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Regularization Approaches for Synthesizing
HRTF Directivity Patterns

Eugen Rasumow, Martin Hansen, Steven van de Par, Dirk Püschel, Volker Mellert, Simon Doclo, and Matthias Blau

Abstract—As an alternative to traditional artificial heads, it
is possible to synthesize individual head-related transfer func-
tions (HRTFs) using a so-called virtual artificial head (VAH),
consisting of a microphone array with an appropriate topology
and filter coefficients optimized using a narrowband least squares
cost function. The resulting spatial directivity pattern of such a
VAH is known to be sensitive to small deviations of the assumed
microphone characteristics, e.g., gain, phase and/or the positions
of the microphones. In many beamformer design procedures, this
sensitivity is reduced by imposing a white noise gain (WNG) con-
straint on the filter coefficients for a single desired look direction.
In this paper, this constraint is shown to be inappropriate for
regularizing the HRTF synthesis with multiple desired directions
and three alternative different regularization approaches are
proposed and evaluated. In the first approach, the measured de-
viations of the microphone characteristics are taken into account
in the filter design. In the second approach, the filter coefficients
are regularized using the mean WNG for all directions. The third
approach additionally takes into account several frequency bins
into both the optimization and the regularization. The different
proposed regularization approaches are compared using analytic
and measured transfer functions, including random deviations.
Experimental results show that the approach using multiple
frequency bands mimicking the spectral resolution of the human
auditory system yields the best robustness among the considered
regularization approaches.

Index Terms—Beamforming, head-related transfer functions
(HRTFs), regularization, virtual artificial head, white noise gain
(WNG).

I. INTRODUCTION

B INAURAL sound reproduction is an important reproduc-
tion method aiming to preserve the spatial information,

where the goal is to reproduce the sound at the listener’s ears via
headphones in the sameway as if the listener had been in the real
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sound field. The recordings needed for binaural sound reproduc-
tion are traditionally made using so-called artificial heads with
average anthropometric characteristics. Unfortunately, because
of their non-individual character, these artificial head recordings
often entail perceptual deficiencies [1]–[3].
As an alternative to traditional artificial heads, microphone

arrays can be used for spatial filtering, e.g., using filter-and-sum
beamforming, [4], [5]. Even though many beamformers (e.g.,
superdirective beamformers [6]–[10]) aim at steering into one
look direction, they can, in principle, be used to synthesize an
arbitrary desired directivity pattern, e.g., based on different cost
functions [11]–[13]. Filter-and-sum beamforming can therefore
also be used to synthesize individual head-related transfer func-
tions (HRTFs), thus mimicking the directivity patterns of arti-
ficial or real human heads [14]–[23]. This approach is referred
to as a virtual artificial head (VAH). The main advantages of a
VAH are the possibility to adjust the filter coefficients to HRTFs
of different listeners (individualization), the possibility to em-
ploy head tracking in the reproduction stage and a better flex-
ibility and manageability due to the smaller size/weight of the
device.
However, synthesizing spatial directivity patterns with many

microphones and rather small inter-microphone distances is
known to be sensitive ([19], [24]) to small deviations of the as-
sumed microphone characteristics (e.g., gain, phase, positions,
temperature changes and/or drifting microphone characteris-
tics) [6], [9], [19], [24], [25]. To improve the robustness, some
kind of regularization is usually employed, where obviously
a trade-off between synthesis accuracy (in case of no devia-
tions) and robustness (in case of deviations) exists. In general,
different regularization approaches have been proposed in
the literature, cf. [28] for a comprehensive review. A popular
regularization approach is to impose a constraint on the filter
coefficients, also referred to as Tikhonov regularization [26],
whereas other regularization approaches are based on, e.g., the
truncated singular value decomposition or the L-curve [27],
which provides an optimal trade-off between the cost function
and the norm of the filter coefficients.
In this paper, three regularization approaches for synthesizing

multi-directional directivity patterns, such as HRTFs, based on
a narrowband least squares cost function are proposed and eval-
uated. In the first approach, the filter coefficients are regularized
by taking into account measured deviations of the steering vec-
tors (cf. Section III), which is comparable to taking into account
the probability density function of the microphone character-
istics [9], [24]. Since usually such measured deviations of the
steering vectors are not available, it is common practice to im-
pose a so-called white noise gain ( ) constraint on the filter
coefficients [6], [8], [10], however typically only for the desired
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Fig. 1. Schematic diagram of a filter-and-sum beamformer with mi-
crophones and an exemplary desired directivity pattern and resulting
directivity pattern .

look direction. In this paper, it is shown in Section V-C that this
constraint is inappropriate for synthesizing HRTFs with mul-
tiple desired directions. Hence, in the second approach a dif-
ferent WNG constraint is proposed, incorporating all directions
into the weighting of the (cf. Section IV-B). In the third
approach, the information of neighboring frequency bands is
additionally considered in the optimization and regularization
procedure (cf. Section IV-C). In Section V, these different ap-
proaches to increase the robustness of the VAH synthesis are
evaluated with measured and analytic steering vectors, with and
without adding random deviations.
The perceptual suitability of the different regularization ap-

proaches to synthesize HRTFs using a VAH has already been
separately shown in [22], [23], [37] and [38]. Themain objective
of this paper is to evaluate the robustness of these approaches
against deviations of the steering vectors using physical perfor-
mance measures.

II. LEAST SQUARES BEAMFORMER DESIGN

In general, to synthesize a desired directivity pattern using
a microphone array, the filter coefficients of a filter-and-sum
beamformer (cf. Fig. 1) can be computed by minimizing a cost
function (e.g., least squares, total least squares or non-linear cost
functions [12], [13]), either for all frequencies jointly (broad-
band design) or for each frequency independently (narrowband
design). In this paper, a narrowband design procedure is used be-
cause of its better numerical stability and since previous studies
have already shown its suitability to synthesize HRTFs using a
VAH [22], [23].
The synthesized spatial directivity pattern a filter-

and-sum beamformer can be expressed as1

(1)

1In the following denotes the transpose of , denotes the Hermitian
transpose of and denotes the complex conjugate of .

with the -dimensional steering vector, describing the
acoustic transfer functions between a sound source from direc-
tion2 to the microphones at frequency , and an -di-
mensional vector containing the complex-valued filter coeffi-
cients, i.e. . In order to syn-
thesize a desired directivity pattern , e.g., an individual
frequency- and direction-dependent HRTF (cf. Fig. 1), the filter
coefficients can be computed by minimizing the narrow-
band weighted least squares cost function,

(2)
i.e. the weighted sum over discrete directions of the squared
absolute difference between the synthesized directivity pat-
tern and the desired directivity pattern . The
weighting function enables to assign more or less
importance to certain directions. In the remainder of this paper,
the least squares cost function in (2) will be used because it has
a closed-form solution and since previous studies have already
shown its suitability to synthesize HRTFs [22], [23].
The filter coefficients minimizing this cost function can be

obtained by setting the gradient to zero,
leading to

(3)

with

When using many microphones with small inter-microphone
distances, the synthesized directivity pattern is known
to be highly sensitive to small deviations of the assumed steering
vectors . In the next sections, different regularization ap-
proaches will be discussed, either by using multiple measured
steering vectors or by imposing an appropriate constraint on the
filter coefficients .

III. REGULARIZATION BY JOINT OPTIMIZATION
FOR MULTIPLE STEERING VECTORS

When multiple sets of steering vectors are available, e.g.,
measured under different conditions (e.g., temperature, different
microphone positions), the beamformer robustness can be in-
creased by jointly optimizing the least squares cost function in
(2) over all available sets of steering vectors, i.e.

(4)

2In this paper only the azimuthal direction is considered, but the proposed
procedure can be straightforwardly extended to a three-dimensional design in-
cluding elevation directions.
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with the total number of measured sets of steering vectors
and the weighting function for the -th set of steering
vectors. Analogous to (3), the filter coefficients minimizing (4)
are equal to

(5)

with

This joint optimization can be interpreted as a regularization
using measured data and is comparable to incorporating as-
sumed deviations of the microphone characteristics as proposed
in [9], [24]. In contrast to using probability density functions as
in [9], [24], the measured deviations of the steering vectors may
be considered as an empirical estimate for the expected devia-
tions of the steering vectors.
However, it should be realized that in order to capture all

possible real-world deviations of the steering vectors, a large
number of sets of steering vectors would need to be measured,
making this approach rather impractical. In addition, when only
a limited set of measured steering vectors is available, the ro-
bustness of the beamformer can only be improved to a limited
extent (cf. Section V-F).

IV. REGULARIZATION USING A WNG CONSTRAINT

Since typically only one set of measured steering vectors is
available, it is common practice to improve the robustness of
the beamformer by imposing a constraint on the filter coeffi-
cients. Due to its physical meaning, the output power of the
beamformer for the desired acoustic field in comparison to the
output power for spatially uncorrelated noise, defined as the
white noise gain ( ), is a common measure to quantify the
robustness of a beamformer [6], [8]. The main motivation of
regularization by constraining the is to reduce the output
power for spatially uncorrelated noise (in comparison to the
output power for the desired acoustic field), aiming to enhance
the overall robustness. However, as will be shown, the defini-
tion of the desired acoustic field has a significant influence on
the resulting performance. In the following sections, the advan-
tages and disadvantages of various variants with regard
to their application for a VAH will be discussed.

A. White Noise Gain

The frequency- and direction-dependent white noise gain is
defined as [8]

(6)

For many beamformers, e.g., superdirective beamformers
[6]–[8], the is considered only for the desired look
direction . In this case, relates the output

power for the look direction to the output power for spatially
uncorrelated noise. In general, a larger is associated
with a larger attenuation of spatially uncorrelated noise in
comparison to the output power for the look direction and
hence with an increased robustness, cf. [6]–[9].
When imposing a constraint on the for the direction
, the constrained optimization problem can be written as

subject to
(7)

with the minimum desired value for . Using
(6), the Lagrangian function associated with this constrained
optimization problem is equal to

(8)

with the Lagrangian multiplier. Analogous to (3) and (5), the
filter coefficients minimizing the cost function in (8) can be ob-
tained by setting the gradient to zero, leading to

(9)

with and given in (3) and the -dimen-
sional identity matrix. In order to satisfy the inequality con-
straint , the Lagrange multiplier
in (9) needs to be determined, e.g., using an iterative proce-
dure (cf. Section V-A for a detailed description of the used
procedure).
Note that if the beamformer response in the look direction

is equal to 1, which is typically the
case for superdirective beamformers [6]–[8], the WNG in (6)
reduces to

such that the term vanishes in (8) and the
filter coefficients in (9) are equal to

(10)

The experimental results in Section V will show that imposing
a WNG constraint for a single look direction is inappropriate
for synthesizing HRTFs, where the objective is to synthesize a
desired directivity pattern for multiple directions. This has also
been confirmed by the perceptual validations in [22]. Hence, a
direction-dependent weighting for will be pre-
sented in the following sections.

B. Mean White Noise Gain Over All Directions

When synthesizing multi-directional directivity patterns such
as HRTFs, the accuracy and the robustness of the synthesized
directivity pattern needs to be assured for all considered direc-
tions. Hence, instead of constraining the in (6) for only
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one direction, we propose to constrain themeanwhite noise gain
over all directions, defined as

(11)

where the weighting function enables to assign more or
less importance to certain directions [23]. Using (6), the mean
white noise gain in (11) can be rewritten as

(12)

with

(13)

In the remainder of this paper, we will use a uniform weighting
for all directions, i.e. . In this case,

relates the mean output power from all con-
sidered directions to the output power for spatially uncorrelated
noise.
When imposing a constraint on the mean white noise gain,

the constrained optimization problem can be written as

subject to

(14)
with the minimum desired value for . The La-
grangian function associated with this constrained optimization
problem is equal to

(15)

Analogous to (9), the filter coefficients minimizing the cost
function in (15) are equal to

(16)
Hence, the only difference between the solutions in (9) and (16)
is the exchange of the rank-1 matrix in (9)
by the rank- (assuming independent steering vectors from
directions) matrix in (16).
Note that this regularization approach has been perceptually

validated in [23] in terms of localization performance, sensor
noise, spectral coloration and overall performance, where it has
been shown that the overall performance for all evaluated direc-
tions range from fair to excellent for all subjects.

C. Optimization and White Noise Gain for Multiple
Frequencies
Since it is a well-known phenomenon that the human audi-

tory system groups incoming sounds into so-called critical fre-
quency bands that broaden with increasing center frequencies
[29], in this section we propose a cost function and a WNG
constraint that incorporate the grouping of frequencies within

a perceptually-relevant bandwidth. Consequently, the filter op-
timization at each frequency is formulated within equivalent
rectangular bandwidths (ERB), corresponding to human audi-
tory filters [30], with as its center frequency.
Let us consider the -th frequency band with center frequency
, containing frequency bins. We now define the frequency

vector , where and denote the first
and the last frequency bin. Furthermore, we define the -di-
mensional stacked filter vector for the -th frequency
band as

...

...

(17)

The cost function for the -th frequency band can be defined as
the sum of the least squares cost functions in the frequency
bins, i.e.

(18)

which can be rewritten using the stacked filter vector in (17) as

(19)

with

. . .

. . .

...

...

(20)

Similarly to (12), the for the -th frequency band can be
defined as

(21)

which relates the mean output power from all directions
summed over the considered frequency bins in to the
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output power for spatially uncorrelated noise summed over
the considered frequency bins. The WNG in (21) can be
rewritten using the stacked filter vector in (17) as

(22)

with

. . .

. . .

(23)
When imposing a constraint on the for the -th fre-
quency band, the constrained optimization problem for the -th
frequency band can be written as

subject to

(24)
with the minimum desired value for . The Lagrangian
function associated with this constrained optimization problem
is equal to

(25)

Analogous to (16), the filter coefficients minimizing are
equal to

(26)
with the -dimensional identity matrix.
It is important to note that we solve the optimization problem

in (24) for all frequency bins (and not only for the center
frequencies of the critical auditory bands), i.e. for each fre-
quency we consider the ERB with frequencies around
that frequency as its center frequency . The solution in (26)
then yields an -dimensional vector with filter coefficients

, where we only consider the filter coefficients
at the center frequency as the solution for that frequency

bin. This procedure can hence be interpreted as taking neigh-
boring frequencies into account both for the cost function in
(18) as well as for the regularization in (21). It is worth noting
that for , i.e. without regularization, the solution in (16),
taking into account a single frequency band, and the solution
in (26), taking into account neighboring frequency bands, yield
very similar numerical results.
In contrast to the for a single frequency bin in (12),

for the in (21) the weighting function in (13) can
be chosen to assign more or less importance to certain direc-
tions and frequencies. In the remainder of this paper, we will
use a uniform weighting for all directions and frequencies, i.e.

, , .

Fig. 2. Used planar microphone array with microphones with a
topology according to [19].

Note that this regularization approach has been perceptually
validated in [37], [38] in terms of localization, spectral col-
oration and overall performance, where it has been shown that
the median perceptual ratings for the VAH range from good to
excellent and are in general better than the median perceptual
ratings for traditional artificial heads.

V. EXPERIMENTAL RESULTS
In this section, the proposed optimization and regulariza-

tion approaches from Sections III and IV are compared with
respect to their synthesis accuracy in case of no deviations
(Sections V-B–V-E) and their robustness against random devi-
ations of the steering vectors (Section V-F).
In order to quantify the accuracy of the synthesized direc-

tivity pattern, we use the logarithmic error

(27)

where for each direction the mean absolute dB-error is com-
puted for all frequencies in the ERB-band centered around its
center frequency with a 50% overlap [31]. Note that (27) is
used as the accuracy measure instead of the least squares error in
(2) because it is better suited to represent the perceptually rel-
evant error of the synthesis [31]. This measure was, however,
not used as a cost function because no closed-form solution for
minimizing (27) exists.
In order to quantify the robustness of the different ap-

proaches, we use both the mean white noise gain
(cf. Section V-B) and the mean synthesis error for randomly
disturbed steering vectors (cf. Section V-F).

A. Measurement Setup and Algorithmic Parameters
The HRTFs, i.e. the desired directivity pattern , were

measured in the horizontal plane using the blocked ear method
[33], where microphones (Knowles FG-23329 miniature
electret microphones) were flush mounted in individualized
earmolds that blocked the ear entrance. In this paper we will
use the left ear HRTFs of subject (for details we refer
to [31]). The steering vectors were measured with a
planar microphone array (cf. Fig. 2) with a Golomb-based
topology, which is a mathematically-motivated method for
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Fig. 3. Mean white noise gain as a function of the Lagrange multiplier
for three frequencies.

deriving microphone array topologies [19]. The microphone
array consisted of microphones (each consisting of
two Analog Devices ADMP 504 Ultralow Noise sensors) on
a cm cm plate covered with additional absorbing
material. The steering vectors and the HRTFs were measured
in an anechoic room in the horizontal plane with an azimuthal
resolution of , i.e. directions3. This resolu-
tion was shown to be sufficient to synthesize accurate sound
space information [37] and hence was chosen for the objective
comparison of the regularization approaches. Both the steering
vectors and the HRTFs were measured with white noise stimuli
using the estimate [32] with an 8192-point Hann window,
50% overlap and 27 averages, and were truncated in the time
domain to a length of 256 samples (corresponding to about
5.8 ms at a sampling frequency of 44.1 kHz). The HRTFs
were smoothed (according to the perceptual limits derived in
[31]) into constant relative bandwidths of octaves
in the frequency domain and the spatial notches of the HRTF
directivity patterns were levelled out per frequency such that
the dynamic range of the directivity patterns across azimuth did
not exceed 29 dB. Furthermore, the measured steering vectors
were normalized by a constant factor

(28)

with Hz, Hz and the number of interme-
diate frequency bins, in order to achieve unit power on average
over all directions, microphones and frequencies Hz

Hz.
For each of the discussed regularization approaches, the La-

grangemultiplier in (9), (16) and (26) was determined numeri-
cally. To determine the smallest possible (resulting in the most
accurate synthesis) satisfying the desired inequality constraint
in (7), (14) and (24), was increased logarithmically until the
resulting reached the desired within an accuracy
of 0.05 dB. For example, Fig. 3 depicts the mean white noise

3It should be noted that in the presented experiments the number of directions
P and the number of microphones N was equal (i.e. ). However, based
on informal listening tests the performance of the synthesis does not decrease
drastically when slightly reducing the number of microphones (i.e. ),
which is presumably a consequence of the applied regularization.

Fig. 4. Mean (black line) and standard deviation (error bar) of the variability
(absolute values) among the different measured steering vectors (note the linear
frequency scaling).

gain for three frequencies, where it can be observed
that the mean white noise gain does not always increase mono-
tonically with increasing . The minimum desired values
in (7), (14) and (24) were set to dB. This
desiredWNG value was chosen based on the perceptual study in
[23], where it was shown that for the used microphone array the
best performance in terms of localization performance, sensor
noise, spectral coloration and overall performance was obtained
for dB dB.

B. Joint Optimization for Multiple Steering Vectors

To demonstrate the effect of a joint optimization for mul-
tiple sets of steering vectors (cf. Section III), sets of
steering vectors were measured with the same measuring ap-
paratus (with approximately 24 hours lying between the mea-
surements). These measured sets of steering vectors were inte-
grated into a joint optimization according to (4) with a uniform
weighting, i.e. .
In Fig. 4, the mean and the standard deviation of the vari-

ability among the sets of measured steering vectors (absolute
values) is illustrated. Although the positioning and the environ-
mental influences of the measuring apparatus were kept as con-
stant as possible, the absolute value of the measured transfer
functions clearly varied between the measurements. Explana-
tions for these variations may be, e.g., drifting characteristics of
the measuring apparatus and/or slightly differing environmental
conditions, such as temperature [34], [35]. These measured de-
viations may be considered as an empirical estimate of the ex-
pected deviations of the steering vectors, although clearly not
all possible real-world deviations of the steering vectors will be
captured with this limited amount of measurement sets.
As a measure for robustness, the mean white noise gain

for the (unconstrained) joint optimization using
sets of steering vectors is shown in Fig. 5. It

can be observed that the filter coefficients resulting from an
unconstrained optimization with set of steering vectors
yield very low (corresponding to a low robustness),
down to dB (not visible in Fig. 5) at lower
frequencies ( kHz). It can also be clearly observed that
the increases with increasing , demonstrating that it
is possible to increase the robustness by using multiple sets of
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Fig. 5. Mean white noise gain of filter coefficients resulting from the
(unconstrained) joint optimization for different numbers of considered sets of
steering vectors . For the sake of clarity, the range of the depicted is
limited between dB dB.

Fig. 6. Desired HRTFs (black solid lines) and synthesized transfer func-
tions associated with a constraint on (dot-dashed lines,

dB) and on (dashed gray lines, dB) for three
directions ( ).

measured steering vectors. However, in order to achieve suffi-
cient robustness4 against different kinds of deviations, a large
number of measurement sets is required, which is typically not
feasible in practice.

C. White Noise Gain Constraint

Fig. 6 depicts the desired HRTFs and the synthesized
transfer functions associated with a constraint on the white
noise gain for a single direction ( ) for three directions
( ). The synthesized transfer functions asso-
ciated with a constraint on result in a large
deviation from the desired HRTFs for (especially
for 5 kHz kHz and kHz). Moreover, the
synthesized transfer function associated with a constraint on

also results in large deviations for
(especially for kHz), while the synthesized transfer
function for approximates the desired HRTF quite
well. The synthesis error associated with a constraint on

is depicted in Fig. 8 as a function of frequency
and direction. It can be observed that the largest synthesis errors
primarily occur for the frontal direction and

4Meaningful frequency ranges with dB are obtained roughly
for kHz & kHz with , kHz &

kHz with , kHz & kHz with
and kHz & kHz with .

Fig. 7. Desired head-related impulse responses (black solid lines) and syn-
thesized impulse responses associated with a constraint on
(dot-dashed lines, dB) and on (dashed gray lines,

dB) for three directions ( ). The impulse responses are
separated in amplitude by 0.75 ( and ) and by 0.25 ( and

).

Fig. 8. Synthesis error as a function of frequency and direction for the syn-
thesis of a left-ear HRTF associated with a constraint on
( dB). The illustration of is limited to 8 dB for the sake of clarity.

for contralateral directions ( ) and at higher
frequencies. Interestingly, the largest errors exactly occur for
the direction which is used for the constraint. This
has also been confirmed when changing to other directions
than . This may be explained by the fact that the Lagrange
multiplier determines the trade-off between synthesis accu-
racy and robustness. Hence, if a WNG constraint is imposed
for a certain direction , the robustness of the synthesis is
enhanced at the expense of decreasing the synthesis accuracy
for this direction. Thus, a WNG constraint for a single direction
implements a direction-dependent impact on the synthesis,
which is clearly an undesirable effect, which has also been
validated by the perceptual evaluations in [22].

D. Mean White Noise Gain Constraint
Fig. 6 also depicts the synthesized transfer functions associ-

ated with a constraint on the mean white noise gain for
three directions ( ). For , it can be clearly
observed that the synthesized transfer function yields a smaller
deviation from the desired HRTF than the synthesized transfer
function associated with a constraint on . On
the other hand, for the contralateral direction the syn-
thesized transfer function exhibits larger deviations from the de-
sired HRTF at frequencies kHz.
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Fig. 9. Synthesis error as a function of frequency and direction for
the synthesis of a left-ear HRTF associated with a constraint on
( dB).

Fig. 10. Synthesis error as a function of frequency and direction for the syn-
thesis of a left-ear HRTF associatedwith a constraint on ( dB).

This is also apparent in Fig. 9 depicting the synthesis error
associated with a constraint on as a function of fre-

quency and direction. In general, the synthesis associated with
a constraint on yields a rather uniform and small error
for ipsilateral directions ( ). However, this comes
at the cost of a slightly larger error for contralateral directions
( ) compared to the synthesis associated
with a constraint on , especially at frequen-
cies kHz kHz and kHz. The synthe-
sized impulse responses associated with constraints on
and are also depicted in Fig. 7. Both synthe-
sized impulse responses resemble the desired head-related im-
pulse responses quite well, with the largest deviations for the
synthesized impulse responses associated with a constraint on

and direction .
Overall, the filter optimization associated with a constraint on

results in a much better synthesis compared to the filter
optimization associated with a constraint on ,
in particular for the direction .

E. Constraint on the White Noise Gain for Multiple
Frequencies

Fig. 10 depicts the synthesis error associated with a con-
straint on , incorporating the grouping of fre-
quencies within ERBs as discussed in Section IV-C. As can be

Fig. 11. Average synthesis error for 100 randomly disturbed analytic steering
vectors as a function of frequency and direction associated with a constraint
on .

expected, the error is smoother and decreases slightly in com-
parison to the error associated with a constraint on
(cf. Fig. 9). This effect can be mainly observed for contralat-
eral directions and for higher frequencies, which are associated
with broader ERBs.

F. Robustness of the Different Regularization Approaches
In Sections V-C to V-E, the synthesis error was investigated

in case of no deviations from the measured steering vectors.
In order to investigate the robustness against deviations of the
steering vectors for the different regularization approaches, in
this section we will analyze the synthesis error for disturbed
steering vectors. This analysis will be performed for the mea-
sured as well as for analytic steering vectors to cover a broader
variation of possible steering vectors. The analytic steering vec-
tors were simulated assuming far-field conditions and assuming
the same microphone array topology as the measured steering
vectors. For both the measured and the analytic steering vec-
tors, independent normally distributed vectors and with
zero-mean and variance (corresponding to
0.05 dB) were added to the real and the imaginary part of the
steering vector for each and independently5 (cf. [36]), re-
sulting in the disturbed steering vector , i.e.

(29)

with and denoting the real and the imaginary part
of the (undisturbed) steering vector , respectively.
A Monte-Carlo simulation with 100 realizations of the vec-

tors and was performed. Fig. 11 depicts the average syn-
thesis error (averaged over 100 realizations of disturbed an-
alytic steering vectors ) associated with a constraint on the
white noise gain for a single direction . Al-
though for this average synthesis error is quite similar
to the synthesis error for the undisturbed measured steering
vectors in Fig. 8, the average synthesis error in Fig. 11 is
significantly larger, primarily for contralateral directions.

5Although these disturbances do not perfectly cover the real-world deviations
of the steering vectors, they represent a large variety of real-world disturbances
(e.g., sensor noise, positioning errors) and can hence be considered quite real-
istic.
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TABLE I
MEAN SYNTHESIS ERRORS AND FOR THE PRESENTED REGULARIZATION APPROACHES WITHOUT AND WITH

ADDITIONAL RANDOM DEVIATIONS OF THE ANALYTIC AND MEASURED STEERING VECTORS

To obtain a single synthesis error, the mean synthesis error
was calculated over all realizations, all directions and all fre-

quencies, i.e.

(30)

with P the number of directions and the number of frequen-
cies. Note that in case of undisturbed steering vectors, the av-
erage synthesis error in (30) is equal to the synthesis error
. For the mean synthesis error we consider two different fre-
quency ranges. The mean synthesis error was calculated for
the complete frequency range, but excluding the DC, i.e. for
frequencies Hz with starting at the first frequency
bin, i.e. fs/NFFT Hz. In contrast to the mean synthesis
error the mean synthesis error is limited to frequencies
kHz kHz. This frequency band was chosen to

cover the most challenging frequencies ( kHz) when syn-
thesizing HRTFs. The upper limit of 18 kHz was chosen with
the aim to include the highest frequencies which are still au-
dible at reasonable threshold levels of young normal hearing
adults. Therefore, we deemed the synthesis for kHz to
be less relevant from a perceptual point of view while at the
same time these very high frequencies exhibit very large errors
(cf. Figs. 8–11) which would dominate the mean synthesis error.
Hence, covers the entire frequency band (excluding DC) and

covers the most challenging yet perceptually relevant fre-
quency range.
First, from the results in Table I it can be observed that both

mean synthesis errors ( and ) increase for disturbed steering
vectors compared to undisturbed steering vectors , both for
analytic as well as for measured steering vectors and for all (reg-
ularization) approaches. As expected, for the non-regularized
filter optimization the mean synthesis errors increase drastically
when the steering vectors are disturbed.
For the joint optimization (using sets of measured

steering vectors) the mean synthesis errors for the disturbed
steering vectors are only slightly smaller than for the non-regu-
larized optimization. Hence, the joint optimization with
only slightly enhances the robustness of the synthesis, which
may presumably be enhanced by incorporating more sets of
measured steering vectors. The synthesis errors associated with
the joint optimization indicate that this regularization approach
is not well suited for variations of the steering vectors that were
not considered in the optimization. Since in real life applica-
tions it is hardly possible to measure and consider all possible
variations of the steering vectors, this regularization approach

is considered to be disadvantageous in comparison to the other
proposed regularization approaches.
Out of all considered regularization approaches, the optimiza-

tion associated with a constraint on the white noise gain for a
single direction yields the smallest mean syn-
thesis errors when assuming undisturbed analytic steering vec-
tors and the smallest when assuming undisturbed measured
steering vectors. This may be explained by the direction-de-
pendent regularization which primarily influences only the di-
rection . When considering disturbed steering vectors, a
constraint on the white noise gain for a single direction yields
smaller mean synthesis errors than the joint optimization with

(but larger mean synthesis errors compared to constraints
on and ). However, it should be kept in mind
that a white noise gain for a single direction yields a direc-
tion-dependent impact on the synthesis (cf. Section V-C) and
is hence undesirable for a multi-directional synthesis.
For the constraints on themeanwhite noise gains and

, the mean synthesis errors and are clearly smaller
for the disturbed steering vectors compared to the constraint
on and the joint optimization with .
This holds for the analytic as well as for the measured steering
vectors, showing that these proposed regularization approaches
improve consistently robustness. The highest robustness is ob-
tained by the constraint on the mean white noise gain
taking into account multiple frequencies.
In conclusion, the proposed regularization approaches con-

straining the mean white noise gains and
seem to be appropriate for synthesizing head-related transfer
functions for a virtual artificial head. The multi-directional
synthesis accuracy and robustness is clearly enhanced when
considering all directions for the white noise gain ( ) and
when incorporating a psychoacoustically-motivated frequency
grouping ( ).

VI. CONCLUSION
In this paper, several approaches to increase the robustness of

a filter-and-sum beamformer for synthesizing multi-directional
spatial directivity patterns were presented, with a focus on syn-
thesizing HRTFs using a virtual artificial head.
Firstly, an optimization procedure incorporating multiple

measured steering vectors was shown to enhance the robustness
against random deviations of the steering vectors compared to
a non-regularized optimization. However, a joint optimization
for only 4 different measured sets of steering vectors resulted in
a relatively low robustness at low frequencies. In general this
regularization approach seems primarily appropriate in theory
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and impracticable for real life applications, since typically not
enough variations of the steering vectors can be measured.
Secondly, a mean weighting of the over all directions

was presented and shown to outperform the for a single
look direction when synthesizingmulti-directional spatial direc-
tivity patterns.
Thirdly, a design procedure incorporating multiple frequency

bins in the optimization and regularization was presented. It was
shown that the approach incorporating frequencies within ERBs
resulted in the best robustness of the synthesis, for measured as
well as for analytic steering vectors. This shows the suitability of
the presented regularization approaches for synthesizing HRTFs
using microphone arrays.
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