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ABSTRACT

In many speech communication applications, the recorded mi-
crophone signals are often corrupted by both reverberation and
noise, which can significantly impair speech quality and intelli-
gibility. While acoustic multichannel equalization techniques can
achieve a high dereverberation performance, they may lead to am-
plification of the additive noise, since the equalization filters are
typically designed without taking the presence of noise into account.

This paper presents a novel approach to joint dereverberation
and noise reduction based on acoustic multichannel equalization
(DeNoREq). DeNoREq produces a weighted minimum mean-
square error estimate of the clean speech signal, where the weighting
parameter trades off between dereverberation and noise reduction
performance. Furthermore, an automatic procedure for the selection
of the weighting parameter is established. Experimental results for
perfectly and erroneously estimated room impulse responses illus-
trate the effectiveness of the proposed technique in achieving a high
dereverberation and noise reduction performance.

Index Terms— dereverberation, noise reduction, acoustic mul-
tichannel equalization, robustness, P-MINT

1. INTRODUCTION

Speech signals recorded in an enclosed space by microphones placed
at a distance from the source are often corrupted by reverberation
and background noise, which typically degrade speech quality, im-
pair speech intelligibility, and decrease the performance of automatic
speech recognition systems [1, 2, 3]. In order to mitigate these detri-
mental effects, algorithms aiming at joint dereverberation and noise
reduction have been proposed [4, 5, 6, 7, 8, 9]. In this paper, we
focus on the effective integration of the dereverberation and noise
reduction tasks using acoustic multichannel equalization.

Acoustic multichannel equalization techniques [10, 11, 12, 13],
which are based on estimating and reshaping the room impulse
responses (RIRs) between the source and the microphone array,
comprise an attractive approach to speech dereverberation, since in
theory perfect dereverberation can be achieved [10, 11]. However,
in practice such techniques suffer from several drawbacks. Firstly,
acoustic multichannel equalization techniques typically design re-
shaping filters aiming only at speech dereverberation, without taking
the presence of additive background noise into account. Applying
such reshaping filters may result in a large noise amplification [10],
hindering the high dereverberation performance potential. Secondly,
the estimated RIRs generally differ from the true ones [14, 15, 16],
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such that reshaping filters based on these estimates may even fail to
achieve dereverberation, yielding speech distortion in the processed
output signal [10, 12, 17].

In order to increase robustness to RIR estimation errors, several
techniques have been proposed [10, 12, 17, 18], with the regularized
partial multichannel equalization technique based on the multiple-
input/output inverse theorem (P-MINT) shown to yield a high re-
verberant tail suppression and perceptual speech quality preserva-
tion [10]. By incorporating regularization in P-MINT, the energy
of the reshaping filter is decreased, reducing the distortions in the
output signal due to RIR estimation errors and increasing the dere-
verberation performance [10]. While the regularization parameter
introduced in P-MINT is also effective in partly avoiding noise am-
plification, the noise reduction performance is limited since the noise
statistics are not explicitly taken into account.

In this paper, a novel technique is proposed which aims at joint
Dereverberation and Noise Reduction based on acoustic multichan-
nel Equalization (DeNoREq). DeNoREq produces a weighted min-
imum mean-square error (MMSE) estimate of the dereverberated
speech, where the weighting parameter allows to trade off between
dereverberation error energy and output noise energy. The weighting
parameter is automatically computed using the L-curve based proce-
dure proposed in [10]. Furthermore, in order to avoid the estimation
of the clean speech correlation matrix, the reshaping filter designed
from equalization techniques is exploited. Experimental results il-
lustrate the effectiveness of the proposed technique in achieving joint
dereverberation and noise reduction.

2. CONFIGURATION AND NOTATION

Consider an acoustic system with a single speech source and M mi-
crophones. The m-th microphone signal, m = 1, . . . , M, at time
index n is given by ym(n) = xm(n) + vm(n) = s(n) ∗ hm(n) +
vm(n), where xm(n) and vm(n) denote the reverberant speech and
noise components respectively, ∗ denotes convolution, s(n) is the
clean speech signal, and hm(n) denotes the RIR between the source
and the m-th microphone. The RIR can be described in vector nota-
tion as hm = [hm(0) hm(1) . . . hm(Lh − 1)]T , with Lh the RIR
length and [·]T denoting the transpose operation. Applying filters
gm(n) of length Lg , i.e., gm = [gm(0) gm(1) . . . gm(Lg − 1)]T ,
the system output signal z(n) is given by

z(n) =
M∑

m=1

ym(n) ∗ gm(n) (1)

= s(n) ∗
M∑

m=1

hm(n) ∗ gm(n)︸ ︷︷ ︸
c(n)

+

M∑
m=1

vm(n) ∗ gm(n), (2)
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where c(n) denotes the equalized impulse response (EIR) between
the clean speech signal and the output speech component. The EIR
can be described in vector notation as c = [c(0) c(1) . . . c(Lc − 1)]T ,
withLc = Lh+Lg−1 the EIR length. Using theMLg–dimensional
stacked filter vector g, i.e., g =

[
gT
1 gT

2 . . . gT
M

]T
, the output sig-

nal can be expressed as z(n) = gTy(n), with

y(n) = [yT
1 (n) yT

2 (n) . . . yT
M (n)]T , (3)

ym(n) = [ym(n) ym(n− 1) . . . ym(n− Lg + 1)]T . (4)

Defining the reverberant speech and noise vectors x(n) and v(n)
similarly as y(n) in (3) and (4), z(n) can also be expressed as

z(n) = gTx(n) + gTv(n) = (Hg︸︷︷︸
c

)T s(n) + gTv(n) (5)

with H the Lc ×MLg–dimensional multichannel convolution ma-
trix, s(n) = [s(n) s(n − 1) . . . s(n − Lc + 1)]T , and x(n) =
HT s(n).

As described in the following section, equalization techniques
disregard the presence of the additive noise v(n) and design g such
that only the EIR c is optimized. Furthermore, since the true RIRs
are typically not available in practice, the estimated multichannel
convolution matrix Ĥ (constructed from the estimated RIRs ĥm(n))
is used for the reshaping filter design.

3. ACOUSTIC MULTICHANNEL EQUALIZATION

In this paper, we will focus on the partial multichannel equalization
technique based on MINT which aims at setting the reverberant tail
of the EIR to 0, while controlling the remaining taps correspond-
ing to the direct path and early reflections [10]. To accomplish this
objective, the least-squares cost function

JP = ‖Ĥg − ct‖22 (6)

is minimized, where the direct path and early reflections of the target
EIR ct are set to the direct path and early reflections of one of the
estimated RIRs, i.e., ct = [ĥp(0) . . . ĥp(Ld − 1) 0 . . . 0]T , with
p ∈ {1, . . . , M} and Ld denoting the number of the EIR taps to
be preserved. Assuming that the estimated RIRs do not share any
common zeros and that Lg ≥ dLh−1

M−1
e, the P-MINT reshaping filter

minimizing (6) is equal to [10]

gP = Ĥ+ct (7)

with {·}+ denoting the Moore-Penrose pseudo-inverse [19]. For per-
fectly estimated RIRs, i.e., Ĥ = H, the P-MINT reshaping filter
yields perfect dereverberation when applied to the received micro-
phone signals [10], i.e.,

ct = HgP (8)

However, for erroneously estimated RIRs the P-MINT reshaping fil-
ter may result in large speech distortion. In order to increase the
robustness of P-MINT to RIR estimation errors, the automatically
regularized P-MINT technique has been proposed [10], which mini-
mizes the regularized least-squares cost function

JRP = ‖Ĥg − ct‖22 + δ‖g‖22 (9)

with δ being a regularization parameter. The filter minimizing (9) is
equal to

gRP = (ĤT Ĥ + δI)−1ĤT ct (10)

where δ is automatically computed using the procedure proposed
in [10]. Introducing a regularization parameter reduces the energy
of the reshaping filter, hence, reducing speech distortion in the out-
put signal due to RIR estimation errors. While the P-MINT filter
typically fails to achieve dereverberation in the presence of estima-
tion errors, i.e., ct 6= HgP , the regularized P-MINT filter results in
a significantly better dereverberation performance [10], i.e.,

ct ≈ HgRP (11)

Furthermore, decreasing the energy of the reshaping filter by means
of regularization is also effective in partly avoiding the (otherwise
large) noise amplification at the output of the system [10] (cf. Sec-
tion 5). However, the noise reduction performance of the automat-
ically regularized P-MINT filter in (10) is limited since the noise
statistics are not explicitly taken into account. In the following, a
novel technique is proposed which aims at estimating the derever-
berated and denoised speech signal cTt s(n).

4. DEREVERBERATION AND NOISE REDUCTION BASED
ON MULTICHANNEL EQUALIZATION (DENOREQ)

Aiming at joint dereverberation and noise reduction, an MMSE es-
timate of the desired signal cTt s(n) can be obtained by minimizing
the cost function

J = E{[z(n)− cTt s(n)]2} (12)

= E{[gTx(n) + gTv(n)− cTt s(n)]2}, (13)

with E denoting the expected value operator. The cost function
in (13) is similar to the well-known multichannel Wiener filter cost
function for noise reduction [20], with the difference consisting in
the desired signal being the denoised and dereverberated speech sig-
nal. Assuming that the speech and noise components are uncorre-
lated and introducing a weighting parameter µ to trade off between
dereverberation and noise reduction, the cost function of the pro-
posed dereverberation and noise reduction technique based on equal-
ization (DeNoREq) can be written as

JDeNoREq = E{[gTx(n)− cTt s(n)]2}+ µE{[gTv(n)]2} (14)

Increasing the parameter µ in (14) increases the noise reduction per-
formance at the expense of decreased dereverberation performance.
The filter minimizing (14) is equal to

gDeNoREq = (Rx + µRv)−1E{x(n)sT (n)}ct (15)

= (Rx + µRv)−1HTRsct, (16)

with Rs = E{s(n)sT (n)} the Lc × Lc–dimensional correlation
matrix of the clean speech signal s(n) and

Rx = E{x(n)xT (n)} = HTRsH, (17)

Rv = E{v(n)vT (n)}, (18)

the MLg ×MLg–dimensional correlation matrices of the reverber-
ant speech and noise respectively. Hence, in order to compute the
filter in (16), an estimate of the clean speech, reverberant speech,
and noise correlation matrices is required. While the estimation of
Rx and Rv can in practice be done e.g., using a voice activity detec-
tor (VAD) [21], estimating the clean speech correlation matrix Rs is
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not at all trivial. However, as described in Section 3, for perfectly
estimated RIRs the P-MINT reshaping filter yields perfect derever-
beration performance (cf. (8)). Using (8) and (17), the following
equality

HTRsct = RxgP (19)

can be derived. Exploiting the equality in (19), the filter minimizing
the DeNoREq cost function in (14) can hence be computed as

gP
DeNoREq

= (Rx + µRv)−1RxgP (20)

which does not require an estimate of the clean speech correlation
matrix Rs. In the presence of RIR estimation errors, the P-MINT
reshaping filter however fails to achieve dereverberation. As a re-
sult, the DeNoREq filter in (20) is expected to inherit the sensitivity
of P-MINT to estimation errors (cf. Section 5), since the equality
in (19) used for computing gP

DeNoREq
does not hold. On the other

hand, the regularized P-MINT filter provides a better approximation
to ct (cf. (11)). Hence, to increase robustness in the presence of RIR
estimation errors we propose to compute the DeNoREq filter as1

gRP
DeNoREq

= (Rx + µRv)−1RxgRP (21)

Clearly, the dereverberation and noise reduction performance of
the proposed technique depends on the weighting parameter µ,
which introduces a trade off between the dereverberation error en-
ergy ε2s = E{[gTx(n) − cTt s(n)]2} and the noise output energy
ε2v = E{[gTv]2}, with g being the filter computed in (20) or (21).
In order to automatically select a weighting parameter µ, we use
the procedure proposed in [10] for the automatic selection of the
regularization parameter in multichannel equalization techniques,
which requires a parametric plot of ε2v versus ε2s for a set of weight-
ing parameters µ. Since this parametric plot has an L-shape, the
weighting parameter µ can be automatically selected as the one
corresponding to the point of maximum curvature, i.e., the corner of
the L-curve, such that both the dereverberation error and the noise
output energies are kept small. The noise output energy can be
computed as ε2v = gTRvg, whereas the computation of ε2s requires
an estimate of the cross-correlation between the reverberant and
clean speech, which is not available in practice. Instead, we propose
computing the dereverberation error energy based on the deviation
of the resulting EIR from the target EIR ct. Since in practice only
the estimated multichannel convolution matrix Ĥ is available, the
dereverberation error energy is computed as ε2s = ‖Ĥg − ct‖22.

Fig. 1 depicts a typical L-curve obtained using DeNoREq based
on regularized P-MINT for a perfectly estimated acoustic system. As
illustrated in this figure, increasing the value of µ decreases the out-
put noise energy, hence increasing the noise reduction performance.
However, increasing µ increases the dereverberation error energy,
hence decreasing the dereverberation performance. Although from
such a curve it seems intuitively easy to determine the weighting pa-
rameter that corresponds to the maximum curvature, a numerically
stable algorithm is needed to detect it automatically. In this work,
the triangle method [22] is used.

5. SIMULATION RESULTS

In the following, the dereverberation and noise reduction perfor-
mance when using the P-MINT filter in (7), the regularized P-MINT
filter in (10), the DeNoREq filter based on P-MINT in (20), and the
DeNoREq filter based on regularized P-MINT in (21) will be evalu-
ated.

1The DeNoREq filter can be computed using any robust acoustic multi-
channel equalization technique, as long as the reshaping filter resulting from
the equalization technique provides a high dereverberation performance.

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2
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µ = 10−3

µ = 10−2
µ = 10−1 µ = 1 µ = 5

ε2s = ‖Ĥg − ct‖22

ε2 v
=

g
T
R

v
g

Fig. 1: Typical L-curve obtained using DeNoREq based on regular-
ized P-MINT for a perfectly estimated acoustic system

5.1. Simulation parameters and performance measures

We have considered an acoustic scenario with a single speech
source, a directional noise source, and a linear microphone array
with M = 4 equidistant microphones in a room with reverberation
time T60 ≈ 450 ms. The distance between the microphones is 5 cm
and the distance between the sources and the microphone array is
1 m. The speech source is located in front of the microphone array
and the noise source is positioned at an angle of about 70◦, i.e, on
the left of the microphone array. Measured RIRs from the MARDY
database [23] have been used, with Lh = 3600 at a sampling fre-
quency fs = 8 kHz. In order to simulate RIR estimation errors, the
RIRs have been perturbed by adding scaled white noise as proposed
in [24], such that a normalized projection misalignment (NPM)
defined as

NPM = 10 log10

‖h− hT ĥ

ĥT ĥ
ĥ‖22

‖h‖22
(22)

is generated. Although several NPMs have been investigated, only
NPM = −∞ dB (i.e., perfectly estimated RIRs) and NPM =
−33 dB have been considered in this paper due to space constraints.
The simulation parameters are set to Lg = 1200, p = 1, Ld =
0.03× fs (i.e., 30 ms), and the input signal-to-noise ratio (SNRi) of
the noisy first microphone signal is 0 dB, i.e.,

SNRi = 10 log10

∑
n[x1(n)]2∑
n[v1(n)]2

= 0 dB. (23)

To avoid other sources of errors, we have put aside the influence of
the VAD in this paper and estimated the reverberant speech and noise
correlation matrices as long-term sample averages of x(n) and v(n)
respectively. In order to generate the parametric L-curve required for
the automatic selection of µ, the set of considered weighting param-
eters is µ ∈ {10−4, 10−3, 10−2, 10−1, 1, 5}.

The dereverberation performance of the considered techniques
is evaluated using the energy decay curve (EDC) of the resulting
EIR [25] defined as

EDC(n) = 10 log10

1

‖c‖22

Lc−1∑
i=n

c2(i), n = 0, . . . , Lc− 1, (24)

where c = Hg and the filter g is designed using the estimated mul-
tichannel convolution matrix Ĥ. In order to evaluate the noise re-
duction performance, the SNR improvement (∆SNR) is computed,
i.e.,

∆SNR = SNRo−SNRi, SNRo = 10 log10

∑
n[zx(n)]2∑
n[zv(n)]2

, (25)

with zx(n) and zv(n) the speech and noise components of the out-
put signal. It should be noted that when aiming at dereverberation,
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Fig. 2: EDC of h1 and EDCs of the EIRs obtained using P-MINT,
regularized P-MINT, DeNoREq based on P-MINT, and DeNoREq
based on regularized P-MINT for NPM = −∞ dB

Measure [dB] gP gRP gP
DeNoREq

gRP
DeNoREq

∆SNR −53.0 −1.4 28.3 28.9
ηNR −52.8 −1.2 28.5 29.1
ηSR 0.2 0.2 0.2 0.2

Table 1: Performance of P-MINT, regularized P-MINT, DeNoREq
based on P-MINT, and DeNoREq based on regularized P-MINT for
NPM = −∞ dB

some speech reduction is intrinsically introduced. In order to sep-
arate the influence of noise reduction and speech reduction on the
SNR improvement, also the noise reduction factor ηNR and speech
reduction factor ηSR are computed, with

ηNR =10 log10

∑
n[v1(n)]2∑
n[zv(n)]2

, ηSR =10 log10

∑
n[x1(n)]2∑
n[zx(n)]2

. (26)

5.2. Results

To evaluate the dereverberation performance for perfectly estimated
RIRs, Fig. 2 depicts the EDC of the true RIR h1 and the EDCs of the
EIRs obtained using all considered techniques for NPM = −∞ dB.
For both DeNoREq filters, the automatically determined weighting
parameter is µ = 10−2. As expected, P-MINT yields perfect dere-
verberation, with the reverberant tail fully suppressed, whereas reg-
ularized P-MINT achieves a high dereverberation performance but
only partly suppresses the reverberant tail. Furthermore, also the
proposed DeNoREq technique achieves a high level of dereverbera-
tion, since the reverberant tail is suppressed by more than 35 dB and
the artificial tail introduced after about 300 ms is not audible. Both
DeNoREq filters yield a similar dereverberation performance in this
scenario, with the reverberant tails being approximately 5 dB higher
than the reverberant tail obtained using the regularized P-MINT fil-
ter. Some performance degradation in terms of dereverberation when
using DeNoREq in comparison to P-MINT is expected, since De-
NoREq aims at simultaneously suppressing the additive noise as
well. Furthermore, Table 1 presents the SNR improvement, noise
reduction, and speech reduction factors of the considered techniques.
It can be seen that the P-MINT filter significantly amplifies the noise,
decreasing the SNR at the output by 53.0 dB. Although the regu-
larized P-MINT technique partly avoids the noise amplification in
comparison to P-MINT, the SNR at the output is still decreased
by 1.4 dB. On the other hand, the proposed DeNoREq technique
achieves a high level of noise reduction, with the filter computed
based on regularized P-MINT, i.e., gRP

DeNoREq
, yielding the highest

SNR improvement of 28.9 dB. Based on these simulation results it
can be said that the proposed DeNoREq technique simultaneously
achieves dereverberation and noise reduction, whereas the P-MINT-
based equalization techniques achieve dereverberation but amplify
the noise.
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Fig. 3: EDC of h1 and EDCs of the EIRs obtained using P-MINT,
regularized P-MINT, DeNoREq based on P-MINT, and DeNoREq
based on regularized P-MINT for NPM = −33 dB

Measure [dB] gP gRP gP
DeNoREq

gRP
DeNoREq

∆SNR −22.9 −0.4 24.2 26.0
ηNR −32.2 −0.1 14.9 26.3
ηSR −9.3 0.3 −9.3 0.3

Table 2: Performance of P-MINT, regularized P-MINT, DeNoREq
based on P-MINT, and DeNoREq based on regularized P-MINT for
NPM = −33 dB

In order to evaluate the performance in the presence of RIR es-
timation errors, Fig. 3 depicts the EDC of the true RIR h1 and the
EDCs of the EIRs obtained using all considered techniques for an
NPM = −33 dB. The automatically determined weighting param-
eter is µ = 10−2 for gP

DeNoREq
and µ = 10−3 for gRP

DeNoREq
. As

expected, the P-MINT technique completely fails to achieve dere-
verberation, whereas the regularized P-MINT technique is signifi-
cantly more robust, resulting in a high level of reverberant tail sup-
pression. Since gP

DeNoREq
is computed using the P-MINT filter, it

inherits its sensitivity to RIR estimation errors and hence also fails
to achieve dereverberation. On the other hand, the DeNoREq fil-
ter computed using the regularized P-MINT technique is robust and
achieves a high dereverberation performance, with a very similar
reverberant tail suppression as the regularized P-MINT technique.
To evaluate the noise reduction performance, Table 2 also depicts
the SNR improvement, noise reduction factor, and speech reduction
factor obtained by all considered techniques. Similarly as in the case
of perfectly estimated RIRs, the P-MINT and regularized P-MINT
techniques result in noise amplification. Furthermore, the DeNoREq
filter computed using P-MINT, i.e., gP

DeNoREq
, improves the SNR at

the output by 24.2 dB but significantly distorts the speech as shown
by the speech reduction factor of −9.3 dB. On the other hand, the
DeNoREq filter based on regularized P-MINT is robust and achieves
a high level of noise reduction also in the presence of RIR estima-
tion errors, with an SNR improvement of 26.0 dB. Summarizing
these simulation results, it can be observed that the DeNoREq tech-
nique using the robust regularized P-MINT filter results in a high
dereverberation and noise reduction performance, both for perfectly
estimated RIRs as well as in the presence of RIR estimation errors.

6. CONCLUSION

In this paper, we have presented a novel approach to joint derever-
beration and noise reduction based on acoustic multichannel equal-
ization (DeNoREq). DeNoREq produces a weighted MMSE esti-
mate of the dereverberated speech signal, with the weighting pa-
rameter automatically selected such that both a high dereverberation
and noise reduction performance is achieved. Experimental results
demonstrate that unlike equalization techniques which amplify the
noise, DeNoREq yields a high dereverberation performance while
significantly suppressing the additive noise.
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