at an input SNR equal
to 5 dB. Comparing Figs. 5 and 6, we see that a higher input
SNR is obtained under the SD condition.
Fig. 7 shows the output SNR as a function of the N-VAR

model order , for the SI condition and at an input SNR equal
to 0 dB. The results for factory noise and babble noise types
are plotted in the top and bottom panels, respectively. The static
NMF is shown as a special case of D-NMF with . The re-
sults show that a significant improvement is obtained by incor-
porating the temporal dynamics into the denoising process. For
the factory noise, a small improvement is obtained by increasing
to 3, while for the babble noise the best performance is ob-

tained at . In both cases, it can be seen that a single-lag
predictor with can be used to achieve a good denoising
performance.
Finally, it is interesting to compare the computational com-

plexity and the memory requirement of the proposed D-NMF
approach to the N-HMM and frame stacking approaches. To
have a better understanding, we simply provide an estimate of
the required time to process one second of speech in the SD de-
noising example in our implementation in a PC with 3.4 GHz
Intel CPU and 8 GB RAM. It should be mentioned that this
time can be significantly reduced for all the approaches by using
an optimized implementation. Our D-NMF approach requires
around 1.5 seconds to process 1 second of input signal, while
the N-HMM and frame stacking approaches require 40 and 0.75
seconds, respectively. Considering the memory requirements
(to store the learned model parameters), D-NMF requires less
than 25% and 10% of the memory required by the N-HMM and
frame stacking approaches, respectively. As a result, the pro-
posed approach is more suitable for real-time applications with
power or memory restrictions.

V. CONCLUSIONS

In this paper, we presented a state-space representation for
nonnegative observations and nonnegative state variables,
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Fig. 7. Output SNR corresponding to the factory noise (top panel) and babble
noise (bottom panel) as a function of the N-VARmodel order at input

. Universal speaker-independent speech model is used for denoising.

which is able to efficiently model the temporal dependencies.
Since the classical Kalman filtering is not appropriate for this
setup, we derived a novel algorithm, referred to as D-NMF, to
learn the model parameters, and we developed a novel filtering
approach for the state variables. Using an iterative EM-based
estimation algorithm, an ML estimate of the basis matrix and
the N-VAR model parameters is computed. We showed that
computing the ML estimate of the N-VAR parameters is equiv-
alent to applying IS-NMF in which the observations and the
NMF coefficients are the estimates of the state variables and
their shifted versions, respectively. As for the state variables,
the algorithm provides a MAP solution that, similar to the
Kalman filtering, consists of a prediction step and an update
step. We demonstrated the algorithm using three examples
targeting tracking, separation, and denoising applications. The
results show that exploiting the temporal dynamics in NMF
can improve the performance significantly, especially at low
input SNRs. Moreover, our experimental results show that
the proposed approach outperforms an N-HMM and a frame
stacking approach where it also requires substantially less
computational power and memory, and hence, it is a better
alternative for real-time applications. Finally, our approach to
model the temporal dependencies is causal, i.e., it only uses the
past observations to process the current observation. Therefore,
unlike the frame stacking approach that has an inherent delay
of several time steps, our approach does not impose any delay
on the processed signals.
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