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Abstract—The quality of speech signals recorded in an enclosure
can be severely degraded by room reverberation. In this paper, we
focus on a class of blind batch methods for speech dereverbera-
tion in a noiseless scenario with a single source, which are based
on multi-channel linear prediction in the short-time Fourier trans-
form domain. Dereverberation is performed by maximum-likeli-
hood estimation of the model parameters that are subsequently
used to recover the desired speech signal. Contrary to the conven-
tional method, we propose to model the desired speech signal using
a general sparse prior that can be represented in a convex form as
a maximization over scaled complex Gaussian distributions. The
proposed model can be interpreted as a generalization of the com-
monly used time-varying Gaussian model. Furthermore, we refor-
mulate both the conventional and the proposed method as an opti-
mization problem with an -norm cost function, emphasizing the
role of sparsity in the considered speech dereverberation methods.
Experimental evaluation in different acoustic scenarios show that
the proposed approach results in an improved performance com-
pared to the conventional approach in terms of instrumental mea-
sures for speech quality.

Index Terms—Multi-channel linear prediction, sparse priors,
speech dereverberation, speech enhancement.

I. INTRODUCTION

C APTURING a speech signal within an enclosed space
with microphones placed at a distance from the speech

source typically results in recordings corrupted by reverbera-
tion, caused by acoustic reflections against the walls and other
surfaces within the enclosure. While moderate levels of rever-
beration can be beneficial, in most cases it results in a decreased
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speech intelligibility and automatic speech recognition perfor-
mance [1]–[4]. Hence, effective solutions for dereverberation
are required to improve speech intelligibility, perceptual speech
quality, and the performance of automatic speech recognition
systems in several speech communication applications, such
as teleconferencing, hands-free telephony, voice-controlled sys-
tems and hearing aids [3]–[5].
In the last decades, several single- and multi-microphone

dereverberation approaches have been proposed, which can be
broadly classified into acoustic channel equalization, spectral
enhancement and probabilistic model-based approaches [6].
Acoustic channel equalization techniques aim to reshape the
estimated room impulse responses (RIRs) between the speaker
and the microphone array [7]. Although in theory perfect
dereverberation can be achieved using multi-channel equal-
ization, in practice the performance may be severely limited
by the poor estimation accuracy of the RIRs, requiring robust
equalization techniques [8]–[11]. Other speech dereverberation
approaches are based on spectral enhancement [12]–[14],
where the clean speech spectral coefficients are estimated
by applying a (real-valued) gain to the reverberant spectral
coefficients. The gain function requires an estimate of the late
reverberant spectral variance [15], which is typically based
on a statistical room acoustics model. In addition, several
probabilistic model-based speech dereverberation approaches
have been recently proposed [16]–[21]. Dereverberation is
performed by estimating all unknown model parameters, e.g.,
in a maximum likelihood sense, where either an autoregressive
or a convolutive (moving average) transfer function model for
the acoustic transfer functions is assumed and the clean speech
spectral coefficients are typically modeled using a Gaussian
distribution with a time-varying variance.
For a noiseless scenario with a single speech source a blind

batch, i.e., utterance-based, speech dereverberation method
based on variance-normalized delayed multi-channel linear
prediction (MCLP) has been proposed in [16], [17]. Its efficient
time-frequency-domain implementation is often referred to as
the weighted prediction error (WPE) method [16], [17], [22].
This method assumes an autoregressive model of the reverber-
ation process, i.e., it is assumed that the reverberant component
at a certain time can be predicted from the previous samples
of the reverberant microphone signals. The desired speech
signal can then be estimated as the prediction error, i.e., speech
dereverberation boils down to estimation of the parameters
of the MCLP model. An additional delay is introduced in the
MCLP model in order to prevent distortion of the short-time
correlation of the speech signal, thereby only suppressing late
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reverberation [17], [23]. Conventionally, the complex-valued
short-time Fourier transform (STFT) domain coefficients of
the desired speech signal are modeled using a time-varying
Gaussian (TVG) model, under the assumption that the STFT
coefficients can be modeled locally (i.e., in each time-frequency
bin) using a complex Gaussian distribution with an unknown
variance. Speech dereverberation using WPE is then performed
by estimating the unknown parameters of the MCLP and TVG
models in a maximum-likelihood (ML) sense.
In this paper, we aim to provide a different view on

MCLP-based speech dereverberation in the STFT domain.
Firstly, we present a general sparse prior for the desired speech
signal and use ML estimation to estimate the parameters of
the MCLP model [24]. The sparse prior is formulated using a
convex representation that is based on a locally Gaussian model
[25]–[27]. The obtained model for the desired speech signal can
be interpreted as a TVG model with an additional hyperprior on
the unknown variance. To derive a practical algorithm, we focus
on sparse priors in the family of complex generalized Gaussian
(CGG) distributions [28], resulting in the WPE-CGG method
for speech dereverberation. In the presented framework, we
show that the conventional WPE method can be considered
as a special case which is based on a prior that strongly pro-
motes sparsity of the estimated speech signal. Secondly, we
reformulate the WPE-CGG method as an optimization problem
with a cost function given as the -norm of the desired speech
signal. Furthermore, we show that the WPE-CGG method is
equivalent to an iteratively reweighted least-squares procedure
applied to -norm minimization [29]. From this perspective,
the conventional WPE method corresponds to the case .
In the experimental section we evaluate the performance of the
conventional and the proposed methods for different acoustic
scenarios using several instrumental speech quality measures.
The obtained results show that the speech enhancement perfor-
mance can be consistently improved. While the improvements
are mild, these come with no additional computational cost,
and are consistent with the derived theoretical insights.
The paper is organized as follows. In Section II the problem

of speech dereverberation using MCLP in the STFT domain is
formulated. The conventional method for MCLP-based speech
dereverberation, based on a TVG model for the speech signal,
is presented in Section III. Our proposed method using a gen-
eral sparse prior for the desired speech signal is presented in
Section IV. In Section V both the conventional and the proposed
methods are reformulated as a minimization of the -norm of
the desired speech signal. Simulation results are presented in
Section VI.

II. PROBLEM FORMULATION

We consider an acoustic scenario where a single static speech
source in an enclosure is captured by microphones. Let
denote the clean speech signal in the time domain, with de-
noting the discrete-time index. The noiseless reverberant speech
signal observed at the -th microphone, , can
be modeled in the time domain as

(1)

where denotes the RIR between the source and the -th
microphone with length . The RIRs in the time-domainmodel
in (1) are typically very long, and dereverberation is often per-
formed in the STFT domain [16], [19], [23].
The time-doman model in (1) can be approximated in the

STFT domain using the convolutive transfer function approx-
imation [30]–[32]. Let denote the clean speech signal in
the STFT domain with time frame index and
frequency bin index , with and denoting
the number of time frames and frequency bins. The reverberant
speech signal observed at the -th microphone can be repre-
sented in the STFT domain using a convolutive (moving av-
erage) transfer function model as

(2)

where models the acoustic transfer function (ATF)
between the speech source and the -th microphone in fre-
quency bin with length time frames, and the additive term

represents the modeling error at the -th microphone.
The model in (2) is practically interesting because the time-do-
main convolution is divided into a set of convolutions in the
time-frequency domain, and has been used in various applica-
tions [15], [16], [20], [31], [32]. This model can significantly
reduce the computational complexity due to shorter ATFs and
the possibility of independent processing in each frequency bin.
Additionally, certain statistical properties of the speech signal
can be more naturally exploited in the time-frequency domain.
For example, while speech signals are not necessarily sparse in
the time domain, they are typically sparse in the time-frequency
domain, a fact that has been exploited for dereverberation
[33], [34]. Blind dereverberation using the model in (2) can
be formulated as a joint blind estimation of the ATFs and the
STFT coefficients of the speech signal [20].
To avoid joint estimation of the ATFs and the STFT coef-

ficients of the speech signal, further simplifications have been
used in the literature. As in [16], [17], by disregarding the noise
and assuming , the convolutive model in (2) can
be simplified, and the signal at the arbitrarily chosen reference
microphone (e.g., ) can be written in the MCLP form as

(3)

where is the number of the prediction coefficients
for each channel, and is the prediction delay. The first term in
(3) represents the desired speech signal at the reference micro-
phone

(4)

which consists of the direct speech signal and early reflections
determined by the prediction delay [17]. The second term in
(3) models the late reverberation, which is predicted using the
prediction coefficients and the delayed past observations on all

microphones. The MCLP model in (3) can be written as

(5)
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with

and denoting a convolution matrix con-
structed using delayed for frames. Furthermore, the
matrices and vectors can be stacked as

(6)

(7)

to form a multi-channel convolution matrix and a multi-
channel prediction vector . The MCLP model can now be
written more compactly as

(8)

From the MCLP model in (8), it follows that the problem of
speech dereverberation can be formulated as a blind estimation
of the desired speech signal from the reverberant observa-
tions . Using (8), the desired speech signal can be
estimated as

(9)

with denoting an estimated value. The desired speech signal
can be interpreted as the prediction error in the delayed linear
prediction model [17]. Therefore, dereverberation can be per-
formed by calculating the multi-channel prediction vector esti-
mate for each frequency bin and applying (9).
Note that in the following we will work in each frequency bin

independently, so the index will be omitted where possible for
notational convenience.

III. CONVENTIONAL MCLP-BASED DEREVERBERATION
USING TVG MODEL

Several MCLP-based speech dereverberation methods have
been proposed using a TVG model for the desired signal [16],
[17], [19], [20], [22]. More specifically, the desired signal

in each time-frequency bin is modeled as a zero-mean
random variable by means of a circular complex Gaussian
distribution with an unknown and time-varying variance. The
probability density function for the desired signal can then be
written as

(10)

where the variance is considered to be an unknown pa-
rameter that needs to be estimated. The TVG model was in-
troduced by arguing that it can model any signal with a time-
varying power spectrum [17], [22]. Since the TVG model does
not include any dependency across frequencies and it is assumed
that the STFT coefficients are independent across time, the like-
lihood function for the complete time range at a single frequency
bin, with the index omitted, can be written as

(11)

with unknown variances and the pre-
diction vector [17]. Note that the desired signal in (11)
depends on the prediction vector as in (9). The assumption
that the coefficients of the desired speech signal are indepen-
dent across time is a simplification that has been successfully
employed in dereverberation [16], [17], [20], but also in other
speech enhancementsmethods [35]. The prediction vector and
the variances are estimated by maximizing the likelihood in
(11) with respect to the unknown parameters, i.e., minimizing
the negative log-likelihood by solving the following optimiza-
tion problem

(12)

Since the joint minimization of (12) with respect to the predic-
tion vector and the variances can not be performed analyti-
cally, it was proposed in [17] to use an alternating optimization
procedure. The original problem in (12) is split into two sub-
problems that can be solved more easily. The two subproblems
are solved in an alternating fashion, and the whole procedure is
repeated iteratively. While this results in simple update rules,
there is no guarantee that the alternating procedure will lead to
the globally optimal solution (cf. Section V).
Estimation of : In the first step, the cost function in (12) is

minimized with respect to the prediction vector . Assuming
that the variances are fixed (to the values from the -th iter-
ation1) a least-squares (LS) problem is obtained for estimating
the prediction vector

(13)

where . By combining (8) and (13), the op-
timal prediction vector can be computed as

(14)

Estimation of : In the second step, the cost function in (12) is
minimized with respect to the variances in , assuming now that
the prediction vector is fixed to . The estimate can
be calculated using (9) and the optimal variance is obtained as

(15)

The solution to this optimization problem is given as
, or in short as

(16)

where the absolute value and the power are applied element-
wise. In practice, to prevent division by zero a small positive
constant is included as a lower bound for the estimated
variance as

(17)

1In the following denotes the value of a variable at the -th iteration.
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This alternating procedure is repeated until a convergence crite-
rion is satisfied or a maximum number of iterations is exceeded.
The method is typically initialized by setting the variances as

(18)

that is equivalent to setting the initial estimate of the desired
speech signal as . The presented method is often
referred to as the weighted prediction error (WPE) [16], [17].
The WPE method has been modified to include pre-trained
log-spectral priors in [22], and a time-varying Laplacian model
for the desired speech signal has been used in [36]. Recently,
several methods based on auto-regressive modeling have been
proposed, aiming to address noisy [37], [38] and time-varying
acoustic scenarios [19] with multiple sources [18], [19], [39].

IV. MCLP-BASED DEREVERBERATION USING
A GENERAL SPARSE PRIOR

It is widely accepted that the STFT coefficients of speech
signals can be well modeled using sparse priors. This holds
both locally, by observing the STFT coefficients in a single
time-frequency bin [40]–[42], as well as globally, when ob-
serving the distribution of the STFT coefficients in a single fre-
quency bin [43]. Although the real and imaginary parts of the
complex-valued STFT coefficients are often assumed to be in-
dependent to simplify computations, it has been observed that
the distribution of the complex-valued speech coefficients is
actually approximately circular [44], [45]. In this section we
model the desired speech coefficients in a single frequency bin
using a sparse circular prior, and combine it with the MCLP
model in (5). The proposed prior can be interpreted as a gener-
alization of the TVGmodel (cf. Section III), obtained by adding
a hyperprior for the variance. A similar approach can be used
with other local models (e.g., the locally Laplacian model in
[36]). In Section IV-A we present a convex representation of
a sparse prior, and use it for MCLP-based dereverberation in
Section IV-B. In Section IV-C we formulate dereverberation
using a complex generalized Gaussian distribution, and relate
the proposed method to the conventional method based on TVG
model in Section IV-D.

A. Convex Representation of a Sparse Prior

Intuitively, a prior is considered to be sparse when it is super-
Gaussian, i.e., it exhibits a higher peak at the origin and heavier
tails than the corresponding Gaussian prior. Here we consider a
general circular sparse prior for a complex-valued random vari-
able that can be represented as

(19)

In general, can represent a proper sparse prior (e.g., a prob-
ability density), or an improper (non-integrable) sparse prior.
Formally, it can be shown that when is decreasing on

, with denoting the derivative of , the prior
will be super-Gaussian, i.e., sparse [25]. In this case, can be

conveniently represented as a maximization over scaled Gaus-
sians with different variances, i.e.,

(20)

where is a scaling function that can be interpreted as a
hyperprior on the variance [25], [27]. This representation of
a sparse prior is often referred to as the convex type due to its
roots in convex analysis [25]. Obviously, the scaling function

in (20) is related to in (19), but the scaling function
is typically not required explicitly in practical algorithms [25].
For completeness, the form of the hyperprior for a given
sparse prior is given in Appendix A.

B. Speech Dereverberation Using a General Sparse Prior

We now propose to model the STFT coefficients of the de-
sired speech signal using the circular sparse prior

with its convex representation given as

(21)

This can be interpreted as a generalization of the TVG model,
with an additional hyperprior on the variance determined
by the scaling function . Similarly as in the conventional
method, the prediction vector can be estimated by maximizing
the likelihood formed using (21) as

(22)

This is equivalent to minimizing negative log-likelihood with
respect to the prediction vector and the variances , i.e.,

(23)

with depending on through (9). By comparing (23) with
the optimization problem in (12), the obtained problem contains
an additional term that depends on the scaling function . The
likelihood can again be maximized by applying an alternating
optimization procedure.
Estimation of : Assuming that the variances are fixed, the

same LS problem is obtained as in the conventional method,
with the solution given by (14).
Estimation of : Assuming that the prediction vector is fixed

to , the variances can be obtained by solving the following
problem

(24)
For a general sparse prior in (19), the solution is equal to (for
details we refer to Appendix B)

(25)
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Fig. 1. Logarithm of the CGG prior in (26) for different values of the shape
parameter and variance fixed to 1. Note that the plot shows only values on the
real axis (i.e., imaginary part of is 0), and the prior is circular.

Note that although the optimization problem in (24) includes
the scaling function , the optimal for this subproblem
depends only on , so the scaling function does not need
to be given explicitly (cf. Appendix B).

C. Complex Generalized Gaussian Prior

As an example of a parametric circular zero-mean super-
Gaussian prior, in the remainder of the paper we will consider
the complex generalized Gaussian (CGG) prior given as [28]

(26)

with the scale parameter , the shape parameter ,
and denoting the Gamma function. The circular Gaussian
distribution is obtained by setting , while smaller values of
the shape parameter result in more sparse priors, i.e., a higher
peak at zero and heavier tails. This can also be seen from the
plot of in Fig. 1. Since the CGG prior can be written in
the form (19) with given as

(27)

it can be represented using a convex representation in the form
(20).
In the case of a CGG prior for the desired signal, the optimal

value of in iteration can be written using (25) and
(27) as

(28)

This expression depends on the shape and scaling parameters of
the CGG prior in (26). However, since the estimation of using
(14), and hence also the estimate of the desired speech signal
using (9), is invariant to a scaling of the variances , the update
in (28) can be simplified to

(29)

which depends only on the shape parameter of the
CGG prior. In practice, a small positive constant is included
as a lower bound for the estimated variance to prevent division
by zero, i.e.,

(30)

This method will be referred to as WPE-CGG, which is sum-
marized in Algorithm 1.

Algorithm 1WPE with a CGG prior.

parameters: Filter length and prediction delay in
(3), shape parameter in (26), regularization parameter ,
maximum number of iterations , tolerance

input: ,
for all do

repeat

until or
end for

D. Relation to the Conventional Method
It should be noted that the variance update (16) in the con-

ventional method corresponds to setting in the proposed
update (29). When comparing the optimization problem in (12)
with the proposed optimization problem in (23), it can be seen
that the conventional method is obtained by setting the scaling
function equal to a constant value in the proposed method.
Hence, for the conventional method the prior for the desired
signal, as interpreted in the proposed frameworkwith the scaling
function in (20) set to 1, is equal to

(31)

since the maximum is attained when . The ob-
tained prior can also be represented in the form (19) as

(32)

Note that (31) is an improper prior since it is not integrable. In
addition, it strongly favors values of the desired signal that are
close to the origin, i.e., it is a strong sparse prior for the desired
signal. This type of sparsity-promoting prior was used previ-
ously in various signal processing applications [26], [27], [29],
[46]. Although the conventional WPE method was originally
derived with the TVG model as the starting point, under the as-
sumption of a locally Gaussian model, this interpretation high-
lights the underlying role of the sparse prior (31) on the desired
speech signal. Similarly, other dereverberation methods based
on the TVG model can be formulated using sparsity-promoting
cost functions, e.g., [18], [19], [39].

V. REFORMULATION AS -NORM MINIMIZATION

In this section we reformulate the conventional WPE and
the proposed WPE-CGG methods for estimating the prediction
vector in terms of an -norm minimization problem, aiming



1514 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2015

to provide a better understanding of the cost functions under-
lying the proposed methods, and relating them to the problem
of sparse recovery. For a general prior , and independent co-
efficients , the likelihood function is equal to

(33)

For a sparse prior in the form (19), the ML estimate of the
prediction vector can hence be obtained by minimizing the
negative log-likelihood, i.e.,

(34)

For being a CGG prior as in (26), this ML estimate can be
obtained, using (27), as a solution of the following problem

(35)

where is the -norm2 defined as
.

For the conventional method with the prior given in (31),
the ML estimate of the prediction vector is obtained, using (32),
as

(36)

This logarithmic cost function is often used in signal pro-
cessing problems as an approximation of the -norm,
counting the number of non-zero entries in a vector [29],
[46], [47]. The -norm is related to the previously de-
fined -norm through .
The logarithmic penalty is related to the -norm through

[46]. More-
over, the set of local minima of the optimization problem in
(36) corresponds to the set of local minima of the optimization
problem [46]

(37)

Using (8) the desired speech signal can be further expressed as

(38)

with

(39)

where is equivalent to the prediction vector . Now the opti-
mization problem (35) can be rewritten directly in terms of the
prediction vector as

(40)

where . Optimization problems in this form
are addressed in the context of the cosparse analysis problem

2Note that for the -norm is actually not a norm, e.g., it does not
satisfy the triangle inequality.

[48]–[50]. In that setting, the matrix is the analysis matrix that
transforms the unknown variable (i.e., the prediction vector )
to the domain where the sparsity is enforced (i.e., the prediction
error ). By solving the problem in (40) an estimate of the pre-
diction vector is computed that results in a sparse prediction
error, i.e., the desired speech signal, , with sparsity quantified
by means of the -norm. Also, a similar optimization problem
was considered in the context of sparse linear prediction in the
time domain [51], applied for modeling and coding of speech
signals.
The analytically derived sparsity-promoting cost function

can be easily justified in the context of dereverberation. Intu-
itively, reverberation makes the recorded speech signal less
sparse than the clean speech signal in the STFT domain. There-
fore, on the one hand it is reasonable to enforce an estimate of
the desired speech signal whose STFT coefficients are sparser
than the STFT coefficients of the reverberant recording. On
the other hand, the direct path and early reflections should
be preserved in the estimated desired speech signal, which is
enforced by using the MCLP model with the prediction delay
in (3), resulting in the optimization problem in (40) with a
structured analysis matrix .
In summary, both the conventional method and the proposed

method based on CGG priors can be interpreted as iterative op-
timization methods that aim to compute a minimum of the opti-
mization problem in (35)/(40) corresponding to WPE-CGG for

and to the conventional method when .

A. Iteratively Reweighted LS for -norm Minimization

Note that the optimization problem in (35) is non-convex
for , and iterative optimization methods can in general
converge only to a local minimum. However, non-convex cost
functions often result in a sparser estimated signal than using a
convex cost function (e.g., for ) [29]. Several optimiza-
tion methods for -normminimization have been proposed that
transform the non-convex problem into a series of convex prob-
lems [29], [46], [47]. Here we employ the iteratively reweighted
LS (IRLS) method for -norm minimization [29], [46], and
show that the obtained method is equivalent to the conventional
method and the method based on a CGG prior.
The basic idea in IRLS is to replace the -norm minimiza-

tion problem with a series of -norm minimization subprob-
lems [29], [49], [52]. Each -norm minimization subproblem
can be solved easily, and the solution in one iteration is used
to modify the subproblem in the next iteration. More specifi-
cally, the -norm cost function in (40) is replaced by a weighted
-norm cost function in the -th iteration as [29]

(41)

with a real-valued diagonal weighting matrix
, where are the

weights. The LS optimization problem in (41) has a closed-form
solution

(42)
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that is equivalent to estimating the prediction vector in
(14). The estimate of the desired signal in the -th iteration
is given using (38) as .
As in [29], [49], [52], the weights are updated in each iteration

as

(43)

so that the cost function in (41) is a first-order approximation
of the cost function in (40). The updates (42) and (43) result in
an iterative method for minimizing (40). To avoid division by
zero in (43), the optimization problem is typically regularized
by adding a small positive value [29], [49], i.e.,

(44)

When the role of is just to avoid division by zero the method is
called unregularized IRLS [29]. Setting to a larger value can
be used to make the linear system in (42) better conditioned. In
practice, a regularization strategy where is initialized with a
large value and then gradually decreased has been shown to be
effective in avoiding local minima for [29]. In this case
the method is called regularized IRLS. Various strategies for
updating the regularization parameter in iteratively reweighted
algorithms have been investigated in [46].
By comparing the obtained update for the weights in (43)

with the variance update in (29), it can be seen that the weights
are equal to the inverse of the variances. With this in mind, the
obtained LS problem in (41) is equivalent to the LS problem in
(13), i.e., they result in the same prediction vector if the weights
are calculated in the same way. The difference between these
methods is the weight regularization strategy that is performed
by adding a small in IRLS, or using as a lower bound in
WPE-CGG.
The outline of the complete dereverberation algorithm using

regularized IRLS (r-IRLS) method in each frequency bin is
given in Algorithm 2. For each frequency bin the matrix
is normalized with the maximum magnitude of the STFT coef-
ficients of the reference microphone signal . In this way the
values of the regularization parameter for r-IRLS can be set
independently of the magnitudes of the coefficients in the given
frequency bin. The r-IRLS for minimization of (40) is imple-
mented similarly as in [29]. The updates (42) and (44) are it-
erated until the relative change of the -norm of the output is
smaller than the tolerance . In that case the regularization pa-
rameter is reduced 10 times, and the tolerance parameter is
updated to . The unregularized IRLS (u-IRLS) is im-
plemented by omitting the reduction of the regularization pa-
rameter and tolerance . Additionally, since results in a
non-convex problem in (40), initialization of the algorithm can
influence the final estimate. More details on the initialization are
given in Section VI-B.

VI. EXPERIMENTS

In this section, the results of several experiments for different
acoustic scenarios and different numbers of microphones are
presented. The results obtained using the conventional WPE
method (cf. Section III) and the proposed WPE-CGG method

(cf. Section IV) and the IRLS algorithm applied on the -norm
minimization problem (cf. Section V) are compared. The con-
sidered acoustic systems and the used performance measures
are introduced in Section IV-A. The implementation details of
the different methods are described in Section IV-B. The per-
formance of the MCLP-based speech dereverberation is evalu-
ated for different values of the shape parameter , corresponding
to different sparse CGG priors for the desired speech signal, is
evaluated in Section VI-C. The dereverberation performance for
different acoustic scenarios with microphones is eval-
uated in Section VI-D. The dereverberation performance using
different numbers of microphones is evaluated in Section VI-E,
and for different number of iterations in Section VI-F.

Algorithm 2 WPE using the IRLS algorithm. For r-IRLS,
the parameter is initialized with a relatively large value and
gradually reduced. For u-IRLS, the parameter is initialized
as . denotes the maximum absolute value of the
elements in .

parameters: Filter length and prediction delay in
(3), shape parameter in (44), regularization parameters

, maximum number of iterations , tolerance
input: ,
for all do

construct as in (39)
, with

repeat
calculate as in (44)
calculate as in (42)

if then
,

else
,

end if

untill or

end for

A. Acoustic Systems and Performance Measures

We consider an acoustic scenario with a single speech source
and omni-directional microphones placed at a distance of
about 2.3 m from the source. In Section VI-C, Section VI-D,
and Section VI-F a scenario with microphones is
considered, while in Section VI-E the number of microphones
is set to . Three different rooms with reverber-
ation time of approximately ms were
used in the experiments. The distance between the source and
the microphones is approximately 2.3 m, and the direct-to-re-
verberant ratio (DRR) for the reference microphone is DRR
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dB for each of the rooms. The RIRs
between the source and the microphones have been measured
using the swept-sine technique, and the sampling frequency
is set to 16 kHz. The reverberant observations are generated
by convolving the measured RIRs with clean (anechoic)
speech utterances. Influence of noise has not been considered
in the experiments, since the main goal is to evaluate the
dereverberation performance, and joint dereverberation and
denoising remains a topic for future work. We have used a
set of utterances from 40 different speakers (20 male and
20 female), where the average length of the speech samples
is approximately 4.2 s. The dereverberation performance is
evaluated in terms of different instrumental measures: cepstral
distance (CD), perceptual evaluation of speech quality score
(PESQ), frequency-weighted segmental signal-to-noise ratio
(FWSSNR), and speech-to-reverberation modulation energy
ratio (SRMR) [53]. For the intrusive measures (CD, PESQ,
FWSSNR), the clean speech signal is used as a ground-truth
signal. In the following we present the improvements of the
considered instrumental measures when compared to the input
signal on the reference microphone. The reported values are
obtained by averaging the improvements over all utterances.

B. Implementation Details

In all experiments the STFT has been calculated using a 64ms
Hamming window with 16 ms shift. The prediction delay in (3)
is set to frames in all experiments. The length of the
prediction vector in (3) is set to for

microphones. While the length could be set de-
pending on the reverberation time, here we used the fixed length
for each number of microphones. These settings are similar to
the ones used in [54].
The WPE-CGG method is implemented as in Algorithm 1,

with the conventional WPE corresponding to the case with
. The variance estimate is regularized with the lower bound set
to for all frequency bins , and the tolerance on the
change of the relative -norm of the estimated desired signal is
set to . The u-IRLS minimizing (40) is implemented
by fixing the regularization parameter in (44) to .
Since the matrix is normalized with the maximum magnitude
of the STFT coefficients of the reference microphone signal, the
regularization parameter is always much smaller than the
magnitudes of the coefficients in the given frequency bin, and
therefore it only serves to avoid division by zero. The tolerance
on the change of the relative -norm of the estimated desired
signal is set to . The r-IRLS minimizing (40) is im-
plemented with the initial value for the regularization param-
eter set to and the minimum value .
The same final tolerance applies for r-IRLS because

(cf. Algorithm 2).
Since the problem in (40) is non-convex for , the pre-

sented algorithms only converge to a local minimum, and the
final estimate may heavily depend on the initialization. In com-
pressive sensing the IRLS method is typically initialized with
the solution of (40) for (i.e., the least-squares solution).
However, as shown in [17], the least squares solution is not ef-
fective for dereverberation, and results in a signal that is even

Fig. 2. Results for an acoustic system with ms and
microphones for values of the shape parameter . The
reported values are obtained as the averaged improvements over all utterances.
The average values calculated for the reference microphone signal are denoted
as “ref”.

more reverberant than the microphone signal. This occurs be-
cause the least squares solution results in a minimum-energy es-
timate of the desired speech signal with typically many non-zero
coefficients. Therefore, the least squares solution is often a poor
initialization for the iterative algorithm in the context of derever-
beration. In our experiments initializing with the least-squares
solution also resulted in a decreased dereverberation perfor-
mance for the WPE-CGG and u-IRLS methods, whereas the
r-IRLS method was in general less affected by initialization
(due to the regularization). Therefore, in all experiments we ini-
tialized the desired signal with the reference microphone
signal (or its normalized version).

C. Evaluation for Different Values of the Shape Parameter
In this section we investigate speech dereverberation per-

formance for different values of the shape parameter . We
consider a scenario with microphones in a room with

ms, and compare the WPE-CGG, u-IRLS, and
r-IRLS methods for . The conventional
WPE method corresponds to WPE-CGG with . Typical
number of iterations for convergence of the WPE-CGG and
r-IRLS methods was between 50 and 100, while the r-IRLS
method required more iterations, typically between 300 and
400. The improvements of the considered instrumental mea-
sures for each value of the shape parameter are presented
in Fig. 2. It can be observed that the performance of the em-
ployed optimization methods depends on . As expected, the
performance of the WPE-CGG and the u-IRLS is very similar.
It can be observed that both methods perform best for ,
achieving almost identical results. For smaller values of the
shape parameter (e.g., corresponding to the conventional
WPE) and also for higher values of the shape parameter (e.g.,

) both methods achieve lower performance. Note
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Fig. 3. Results for different acoustic systems with microphones and
ms. The reported values are obtained as the averaged

improvements over all utterances. The average values calculated for the refer-
ence microphone signal are denoted as “ref”.

that the used values of are not optimal in any sense, and are
selected to illustrate the effect of the selected cost function on
the performance. In the experiments both small values (close
to 0), and large values (close to 1) of resulted in a decreased
performance. The r-IRLS is less sensitive to selection of the
parameter due to the regularization strategy, although by
increasing the value of the parameter the performance starts
to decrease. However, the regularization strategy also results in
a significantly higher number of iterations. These observations
are similar with the observed performance of the unregularized
and regularized methods in the context of sparse recovery [29].

D. Evaluation in Different Acoustic Scenarios
In this section we investigate the performance in different

acoustic scenarios after convergence of the iterative algorithms.
We consider a setup with microphones in rooms with

ms. In the following, we compare
WPE-CGG, u-IRLS and r-IRLS for . The im-
provements of the considered instrumental measures are pre-
sented in Fig. 3. It can be observed that WPE-CGG and u-IRLS
with outperforms the case with in all evalu-
ated measures for all scenarios. The results in Fig. 3 suggest that
the performance improvement for the evaluated measures with

, when compared to , is higher for longer reverber-
ation times. Similar as in the previous experiment, the r-IRLS
method is slightly better with than with for
all scenarios, performing similarly to the unregularized methods
with .

E. Evaluation for Different Number of Microphones
In this section we investigate the performance for different

numbers of microphones. We consider a setup in a room with
ms, with microphones. The perfor-

Fig. 4. Results for different acoustic systems with ms and
microphones. The reported values are obtained as the averaged

improvements over all utterances. The average values calculated for the refer-
ence microphone signal are denoted as “ref”.

Fig. 5. Results for different number of iterations for an acoustic system with
ms and microphones. The reported values are obtained as

the averaged improvements over all utterances. The average values calculated
for the reference microphone signal are denoted as “ref”.

mance of the WPE-CGG is evaluated, with . The
improvements of the evaluated measures are presented in Fig. 4,
and it is again visible that outperforms in all of
the evaluated measures. While both algorithms perform better
with larger number of microphones, in all cases per-
forms better than .

F. Evaluation for Different Number of Iteration
In this section we investigate the iteration-wise performance

of the WPE-CGG and u-IRLS methods for . The
r-IRLS method is not included in the comparison since it typ-
ically requires many more iterations due to the reduction up-
date for the regularization parameter . The values of the con-
sidered instrumental measures after each iteration are presented



1518 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2015

in Fig. 5. It can be observed that the results become stable after
relatively small number of iterations (up to 10). Also, it can
be observed that results in a better performance than

for any number of iterations, with the u-IRLS method
converging slightly faster than the WPE-CGG method.

VII. CONCLUSION
In this paper we have presented a novel MCLP-based speech

dereverberation method, based on a sparse prior for modeling
the desired speech signal, with a special emphasis on circular
priors from the complex generalized Gaussian family. The pro-
posed model can be interpreted as a generalization of the TVG
model, with an additional hyperprior on the unknown variances.
It has also been shown that the underlying prior in the con-
ventional WPE method strongly promotes sparsity of the de-
sired speech signal, and can be obtained as a special case of
the proposed WPE-CGG method with . Furthermore,
the proposed method has been reformulated as an optimization
problem with the cost function equal to -norm on the desired
speech signal. In addition, we have shown that solving this op-
timization problem by an iteratively reweighted LS scheme re-
sults in an equivalent set of updates.
The experimental results for various acoustic scenarios show

that the instrumentally predicted speech enhancement perfor-
mance can be consistently improved in the proposed framework,
by setting to an appropriate value.While the improvements are
mild, it is important to keep in mind that these come at virtually
no cost with just a small modification of the weight/variance up-
date. As we have analytically shown using the -norm-based
formulation, speech dereverberation is achieved by exploiting
the fact that the desired speech signal is more sparse than the
reverberant recordings in the STFT domain. Furthermore, the
highlighted role of sparsity-promoting cost functions suggests
also that different cost functions and sparse recovery methods
could be applied to achieve speech dereverberation. These in-
sights could be useful not only for the considered MCLP-based
dereverberation method but also for other speech enhancement
methods.

APPENDIX A
CONVEX REPRESENTATION OF A SPARSE PRIOR

We are interested in a circular sparse prior
that can be represented in the form (20) for a certain function

. Due to the circular symmetry of , and analogously as
in [25], we can write

(45)

for . By introducing a function such that
, i.e., , we can write

(46)

Using results in [25], [55] it follows that has a convex type
representation (20) if is concave on . Then it holds
that

(47)

where is the concave conjugate of [55]. The condition
on is equivalent to being non-increasing on
[26], [27], [55].

APPENDIX B
VARIANCE ESTIMATION

In the variance estimation step we need to solve the optimiza-
tion problem in (24), which can be written using (47) in the fol-
lowing form

(48)

for some , with following
from (47). Hence, the optimal variance is equal to

(49)

where is the inverse function of . Using
[25], [55] it follows that ,

and using the optimal can be written as

(50)

REFERENCES
[1] R. Beutelmann and T. Brand, “Prediction of speech intelligibility in

spatial noise and reverberation for normal-hearing and hearing-im-
paired listeners,” J. Acoust. Soc. Amer., vol. 120, no. 1, pp. 331–342,
Jul. 2006.

[2] M. Omologo, P. Svaizer, and M. Matassoni, “Environmental con-
ditions and acoustic transduction in hands-free speech recognition,”
Speech Commun., vol. 25, no. 1–3, pp. 75–95, Aug. 1998.

[3] A. Sehr, “Reverberation modeling for robust distant-talking speech
recognition,” Ph.D. dissertation, Friedrich-Alexander-Univ. Erlangen-
Nürenberg, Erlangen, Germany, Oct. 2009.

[4] R. Maas, E. A. P. Habets, A. Sehr, and W. Kellermann, “On the ap-
plication of reverberation suppression to robust speech recognition,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Kyoto, Japan, Mar. 2012, pp. 297–300.

[5] M. Jeub, M. Schafer, T. Esch, and P. Vary, “Model-based derever-
beration preserving binaural cues,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 18, no. 7, pp. 1732–1745, Sep. 2010.

[6] P. A. Naylor and N. D. Gaubitch, Speech Dereverberation. New
York, NY, USA: Springer, 2010.

[7] M.Miyoshi and Y. Kaneda, “Inverse filtering of room acoustics,” IEEE
Trans. Acoust. Speech Signal Process., vol. 36, no. 2, pp. 145–152, Feb.
1988.

[8] A. Mertins, T. Mei, and M. Kallinger, “Room impulse response short-
ening/reshaping with infinity- and p-norm optimization,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 18, no. 2, pp. 249–259, Feb. 2010.

[9] W. Zhang, E. A. P. Habets, and P. A. Naylor, “On the use of channel
shortening in multichannel acoustic system equalization,” in Proc. Int.
Workshop Acoust. Echo Noise Control (IWAENC), Tel Aviv, Israel,
Sep. 2010.

[10] I. Kodrasi, S. Goetze, and S. Doclo, “Regularization for partial multi-
channel equalization for speech dereverberation,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 21, no. 9, pp. 1879–1890, Sep. 2013.

[11] I. Kodrasi, T. Gerkmann, and S. Doclo, “Frequency-domain
single-channel inverse filtering for speech dereverberation: Theory and
practice,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Florence, Italy, May 2014, pp. 5177–5181.

[12] K. Lebart, J. M. Boucher, and P. N. Denbigh, “A new method based
on spectral subtraction for speech dereverberation,” Acta Acoust., vol.
87, pp. 359–366, 2001.

[13] T. Gerkmann, “Cepstral weighting for speech dereverberation without
musical noise,” in Proc. Eur. Signal Process. Conf. (EUSIPCO),
Barcelona, Spain, Sep. 2011.



JUKIĆ et al.: MULTI-CHANNEL LINEAR PREDICTION-BASED SPEECH DEREVERBERATION WITH SPARSE PRIORS 1519

[14] B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Jukić, T. Germann, S.
Doclo, and S. Goetze, “Joint dereverberation and noise reduction using
beamforming and a single-channel speech enhancement scheme,” in
Proc. REVERB Workshop, Florence, Italy, May 2014.

[15] E. A. P. Habets, S. Gannot, and I. Cohen, “Late reverberant spectral
variance estimation based on a statistical model,” IEEE Signal Process.
Lett., vol. 16, no. 9, pp. 770–773, Sep.. 2009.

[16] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang,
“Blind speech dereverberation with multi-channel linear prediction
based on short time fourier transform representation,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Las Vegas, NV,
USA, May 2008, pp. 85–88.

[17] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B. H. Juang,
“Speech dereverberation based on variance-normalized delayed linear
prediction,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 7,
pp. 1717–1731, Sep. 2010.

[18] T. Yoshioka and T. Nakatani, “Generalization of multi-channel linear
prediction methods for blind MIMO impulse response shortening,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 10, pp.
2707–2720, Dec. 2012.

[19] M. Togami, Y. Kawaguchi, R. Takeda, Y. Obuchi, and N. Nukaga,
“Optimized speech dereverberation from probabilistic perspective for
time varying acoustic transfer function,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 21, no. 7, pp. 1369–1380, Jul. 2013.

[20] B. Schwartz, S. Gannot, and E. A. P. Habets, “Multi-microphone
speech dereverberation using expectation-maximization and kalman
smoother,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), Mar-
rakech, Morocco, Sep. 2013.

[21] D. Schmid, G. Enzner, S. Malik, D. Kolossa, and R. Martin, “Varia-
tional Bayesian inference for multichannel dereverberation and noise
reduction,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22,
no. 8, pp. 1320–1335, Aug. 2014.

[22] Y. Iwata and T. Nakatani, “Introduction of speech log-spectral priors
into dereverberation based on Itakura-Saito distance minimization,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Kyoto, Japan, May 2012, pp. 245–248.

[23] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi, “Suppression
of late reverberation effect on speech signal using long-term multiple-
step linear prediction,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 17, no. 4, pp. 534–545, May 2009.

[24] A. Jukić, T. van Waterschoot, T. Gerkmann, and S. Doclo, “Speech
dereverberation with multi-channel linear prediction and sparse priors
for the desired signal,” in Proc. Joint Workshop Hands-Free Speech
Commun. Microphone Arrays (HSCMA), Nancy, France, May 2014,
pp. 23–26.

[25] J. A. Palmer, K. Kreutz-Delgado, D. P. Wipf, and B. D. Rao, “Vari-
ational EM algorithms for non-gaussian latent variable models,” in
Advances in Neural Information Processing Systems 18. Cambridge,
MA, USA: MIT Press, 2006, pp. 1059–1066.

[26] S. D. Babacan, R. Molina, M. N. Do, and A. K. Katsaggelos, “Bayesian
blind deconvolution with general sparse image priors,” in Proc. Eur.
Conf. Comput. Vis. (ECCCV), Florence, Italy, Oct. 2012, pp. 341–355.

[27] D. Wipf and H. Zhang, “Analysis of bayesian blind deconvolution,” in
Proc. Int. Conf. Energy Minimizat. Meth. Comput. Vis. Pattern Recogn.
(EMMCVPR), Lund, Sweden, Aug. 2013, pp. 40–53.

[28] M. Novey, T. Adali, and A. Roy, “A complex generalized Gaussian dis-
tribution - characterization, generation, and estimation,” IEEE Trans.
Signal Process., vol. 58, no. 3, pp. 1427–1433, 2010.

[29] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for com-
pressive sensing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Las Vegas, NV, USA, May 2008, pp. 3869–3872.

[30] Y. Avargel and I. Cohen, “System identification in the short-time
Fourier transform domain with crossband filtering,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 4, pp. 1305–1319, May
2007.

[31] R. Talmon, I. Cohen, and S. Gannot, “Relative transfer function iden-
tification using convolutive transfer function approximation,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 17, no. 4, pp. 546–555, May
2009.

[32] R. Talmon, I. Cohen, and S. Gannot, “Convolutive transfer function
generalized sidelobe canceler,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 17, no. 7, pp. 1420–1434, Sep. 2009.

[33] H. Kameoka, T. Nakatani, and T. Yoshioka, “Robust speech derever-
beration based on non-negativity and sparse nature of speech spec-
trograms,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Taipei, Taiwan, Apr. 2009, pp. 45–48.

[34] T. van Waterschoot, B. Defraene, M. Diehl, and M. Moonen,
“Embedded optimization algorithms for multi-microphone dereverber-
ation,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), Marrakech,
Morocco, Sep. 2013.

[35] R. Hendriks, T. Gerkmann, and J. Jensen, “Dft-domain based single-
microphone noise reduction for speech enhancement: A survey of the
state of the art,” Synth. Lectures Speech Audio Process., vol. 9, no. 1,
pp. 1–80, Jan. 2013.

[36] A. Jukić and S. Doclo, “Speech dereverberation using weighted predic-
tion error with Laplacian model of the desired signal,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Florence, Italy,
May 2014, pp. 5172–5176.

[37] M. Togami and Y. Kawaguchi, “Noise robust speech dereverberation
with Kalman smoother,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), Vancouver, BC, Canada, May 2013, pp.
7447–7451.

[38] N. Ito, S. Araki, and T. Nakatani, “Probabilistic integration of dif-
fuse noise suppression and dereverberation,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Florence, Italy, May 2014,
pp. 5167–5171.

[39] T. Yoshioka, T. Nakatani, M. Miyoshi, and H. G. Okuno, “Blind sep-
aration and dereverberation of speech mixtures by joint optimization,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 1, pp. 69–84,
Jan. 2011.

[40] J. Porter and S. Boll, “Optimal estimators for spectral restoration
of noisy speech,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), San Diego, CA, USA, Mar. 1984, vol. 9, pp.
53–56.

[41] R. Martin, “Speech enhancement using MMSE short time spectral esti-
mation with gamma distributed speech priors,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Orlando, FL, USA, May
2002, pp. I–253.

[42] T. Gerkmann and R. Martin, “Empirical distributions of DFT-domain
speech coefficients based on estimated speech variances,” in Proc. Int.
Workshop Acoust. Echo Noise Control (IWAENC), Tel Aviv, Israel,
Sep. 2010.

[43] I. Tashev and A. Acero, “Statistical modeling of the speech signal,” in
Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC), Tel Aviv,
Israel, Sep. 2010.

[44] R. Martin, “Speech enhancement based on minimum mean-square
error estimation and supergaussian priors,” IEEE Trans. Speech Audio
Process., vol. 13, no. 5, pp. 845–856, Aug. 2005.

[45] T. Lotter and P. Vary, “Speech enhancement by MAP spectral ampli-
tude estimation using a super-gaussian speech model,” EURASIP J.
Appl. Signal Process., vol. 2005, pp. 1110–1126, 2005.

[46] D. Wipf and S. Nagarajan, “Iterative reweighted l1 and l2 methods for
finding sparse solutions,” IEEE J. Sel. Topic Signal Process., vol. 4, no.
2, pp. 317–329, Apr. 2010.

[47] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted minimization,” J. Fourier Anal. Applicat., vol. 14, no.
5–6, pp. 877–905, 2008.

[48] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse anal-
ysis model and algorithms,” Appl. Comput. Harmon. Anal., vol. 34, no.
1, pp. 30–56, 2013.

[49] R. Chartrand, E. Y. Sidky, and X. Pan, “Nonconvex compressive
sensing for X-ray CT: An algorithm comparison,” in Proc. Asilomar
Conf. Signals, Syst. Comput. (ASILOMAR), Pacific Grove, CA, USA,
Nov. 2013.

[50] R. Giryes, S. Nam,M. Elad, R. Gribonval, andM. Davies, “Greedy-like
algorithms for the cosparse analysis model,” in Linear Algebra and its
Applicat., Jan. 2014, pp. 22–60.

[51] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and
M. Moonen, “Sparse linear prediction and its applications to speech
processing,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no.
5, pp. 1644–1657, Jul. 2012.

[52] B. D. Rao and K. Kreutz-Delgado, “An affine scaling methodology for
best basis selection,” IEEE Trans. Signal Process., vol. 47, no. 1, pp.
187–200, Jan. 1999.

[53] K. Kinoshita, M. Delcroix, T. Yoshioka, E. Habets, R. Haeb-Umbach,
V. Leutnat, A. Sehr, W. Kellermann, R. Maas, S. Gannot, and B.
Raj, “The REVERB challenge: A common evaluation framework for
dereverberation and recognition of reverberant speech,” in Proc. IEEE
Workshop Appls. Signal Process. Audio Acoust. (WASPAA), New
Paltz, NY, USA, Oct. 2013, pp. 1–4.



1520 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2015

[54] M. Delcroix, T. Yoshioka, A. Ogawa, Y. Kubo, M. Fujimoto, I. Nobu-
taka, K. Kinoshita, M. Espi, T. Hori, T. Nakatani, and A. Nakamura,
“Linear prediction-based dereverberation with advanced speech en-
hancement and recognition technologies for the REVERB challenge,”
in Proc. REVERB Workshop, Florence, Italy, May 2014.

[55] R. T. Rockafellar, Convex Analysis. Princeton, NJ, USA: Princeton
Univ. Press, 1970.

Ante Jukić (S’10) received the Dipl.-Ing. degree in
electrical engineering in 2009 from the University of
Zagreb, Zagreb, Croatia. Since 2013 he is with the
Signal Processing Group at the University of Olden-
burg, Germany, working on speech dereverberation.
Previously, he was with the Rudjer Bošković Insti-
tute and Xylon, both in Zagreb, Croatia. His research
interests include acoustic signal processing, sparse
signal processing, and machine learning for data en-
hancement and analysis.

Toon van Waterschoot (S’04–M’12) received the
M.Sc. degree (2001) and the Ph.D. degree (2009)
in electrical engineering, both from KU Leuven,
Belgium. He is currently a tenure-track Assistant
Professor at KU Leuven, Belgium. He has previ-
ously held teaching and research positions with the
Antwerp Maritime Academy, Belgium (2002), the
Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT), Belgium
(2003-2007), KU Leuven, Belgium (2008-2009),
Delft University of Technology, The Netherlands

(2010–2011), and the Research Foundation - Flanders (FWO), Belgium
(2011–2014). Since 2005, he has been a Visiting Lecturer at the Advanced
Learning and Research Institute of the University of Lugano (Universita della
Svizzera Italiana), Switzerland. His research interests are in acoustic signal
enhancement, acoustic modeling, audio analysis, and audio reproduction. Dr.
van Waterschoot has been serving as an Associate Editor for the Journal of
the Audio Engineering Society and for the EURASIP Journal on Audio, Music,
and Speech Processing, and as a Guest Editor for Signal Processing. He has
been a Nominated Officer for the European Association for Signal Processing
(EURASIP), and a Scientific Coordinator of the FP7-PEOPLE Marie Curie
Initial Training Network on Dereverberation and Reverberation of Audio,
Music, and Speech (DREAMS). He has been serving as an Area Chair for
Speech Processing at the European Signal Processing Conference (EUSIPCO
2010, 2013–2015), and will be the General Chair of the 60th AES Conference
to be held in Leuven, Belgium, 2016. He is a member of the Audio Engineering
Society, the Acoustical Society of America, EURASIP, and IEEE.

Timo Gerkmann (S’08–M’10–SM’15) studied
electrical engineering at the universities of Bremen
and Bochum, Germany. He received his Dipl.-Ing.
degree in 2004 and his Dr.-Ing. degree in 2010
both at the Institute of Communication Acoustics
(IKA) at the Ruhr-Universität Bochum, Bochum,
Germany. In 2005, he spent six months with Siemens
Corporate Research in Princeton, NJ, USA. During
2010 to 2011 Dr. Gerkmann was a Postdoctoral
Researcher at the Sound and Image Processing
Lab at the Royal Institute of Technology (KTH),

Stockholm, Sweden. Since 2011, he has been a Professor for Speech Signal
Processing at the Universität Oldenburg, Oldenburg, Germany. His main
research interests are digital speech and audio processing, including speech
enhancement, dereverberation, modeling of speech signals, speech recognition,
and hearing devices. Timo Gerkmann is a Senior Member of the IEEE.

Simon Doclo (S’95–M’03–SM’13) received the
M.Sc. degree in electrical engineering and the Ph.D.
degree in applied sciences from the Katholieke
Universiteit Leuven, Belgium, in 1997 and 2003.
From 2003 to 2007, he was a Postdoctoral Fellow
with the Research Foundation Flanders at the
Electrical Engineering Department (Katholieke
Universiteit Leuven) and the Adaptive Systems
Laboratory (McMaster University, Canada). From
2007 to 2009, he was a Principal Scientist with
NXP Semiconductors at the Sound and Acoustics

Group in Leuven, Belgium. Since 2009, he has been a Full Professor at the
University of Oldenburg, Germany, and Scientific Advisor for the project group
Hearing, Speech, and Audio Technology of the Fraunhofer Institute for Digital
Media Technology. His research activities center around signal processing for
acoustical and biomedical applications, more specifically microphone array
processing, active noise control, acoustic sensor networks and hearing aid
processing. Prof. Doclo received the Master Thesis Award of the Royal Flemish
Society of Engineers in 1997 (with Erik De Clippel), the Best Student Paper
Award at the International Workshop on Acoustic Echo and Noise Control in
2001, the EURASIP Signal Processing Best Paper Award in 2003 (with Marc
Moonen) and the IEEE Signal Processing Society 2008 Best Paper Award (with
Jingdong Chen, Jacob Benesty, Arden Huang). He was member of the IEEE
Signal Processing Society Technical Committee on Audio and Acoustic Signal
Processing (2008–2013) and Technical Program Chair for the IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA) in
2013. Prof. Doclo has served as guest editor for several special issues (IEEE
Signal Processing Magazine, Elsevier Signal Processing) and is associate
editor for the EURASIP Journal on Advances in Signal Processing.


