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ABSTRACT

In this contribution, six different single-channel dereverberation al-

gorithms are evaluated subjectively in terms of speech intelligibility

and speech quality. In order to study the influence of the dereverber-

ation algorithms on speech intelligibility, speech reception thresh-

olds in noise were measured for different reverberation times. The

quality ratings were obtained following the ITU-T P.835 recommen-

dations (with slight changes for adaptation to the problem of dere-

verberation) and included assessment of the attributes: reverberant,

colored, distorted, and overall quality. Most of the algorithms im-

proved speech intelligibility for short as well as long reverberation

times compared to the reverberant condition. The best performance

in terms of speech intelligibility and quality was observed for the

regularized spectral inverse approach with pre-echo removal. The

overall quality of the processed signals was highly correlated with

the attribute reverberant or/and distorted. To generalize the present

outcomes, further studies are needed to account for the influence of

the estimation errors.

Index Terms— dereverberation, speech intelligibility, speech

quality, perceptual validation

1. INTRODUCTION

In realistic conditions, speech intelligibility and perceived quality of

speech utterances are mainly determined by background noise and

reverberation. To decrease the detrimental effect of noise and rever-

beration on speech intelligibility and/or quality, a number of differ-

ent noise reduction and dereverberation techniques have been pro-

posed over the last decades. Most of these techniques, however, in-

troduce temporal and spectral changes in the speech and noise com-

ponents of the output signal, what may affect speech intelligibility

and speech quality. The influence of the different types of distortions

on speech intelligibility and perceived quality as well as the relation-

ship between these two aspects is not yet entirely understood.

This work focuses on the perceptual evaluation of a selection

of single-channel dereverberation algorithms. This encompasses
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speech intelligibility measurements in noise and quality assessment

of processed signals for the evaluation dimensions reverberant, col-

ored, distorted and overall quality [1]. To account for different

types of distortions, different classes of dereverberation algorithms

were included in the evaluation, i.e. (i) least-squares equalization

[2], impulse-response reshaping by (ii) weighting of the error used

for least-squares minimization [3] or by (iii, iv) aiming at hiding the

equalized impulse response under the temporal masking threshold

[4], as well as spectral suppression methods for direct dereverbera-

tion of the reverberant signal in the short-time Fourier domain, one

(v) based on a statistical model of the room impulse response [5, 7]

and one (vi) incorporating knowledge about the impulse response

to be equalized in the spectral suppression scheme [6] (cf. also Sec-

tion 2). Please note, that all algorithms besides [5, 7] are designed

based on knowledge of the room impulse response (RIR) while [5, 7]

only needs estimates of the room reverberation time (RT60) and the

direct-to-reverberation ratio (DRR) which are much more easy to

obtain in practical systems than a reliable estimate of the RIR. While

this paper focuses on the subjective quality assessment for derever-

beration algorithms, the results of the listening tests analyzed in this

contribution are compared to ratings by objective quality measures

in [8].

The remainder of this paper is organized as follows: the study

design and methodology are introduced in Section 3. Section 4 de-

scribes the results which are then summarized in Section 5.

2. ALGORITHMS UNDER TEST

The most simple impulse response equalization technique is known

as least-squares equalization [2] which is defined in a generalized

form by

cEQ = (WH)+Wd. (1)

with H and d being the channel convolution matrix and the de-

sired system response and (·)+ the Moore-Penrose pseudo inverse,

respectively. An appropriate window function

W = diag
{
w{I,II}

}
(2)

may be chosen as

wI = 1[N1+N2×1] (3)
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to result in the conventional least-squares equalizer [2] or to [3]

wII = [1, 1, ..., 1
︸ ︷︷ ︸

N1

, wII,0, wII,1, ..., wII,N2−1
︸ ︷︷ ︸

N2

]T , (4)

wII,i = 10
3α

log10(N0/N1)
log10(i/N1)+0.5

, (5)

to result in the so-called weighted least-squares equalizer that em-

phasizes the suppression of late parts of the equalized impulse re-

sponse to prevent perceptually disturbing late echoes [1, 9]. In (4)

and (5), the constants N0, N1 and N2 are defined as follows: N0 =
(t0 +0.2)fs, N1 = (t0 +0.004)fs and N2 = Lh +LEQ − 1−N1

with t0, fs, Lh and LEQ being the time of the direct path of the

impulse response, the sampling rate, and the lengths of the RIR and

of the equalization filter, respectively. The factor α influences the

steepness of the window. For α = 1, the window corresponds to

the masking found in human listeners [10]. It is known that im-

pulse response shaping (e.g. by WLS equalization) is more robust

regarding RIR estimation errors and spatial mismatch [9] than the

conventional LS approach. Therefore, the third algorithm under test

is the p-norm-based RIR shaping approach as described in [4], im-

plemented here in two variants, i.e. (i) using the window function

defined in (5) with α = 1 (denoted here as p-norm standard) and

(ii) using the same approach with a windows function limited to

-60 dB (denoted here as p-norm adapted) [8]. The latter is moti-

vated by the fact that it can be assumed that reverberation can not

be perceived more than 60 dB below the main peak of the RIR. The

algorithms described so far aim at reshaping of the room impulse

response. They can be applied either in front of the loudspeaker

for pre-equalization or as post-equalization in the microphone chan-

nel. Furthermore, a spectral reverberation suppression rule accord-

ing to [5, 7] is assessed that aims at dereverberation of the reverber-

ant microphone signal. In particular, the clean speech was estimated

using the log-spectral amplitude estimator as described in [11] and

the late reverberant spectral variance estimator was estimated using

[7] assuming that the frequency-independent reverberation time and

direct-to-reverberation ratio were known. The last dereverberation

method under test calculates the regularized spectral inverse and then

performs a post-processing to remove pre-echoes [6]. Table 1 sum-

marizes the algorithms under test.

Table 1. Different dereverberation approaches and the respective

acronyms.
Acronym Method

LS-EQ Least-squares equalizer cEQ according to (1) without
weighting of error signal (wI = 1)

WLS-EQ Least-squares equalizer cEQ according to (1) with
window function according to (5) and α = 1

Pnorms Standard p-norm RIR shaping according to [4] using
the window function according to (5) and α = 1

Pnorma Adapted p-norm RIR shaping according to [4] using
the window function according to (5) with α = 1,
limited to a minimum of -60 dB [8]

Spec Sup Spectral reverberation suppression according to [5, 7]

F-Inv Regularized spectral inverse with pre-echo removal
according to [6]

3. PERCEPTUAL EVALUATION

The perceptual evaluation of the dereverberation algorithms included

(i) speech intelligibility measurements in noise and (ii) subjective

quality listening tests conducted according to the ITU-T P.835 rec-

ommendations [12] (with slight modifications, cf. [1]). The dere-

verberation algorithms were compared for 5 RIRs characterized by

RT60s of 0.7 s, 1 s, 1.1 s, 1.6 s, and 3.8 s. To simulate the different

RT60 conditions, the clean speech and noise signals were convolved

with the respective RIRs. Four RIRs (0.7 s, 1.1 s, 1.6 s, 3.8 s) were

generated by means of the image method [13] for a room size of 6 x

4 x 2.6 m3. The RIR with RT60 of 1 s was measured in a real room

having a size of 3.9 x 3.1 x 2.3 m3. The source-receiver distance

was fixed at 0.54 m for all RIRs. The reverberant speech signals

(sampled at fs = 16 kHz) were processed by the dereverberation al-

gorithms described in Section 2. The filter lengths for LS and WLS

equalizers were LEQ = 8192 and for the the p-norm approaches

LEQ = 16384, respectively. Please note, that the algorithm per-

formance not necessarily increases with the filter length [1]. The

spectral suppression algorithm processed the reverberant speech sig-

nals in short-term spectral domain based on estimates of the RT60

and the DRR [5]. The regularized inverse filter F-Inv was computed

using a discrete fourier transform (DFT) length of K = 262144 and

a regularization parameter δ = 10 −4 [6]. The re-synthesized signal

was then processed by the speech enhancement scheme, where the

spectral analysis is done using the DFT length K′=512 and an over-

lap of 50 %. As a reference, the reverberated unprocessed signals

were also tested. The root mean square (RMS) values of the pro-

cessed signals were set to the RMS of the original (clean) signals to

enable the comparisons across the different algorithms.

3.1. Speech intelligibility measurements

9 normal-hearing listeners participated in the measurements. Speech

intelligibility was measured adaptively in noise using speech mate-

rial from the Oldenburg sentence test [14]. The signals were pre-

sented diotically over free-field equalized headphones (Sennheiser

HDA200). The level of the speech-shaped noise was kept constant

at 65 dB SPL. The speech level was varied and converged to the

50 % speech intelligibility (so-called speech reception threshold,

SRT). Prior to the measurement, listeners were trained to account

for the training effect and to familiarize themselves with the task.

Two training lists were presented to each listener; the first list was

presented at a fixed signal-to-noise ratio (SNR) of -2 dB. The second

training list was presented adaptively. The training lists were disre-

garded from the further analysis. The order of listening conditions

(RT60s and algorithms) was randomized across listeners.

To directly compare different algorithms, all results are shown as

speech-weighted SNR which is a measure of an effective SNR tak-

ing into account the relative contributions of different regions of the

frequency spectrum to speech intelligibility (cf. also Table 3 within

the Speech Intelligibility Index standard [15]).

3.2. Subjective quality assessment

The quality assessment was conducted with 21 normal-hearing lis-

teners, including all listeners participating in the speech intelligi-

bility measurements. The listeners’ task was to assess the speech

quality regarding four attributes: reverberant, colored, distorted, and

overall quality. The 5-point mean opinion score (MOS) scale was

used as opinion rating method [12, 1]. Each category was assigned a

numerical value between 1 (corresponding to bad overall quality or

very reverberant, distorted or colored signals) and 5 (corresponding

to excellent overall quality and not reverberant, colored or distorted

signals). Quality assessment was possible in steps of 0.1. The speech

samples, consisting of two sentences (a subset of the speech mate-
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rial used in the speech intelligibility measurements), had a length of

about 5 s and were scaled to have the same level. Prior to the actual

measurements, listeners were trained to familiarize themselves with

the task and the signals under test. Similarly to the speech intelli-

gibility measurements, the order of listening conditions (RT60s and

algorithms) was randomized across listeners.

4. RESULTS

4.1. Speech reception thresholds

Mean SRTs (averaged across listeners) and corresponding standard

deviations for different dereverberation approaches are presented as

a function of RT60 in Fig. 1.

The data were statistically analyzed by means of two-way re-

peated measures analysis of variance (ANOVA) with factors ’algo-

rithm’ and ’reverberation time’. The statistical analysis revealed the

main effect of the factors ’algorithm’ (F(6,42.63) = 348.63, p <

0.001), ’reverberation time’ (F(4,23.08) = 92.0, p < 0.001) as well

as the interaction between them (F(24,79.67) = 12.45, p < 0.001).

To determine the sources of significance, the post hoc tests (with

Bonferonni corrections) were conducted for each reverberation time

separately. Generally, reverberation decreased speech intelligibility

with increasing RT60 from -7 dB (RT60 = 0.7 s) to -2.8 dB (RT60

= 3.8 s). When comparing the SRTs for the measured and simu-

lated RIR with similar RT60 of 1 and 1.1 s, respectively, significantly

lower SRTs can be observed for the measured RIR. This can be re-

lated to the fact that the early (useful) to total energy ratio (so-called

definition) was greater for the measured than for the simulated RIR.

PNorma, Spec Sup, and F-Inv algorithms improved speech intel-

ligibility at each RT60 compared to the reverberant condition. The

lowest (i.e. the best) SRTs were obtained by using the F-Inv algo-

rithm, which showed significantly better speech intelligibility than

all other algorithms at all RT60s. No algorithm decreased speech

intelligibility compared to the reverberant case. PNorma, Spec Sup,

and LS algorithms showed similar performance (with the exception

of RT60 = 1.1 s at which statistically relevant differences can be

found), which suggests that different classes of algorithms can result

in quantitatively comparable improvement in speech intelligibility

compared to the reverberant condition, however, of course with dif-

ferences regarding robustness. The PNorma approach did not result

in better speech intelligibility than the PNorms approach, however,

in contrast to PNorms, PNorma improved speech intelligibility com-

pared to the reverberant conditions.

4.2. Subjective quality assessment

Results of the subjective quality assessment are shown by means of

box-plots in Fig. 2. For each of the four attributes, the results are

ordered in descending order of median value. Different colors de-

pict different algorithms (magenta: reverberant signals, grey: LS,

orange: WLS, blue: PNorms, black: PNorma, green: Spec Sup, and

red: F-Inv). The digits from 1 to 5 (in the x-axis labels) indicate the

different RT60s ranging from 0.7 s to 3.8 s, respectively. To deter-

mine which speech signal properties (reverberation, distortions, col-

oration) have an influence on the overall quality, the inter-attribute

correlations |r| of median MOS values were calculated and are sum-

marized in Table 2.

As expected, the overall quality for reverberated, unprocessed

signals was mainly determined by the reverberation as shown by

the high correlation between these two attributes (r = 0.942*). The

median of MOS for overall quality and reverberated signals ranged
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Fig. 1. Speech reception threshold as a function of reverberation

time for ⊲ reverberant signals and signals processed by ◦ WLS, ⊳

LS, × PNorms, � PNorma, 3 Spec Sup, △ F-Inv.

from 2 (RT60 = 3.8 s) to 3.2 for the shortest RT60. For the LS ap-

proach the median MOS scores for overall quality ranged from 2 to

2.4 which corresponds to poor overall quality. The WLS approach

was assessed with higher median scores for overall quality than the

LS approach but only for short RT60s. The median MOS for the

WLS approach and attributes reverberant and distorted was on aver-

age 1.3 and 1.6 higher than for the LS approach. This indicates that

better overall quality for the WLS approach than the LS approach at

short RT60s was related to less distortion as well as less reverbera-

tion.

Both PNorm algorithms were qualitatively similarly assessed re-

garding overall quality with median MOS scores from 2.1 (RT60

=3.8 s) to 3.7 (RT60 = 1.1 s) for the PNorms approach and from

2.4 (RT60 =3.8 s) to 3.7 (RT60 = 1.0 s) for the PNorma approach.

For the PNorms approach, overall quality seems to be mainly de-

termined by the amount of reverberation (r = 0.958*) and for the

PNorma approach by distortion (r = 0.987*). In terms of overall

quality, PNorm algorithms were scored higher (i.e. better) than LS,

WLS, and Spec Sup algorithms.

Similar to the LS and the WLS algorithms, a relatively low over-

all quality was observed for the Spec Sup algorithm with the median

scores ranging from 1.5 (RT60 = 3.8 s) to 2.4 (for RT60 = 0.7 s and

1.0 s). A strong correlation between attributes overall quality and

reverberant (r = 0.923*) as well as distorted (r = 0.976*), and be-

tween reverberant and distorted (r = 0.98*) was found for the Spec

Sup approach. Very low median scores for the attribute distorted,

ranging from 1.3 (RT60 = 3.8 s) to 2.2 (RT60 = 1.1 s), indicate that

the poor overall quality was mainly determined by high amount of

distortion. For all four attributes, the highest rating scores (median

in range from 3.5 to 5) were observed for the F-Inv algorithm indi-

cating that this algorithm provides the highest signal quality.

5. DISCUSSION AND CONCLUSION

In this paper, single-channel dereverberation algorithms were sub-

jectively evaluated in terms of speech intelligibility and peech qual-
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Fig. 2. Subjective rating of speech samples for attributes: reverber-

ant, colored, distorted and overall. Different colors depict different

algorithms; magenta: reverberant signals, grey: LS, orange: WLS,

blue: PNorms, black: PNorma, green: Spec Sup, and red: F-Inv.

The numbers 1 to 5 in the x-axes labels denote the RT60s ranging

from 0.7 s to 3.8 s, respectively.

ity. The F-Inv algorithm which incorporates knowledge about the

impulse response to be equalized to spectral inversion showed im-

proved speech intelligibility and resulted in a very good or even ex-

cellent speech quality. The LS and Spec Sup algorithms significantly

improved speech intelligibility but introduced noticeable distortions

and due to this led to lower speech quality even for short RT60s.

For the LS approach, an insufficient overall quality seems to be re-

lated to two different aspects: for short RT60s bad overall quality is

determined by distortions (e.g. late- and ringing-echoes [1]), how-

ever, with increasing RT60 the influence of reverberation which is

present in speech signals increases and probably masks the distor-

tions perceived as detrimental at short RT60s. This is supported by

correlation analysis which has shown a strong, negative correlation

between the attributes reverberant and distorted (r = −0.951*). For

Table 2. Inter-attribute correlations |r| of MOS values of subjective

ratings. Stars indicate statistically significant correlations (* for p <

0.05 and ** for p < 0.01).
Method Attribute Colored Distorted Overall

Reverberant 0,339* 0.409* 0.84**
Colored - 0.767* 0.684**

al
l

al
g
o
s

Distorted - - 0.775**

Reverberant 0.459 0.717 0.942*
Colored - 0.61 0.648R

ev

Distorted - - 0.881*

Reverberant 0.03 -0.97** -0.052
Colored - -0.205 -0.881*L

S

Distorted - - 0.152

Reverberant 0.282 0.773 0.884*
Colored - -0.795 0.675

W
L

S

Distorted - - 0.978**

Reverberant -0.418 0.805 0.969*
Colored - -0.031 -0.372

P
N

o
rm

s

Distorted - - 0.688

Reverberant 0.466 0.69 0.774
Colored - 0.939* 0.895*

P
N

o
rm

a

Distorted - - 0.987**

Reverberant 0.828 0.942* 0.837
Colored - 0.809 0.772

S
p
ec

S
u
p

Distorted - - 0.968**

Reverberant 0.943* 0.938* 0.772
Colored - 0.933* 0.765

F
-I

n
v

Distorted - - 0.933*

the Spec Sup algorithm an overall quality was mainly determined by

distortions which were detrimental even for short RT60s. This in-

dicates that time variant distortions of the speech part affect speech

quality. However, they are not necessarily detrimental to speech in-

telligibility. Thus, focus for development of future spectral suppres-

sion algorithm has to be on a processed speech signal with minimum

distortions, if speech quality should be the main focus. The weight-

ing window applied in the WLS algorithm improved overall quality

for short RT60s compared to the LS algorithm. This improvement

seems to be related to the reduction of the pre- and late echoes what

is expressed by higher MOS scores for the attribute distorted for the

WLS than for the LS algorithm. However, applying the weighting

window did not improve speech intelligibility as well as speech qual-

ity for longer RT60s. PNorma showed similar results as LS and Spec

Sup algorithms in terms of speech intelligibility but additionally im-

proved speech quality.

It should be stressed that all algorithms, except for [5, 7], were

designed based on perfect knowledge of the RIR. The Spec Sup al-

gorithm requires an estimate of the RT60 and the DRR which were

also known in this study. In realistic conditions, the RIR, the RT60,

and the DRR have to be estimated. It is generally known, that esti-

mation of the RT60 and the DRR is easier than estimation of the full

RIR. Furthermore, the errors in the RT60 and the DRR estimation

have less influence on the algorithm performance than estimation er-

rors that occur while estimating the full RIR [5]. To generalize the

present outcomes for all algorithms, further studies have to be done

to account for the influence of the estimation errors on the speech

intelligibility and quality.
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