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Abstract

In this paper we present constrained sparse tap-selection
schemes for updating Multi-Channel Acoustic Echo Can-
cellation (MAEC) filters in the subband domain. At first,
M-Max tap-selection on the complete multi-channel ref-
erence spectra is performed and the effect of the subse-
quent sparse filter update on the speed of convergence of
the MAEC filters is investigated. We consider a measure to
quantify signal sparsity, and use it to investigate the spec-
tral and inter-channel sparsity present in real-world sur-
round sound signals. A heuristic tap-selection scheme is
proposed which exploits the signal sparsity properties, and
performs tap-selection with much lower computational ef-
fort as compared to the M-Max and the full-update tap-
selection schemes, while giving similar echo cancellation
performance.

1 Introduction

Acoustic Echo Cancellation (AEC) is employed in many
speech communication systems to reduce the undesired
echoes that result from coupling between the loudspeakers
and the microphones. AEC is a key technology in telecon-
ferencing, hands-free communication as well as distant-
talk voice-control systems (such as home entertainment
systems). In scenarios with large reverberation times (T60),
very long AEC filters (several thousand taps) may be re-
quired to achieve effective echo cancellation, resulting in
large computational effort for both the filter update and the
filtering operation. This problem gets exacerbated when
multi-channel reference signals are involved, as may be
the case with home-entertainment systems with surround
sound. Partial update adaptive filtering algorithms provide
a potential solution as they reduce the required computa-
tional effort for the filter update but may result in slower
convergence [1–3].

The M-Max NLMS [1–3] is a well-known algorithm
that has been proposed for use with time-domain AEC fil-
ters that updates a constrained number of filter taps at every
iteration. It uses the so-called M-Max criterion for select-
ing the taps corresponding to the M largest magnitude tap-
inputs for updating the adaptive filter, and has been used to
tackle the non-uniqueness problem for stereo AEC [2–4].

In this paper we consider subband adaptive filters and
present methods which update the MAEC filters in a sparse
manner, with the total number of filter taps updated in ev-
ery frame being constrained. At first, we consider the M-
max criterion for tap-selection on the set of all MAEC filter
coefficients based on the magnitudes of the multi-channel
subband reference signal (in all subbands and channels)
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Figure 1: Block diagram of subband MAEC setup.

and refer to this method as the Full M-Max tap-selection
scheme. This tap-selection scheme maximizes the energy
of the filter update at every iteration by exploiting the spec-
tral and inter-channel sparsity of the reference signals, but
requires large computational effort. To tackle the prob-
lem of computational effort, we propose a more efficient
scheme for performing constrained sparse tap-selection in
the MAEC filters. From here on we shall refer to inter-
channel sparsity as spatial sparsity, as in an MAEC setup
the channels are displayed from different spatial positions
(positions of the loudspeakers).

In Section 3, we present the Full M-Max tap-selection
scheme, followed by the proposed scheme in Section 4. We
consider a measure to quantify signal sparsity in Section 5.
In Section 6, the simulations and results for the compari-
son between the Full M-Max and the proposed scheme for
different scenarios are presented. Some conclusions and
remarks are presented in Section 7.

2 Signal Model

Figure 1 shows the block diagram of a subband MAEC
setup, where xr(n) denotes the time domain reference sig-
nal in channel r. Xr(µ ,k) represents the subband reference
signal in the µ-th subband and k-th frame, obtained by ap-
plying the Short-time Fourier Transform (STFT) on xr(n).
Here, µ ∈ {0 , . . . , N−1} and r ∈ {0 , . . . , R−1}, where N

denotes the number of subbands: N = NFFT
2

+ 1, with NFFT

being the DFT order. Let

X r(µ ,k) = [ Xr(µ ,k), . . . , Xr(µ ,k−L+ 1) ]
H

(1)

represent the vector containing the values of Xr(µ ,k) for L
frames, where L is the filter length. By stacking X r(µ ,k)
together for all subbands and channels, we obtain an (N ·
R ·L× 1)-dimensional vector referred to here as the multi-



channel reference signal buffer:

χ(k) = [ XH
0 (0,k), XH

1 (0,k), . . . , XH
R−1(0,k),

XH
0 (1,k), XH

1 (1,k), . . . , XH
R−1(1,k),

. . . , XH
0 (N − 1,k), . . . , XH

R−1(N − 1,k) ] H
. (2)

The vector X r(µ ,k) is used to update the L-tap long sub-
band AEC filter F r(µ ,k) using the NLMS algorithm [5] in
every frame:

F r(µ ,k+ 1) = F r(µ ,k) +

λ ·E∗(µ ,k)

∑R−1
r=0 X r

H(µ ,k) X r(µ ,k)
· {T r(µ ,k)⊙Xr(µ ,k) }. (3)

Here λ is the step-size, E(µ ,k) is the error signal after
echo-cancellation, T r(µ ,k) (with entries {0 ,1}) is the
(L×1)-dimensional tap-selection vector, * denotes the com-
plex conjugate and ⊙ denotes element-wise multiplication.
To represent the fraction of the total N · R · L taps in the
MAEC filters that are updated in every frame, we use:

Q =
M

N ·R ·L
, (4)

where M represents the number of taps updated in every
frame. In the following sections, we consider different
schemes for constructing T r(µ ,k) and investigate their ef-
fect on AEC performance.

3 Full M-Max Tap-Selection

The Full M-Max scheme performs tap-selection in the
MAEC filters by selecting those M tap-inputs from χ(k)
(from (2)) which have the largest magnitudes. The selected
spectro-spatial regions in the MAEC filters correspond to
the largest energy concentration in the multi-channel ref-
erence signal. Updating the MAEC filters using these se-
lected taps will ensure that the energy of the sparse filter
update vector in (3) is closest to the energy of the full filter
update vector, with the expectation being that this would
result in the smallest difference in AEC performance as
compared to full filter update. Thus, the Full M-Max tap-
selection may be taken as a reference for comparing the
AEC performance of sparse tap-selection schemes as, for
a given M, it maximizes the closeness of the sparse filter
update to the full filter update. However, performing this
selection on χ(k) results in large computational complex-

ity because of the large sorting effort involved, as N ·R ·L
elements need to be sorted in every frame.

4 Proposed Tap-Selection Scheme

We propose a heuristic method which exploits signal spar-
sity properties for performing constrained sparse tap-
selection and tackles the problem of computational com-
plexity by avoiding the large sorting effort required for Full
M-Max tap-selection as described in Section 3. For every
frame, the tap-selection vector T r(µ ,k) for updating the
filter F r(µ ,k) in (3) is obtained by performing the M-Max
operation on X r(µ ,k) (from (1)). Let ψ

r
(µ ,k) represent

the (L× 1)-dimensional vector containing the magnitudes
of the elements in X r(µ ,k), then

φr(µ ,k) = ψT

r
(µ ,k) 1(L×1) (5)

is the sum of the magnitudes of the elements in X r(µ ,k).
To find the important regions of the multi-channel refer-
ence spectra, we refer φr(µ ,k) to its mean across all sub-
bands and channels to compute:

Hr(µ ,k) = min

(

φr(µ ,k)

∑N−1
µ=0 ∑R−1

r=0 φr(µ ,k)
·N ·R,1

)

, (6)

with its sum across all subbands and channels denoted by:

h(k) =
N−1

∑
µ=0

R−1

∑
r=0

Hr(µ ,k). (7)

In (6), the ratio is limited to 1 as Hr(µ ,k) is used to com-
pute the number of taps to be selected when updating the
filter Fr(µ ,k), according to:

Lr(µ ,k) = ⌊F {Hr(µ ,k),γ(k)} ·L⌋, (8)

where the ⌊·⌋ operator denotes rounding downwards, while
the function F is defined as:

F {Hr(µ ,k),γ(k)}=















γ(k)+ (1− γ(k)) ·Hr(µ ,k),

if h(k)< Q ·N ·R

γ(k) ·Hr(µ ,k), else.

(9)
Here, γ(k) is used to satisfy the constraint:

N−1

∑
µ=0

R−1

∑
r=0

F {Hr(µ ,k),γ(k)}
!
= Q ·N ·R, (10)

which is imposed to restrict the total number of taps up-
dated in the MAEC filters in every frame. Plugging (9)
into (10) and solving for γ(k) yields:

γ(k) =











Q·N·R−h(k)
N·R−h(k) , if h(k)< Q ·N ·R

Q·N·R
h(k) , else.

(11)

The function F in (9) is designed such that when h(k)
(from (7)) is less than the constraint, we allocate the major-
ity of effort to the important regions of the multi-channel
reference spectra (through Hr(µ ,k)), with the leftover ef-
fort being distributed equally across all spectro-spatial re-
gions (through γ(k)). In the event that h(k) exceeds the
constraint, Hr(µ ,k) is simply scaled down using γ(k).

Finally, the number of taps used to perform M-Max
tap-selection is given by Lr(µ ,k) (from (8)). The compu-
tational effort is lower as compared to Full M-Max tap-
selection, as only a vector with L elements needs to be
sorted in each subband and channel, which is implemented
efficiently using the SORTLINE algorithm [6].

5 Closeness Measure

To analyze the amount of spectral and spatial sparsity in
the reference signals we have used the so-called Closeness
Measure [2, 3]:

ξ (α,β ,k) =
χH(k) diag{α(k)} χ(k)

χH(k) diag{β(k)} χ(k)
, (12)
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Figure 2: ERLE Convergence curves for single-channel
White Gaussian Noise (WGN) signal for different values
of Q (4), with Full M-Max tap-selection.

where α(k) and β (k) are tap-selection vectors, stacked sim-

ilarly as in (2), and diag{z} generates a diagonal matrix
with z as the main diagonal. When using β (k) = 1(N·R·L×1),

representing full tap-selection, the Closeness Measure in-
dicates the efficiency of tap-selection α(k) to maximize
the energy of the update as compared to full tap-selection.
Here, 1(N·R·L×1) is a column vector with all N ·R · L ele-

ments equal to 1.

6 Simulations and Results

In this section we present the experimental setup, proce-
dures and results of our simulations. For our experimental
setup we consider time domain reference signals at a sam-
pling frequency of 16 kHz, which are recorded in a room
with T60 ≈ 200 ms. A single microphone has been con-
sidered, which captures the acoustic echo at an Echo to
Noise Ratio of 30 dB. The reference signals are analyzed
using a Hanning window with NFFT = 512 and 75% over-
lap. For the subband domain MAEC filters, a length of
L = 22 taps has been chosen which corresponds to NFFT ·
(1+ 0.25 · (L− 1)) samples, or 200 ms. We measure the
AEC performance by evaluating the Echo Return Loss En-
hancement (ERLE) [7] and by observing its speed of con-
vergence. The speed of convergence of the ERLE is as-
sessed using T20, which is the time required to first reach
an ERLE of 20 dB.

6.1 White Gaussian Noise (WGN) signal

This section presents the AEC performance when a single-
channel WGN is used as reference signal. Figure 2 shows
the ERLE convergence behaviour for different values of Q,
with Full M-Max scheme used to perform tap-selection.
We see that for Q = 0.5, meaning that only 50% of the
total taps are updated in every frame, the ERLE conver-
gence behaviour is very similar to that for Q = 1 (full tap-
selection). Even for Q = 0.2, the deterioration in ERLE at
convergence is relatively small (∼1–2 dB). Figure 3 shows
the T20 and ξ (αM-Max,1,k) values for different values of Q.
We see that T20 for Q = 0.5 is almost identical to that for
Q = 1, which corresponds with the results shown in [2, 3]
for time domain AEC. Hence, our investigation shows that
AEC performance obtained using the M-Max criterion in
the time domain [2, 3] translates similarly into the subband
domain. From both figures we can say that the AEC per-
formance for Q= 0.5 is very similar to Q = 1. As ξ = 0.85
for Q = 0.5 from Figure 3(b), we can consider it as a suffi-
cient condition to achieve good AEC performance.
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Figure 3: (a) Comparison of T20 values, and (b) Closeness
measure ξ (from 12) for different values of Q for single-
channel WGN signal, with Full M-Max tap-selection.

6.2 Real-World Signals

For our simulations, we have considered surround sound
signals (action movie scenes and pop concert recordings)
in Dolby Digital 5.1 format and mono speech signals (au-
diobook) as reference. The pop concert recordings are ac-
tive in all frames, with significant surround content, and
can hence be considered as the worst case scenario for the
scope of our investigation. Figure 4 plots the percentage of
frames with ξ (αM-Max,1,k) > 0.85 for the different real-
world signals, and suggests that at least 99% of frames for
all signals achieve ξ > 0.85 at a value of Q as low as 0.2.
This figure clearly highlights the potential that exists for
exploiting spectral and spatial sparsity in real-world sig-
nals for the purpose of AEC.
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Figure 4: Percentage of frames in real-world signals for
which ξ > 0.85 vs. Q. Action movie and pop concert are 5
channel surround signals, while the speech signal is mono.

As the Full M-Max scheme maximizes ξ (αM-Max,1,k)
in every frame, we propose to analyze the efficiency of the
proposed tap selection αProp to the Full M-Max by com-

puting the average closeness measure

δ =
1

K

K

∑
k=1

ξ (αProp,αM-Max,k). (13)

Figure 5 shows the values of δ for the different real-world
signals for different values of Q. From this we can con-
clude that for Q ≥ 0.5, the proposed scheme approximates
the Full M-Max scheme in terms of efficiency of tap-
selection for real-world signals.

Figure 6 shows the ERLE curves for an action movie
signal, obtained by updating the MAEC filters using the
full tap-selection scheme (Q = 1) as well as using the two
sparse tap-selection schemes for Q = 0.2. We observe that



Operation Full Selection + NLMS Full M-Max + NLMS Proposed + NLMS

# Additions 4N RL+ 6N R 4QN RL+ 6N R 4QN RL+N RL+ 8N R+ 1
# Comparisons 0 N RL log2(N RL) 2N R log2(L)+ 3N R+ 1
# Multiplications 4N RL+ 4N R+ 2N 4QN RL+ 4N R+ 2N 4QN RL+ 7N R+ 2N
# Divisions N N N + 2

Table 1: Computational effort for different tap-selection schemes and filter update using NLMS algorithm.
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Figure 5: Efficiency of proposed tap-selection to Full M-
Max tap-selection vs. Q for different real-world signals.

by just updating only 20% of the total taps in the MAEC
filters, the AEC performance for the sparse schemes is al-
most identical to the performance for the full tap-selection
scheme (∼1–2 dB deterioration). Hence, we see that using
a sparse tap-selection scheme, for a certain range of Q, re-
sults in almost identical AEC performance as compared to
the full tap-selection scheme for real-world surround sig-
nals.

6.3 Computational Effort

Table 1 shows the computational effort for the different
tap-selection schemes as a function of Q,N,L and R. The
number of additions, multiplications, divisions and com-
parison operations for tap-selection and filter update are
shown separately. If we assume that comparison, mul-
tiplication and division operations are 1, 5 and 50 times
as complex as additions respectively, then for {N,L,R} =
{257,22,5}, the Full M-Max and the proposed scheme re-
quire less computational effort than the full tap-selection
scheme for Q < 0.384 and Q < 0.903 respectively. For
Q = 0.2, the Full M-Max scheme saves ∼17% and the pro-
posed scheme saves ∼65% respectively in computational
effort as compared to the full tap-selection scheme.

7 Conclusions

We presented sparse update techniques in the subband do-
main (Full M-Max and proposed) which constrain the num-
ber of taps updated in the MAEC filters. Spectral and spa-
tial sparsity present in real-world surround sound signals
was exploited for updating the MAEC filters. For real-
world surround sound signals, the proposed scheme was
found to approach the Full M-Max scheme in terms of ef-
ficiency of tap-selection when the number of taps updated
exceeded 50% of the total taps in the MAEC filters. The
AEC performance for the sparse schemes, when only 20%
of the filter taps were updated, was found to be almost
identical to the performance when all the taps were up-
dated. The proposed scheme achieves comparable results
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Figure 6: (a) ERLE curves for a 5-channel action movie
signal with full tap-selection (Q = 1) and sparse tap-
selection ( Full M-Max and proposed ) for Q = 0.2,
(b) Waveform of 5-channel action movie signal, with dif-
ferent channels distinguished by colour.

with lower computational effort as compared to the Full
M-Max and the full tap-selection schemes.
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