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4 International Audio Laboratories, Erlangen, Germany

5 Cluster of Excellence Hearing4all

ABSTRACT

This paper reports on the evaluation of several objective quality

measures for predicting the quality of the dereverberated speech

signals. The correlations between subjective quality assessment

for single-channel dereverberation techniques and objective speech

quality as well as speech intelligibility measures are analyzed and

discussed. Six different single-channel dereverberation algorithms

were included in the evaluation to account for different types of

distortions. The subjective quality was assessed along the four at-

tributes reverberant, colored, distorted and overall quality following

the recommendations of ITU-T P.835. The objective measures in-

cluded system-based, i.e. channel-based, as well as signal-based

measures.

Index Terms— Objective quality measures, subjective listening

test, speech dereverberation

1. INTRODUCTION

Generally, the signal quality of an audio signal can be assessed in

two ways: subjectively and objectively. Subjective quality measure-

ments are based on the subjective opinion of the listeners, measured

by e.g. ranking the signal quality on a predetermined scale. To ob-

tain results with a relatively low variation, a reasonable number of

listeners is needed which is time-consuming as well as costly. To

overcome this, a number of objective measures have been developed

to predict speech quality. For this, high correlation to the subjec-

tive rating in the respective task is essential [1, 2]. However, still

no commonly accepted quality measure for assessing of derever-

beration algorithms has been proposed. In this contribution, the

applicability of several objective measures applied to speech sig-

nals processed by single-channel dereverberation algorithms is ana-

lyzed and discussed. Different classes of dereverberation algorithms

(cf. Section 2) are included in the evaluation to account for different
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types of distortions that may be introduced by dereverberation algo-

rithms, e.g. pre-, late-, and ringing echoes, distortions of the remain-

ing speech signal or residual reverberation [3]. The subjective qual-

ity is assessed for the dimensions reverberant, colored, distorted and

overall quality (cf. also Section 3.1) and compared to the results of

the objective measures. While this paper focuses on the correlations

between subjective data and objective quality measures, the detailed

analysis of the raw subjective data can be found in [4]. The objective

measures encompass several system- and signal-based measures that

are summarized in Section 3.2. Section 4 discusses the correlation

analysis and Section 5 concludes the paper.

2. ALGORITHMS UNDER TEST

The following algorithms have been included for the listening

tests: least-squares equalization [5], impulse-response reshaping

by weighting of the error used for least-squares minimization [6]

or by aiming at hiding the equalized impulse response (IR) under

the temporal masking threshold [7]. Furthermore, two spectral sup-

pression methods have been assessed: one based on a statistical

reverberation model [8, 9], and a second one based on an estimate

of the room impulse response (RIR) [10].

The most simple impulse response equalization technique is

known as least-squares (LS) equalization [5] which is defined by

c
LS
EQ = H

+
d, (1)

with H
+ and d denoting the Moore-Penrose pseudo inverse of the

channel convolution matrix and the desired system response, respec-

tively. A weighting of the error signal with an appropriate window

function w, e.g.

W = diag {w} , (2)

w = [1, 1, ..., 1
︸ ︷︷ ︸

N1

, w0, w1, ..., wN2−1
︸ ︷︷ ︸

N2

]T , (3)

wi = 10
3α

log10(N0/N1)
log10(i/N1)+0.5

, (4)

leads to the weighted least-squares (WLS) equalizer

c
WLS
EQ = (WH)+Wd. (5)
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(a) p-norm equalizer with standard window

f in kHz

T
F

s
in

d
B

Time in s

IR
s

in
d
B

0 2 4 6 80 0.5 1 1.5
-40

-20

0

20

-80

-40

-20

(b) p-norm equalizer with adapted window

Fig. 1: RIR h (RT60=1.1 s) and IRs of equalized systems v =
Hc

p−norm
EQ in dB (left) as well as respective transfer functions (right)

for the p-norm equalizer with (a) standard window and (b) adapted

window.

Contrary to complete equalization as in (1), RIR shaping as

e.g. in (5) emphasizes the suppression of late parts of the equal-

ized IR to prevent perceptually disturbing late echoes [2, 3]. In (3)

and (4), the constants N0, N1 and N2 are defined as follows [7]:

N0 = (t0 + 0.2)fs, N1 = (t0 + 0.004)fs and N2 = Lh +
LEQ − 1−N1 with t0, fs, Lh and LEQ being the time of the direct

path, the sampling rate, the length of the RIR and of the equalizer,

respectively. The constant α is a factor that influences the steepness

of the window. For α = 1 the window corresponds to the masking

found in human subjects [11].

The third algorithm under test is the p-norm-based IR shaping

approach according to [7] implemented here in two variants, i.e. (i)

using the window function defined in (4) with α = 1 (p-norm stan-

dard, PNormS) and (ii) using the same approach with a window

function limited to −60 dB (p-norm adapted, PNormA). The latter is

motivated by the assumption that reverberation cannot be perceived

more than -60 dB below the main peak of the RIR. The resulting

equalized IRs and respective transfer functions are shown in Fig. 1.

Furthermore, two methods for dereverberation in the spectral

domain are assessed: For the reverberation suppression rule accord-

ing to [8, 9], the clean speech was estimated using the log-spectral

amplitude estimator [12] and the late reverberant spectral variance

was estimated using [9] assuming that the frequency-independent re-

verberation time RT60 and direct-to-reverberation ratio (DRR) were

known. The last method assessed in the subjective listening tests is

a frequency-domain technique proposed in [10], called F-Inv in this

paper, that designs an approximate regularized inverse filter

Gδ[k] =
H∗[k]

‖H [k]‖2 + δ
, (6)

where k = 0, . . . , K − 1, denotes the frequency index with

K ≥ Lh, H [k] and H∗[k] denote the acoustic transfer function

and it’s conjugate, respectively, and δ is a regularization parame-

ter [10]. Since the filter in (6) is acausal and causes pre-echoes in the

processed signal, a single channel speech enhancement scheme is in-

corporated afterwards, for which the spectral analysis is done using

an FFT size K′ ≪ K. The parameters K = 262144, δ = 10 −4 and

K′ = 512 at an overlap of 50 % [10] were used for processing the

signals under test.

Table 1 summarizes the algorithms under test and their respec-

tive acronyms.

Table 1: Different dereverberation approaches and their respective

acronyms.

Acronym Description of method

LS-EQ

Least-squares equalizer cLS
EQ according to (1)

without weighting of error signal, i.e. wI = 1 if
using (5)

WLS-EQ
Weighted least-squares equalizer cWLS

EQ according to

(5) with window function according to (4)

PNormS
Standard p-norm RIR shaping according to [7] using
the window function according to (4) with α = 1

PNormA
Adapted p-norm RIR shaping according to [7] using
the window function according to (4) with α = 1

limited to a minimum of -60 dB

Spec Sup Spectral reverberation suppression according to [8, 9]

F-Inv
Regularized spectral inverse with pre-echo removal
according to [10]

3. QUALITY ASSESSMENT

3.1. Subjective Quality Assessment

21 normal-hearing listeners were asked to assess the quality of

speech signals regarding four attributes: reverberant, colored, dis-

torted, and overall quality. For each algorithm, speech quality was

assessed for 5 reverberation times (RT60): 0.7 s, 1.0 s, 1.1 s, 1.6 s,

and 3.8 s. The RIRs for RT60s of 0.7 s, 1.1 s, 1.6 s. and 3.8 s were

simulated using the image method [13] for a room size of 6 x 4 x 2.6

m3. The RIR with RT60 of 1 s was measured in a real room having a

size of 3.9 x 3.1 x 2.3 m3. For all RIRs, the source-receiver distance

was fixed at 0.54 m. Each sound sample (sampled at fs = 16 kHz),

consisting of 2 sentences taken from the Oldenburg sentence cor-

pus [14], was convolved with the respective RIRs. The reverberated

speech signals were then processed by the algorithms described

in Section 2. The filter lengths for LS and WLS equalizers were

LEQ = 8192 and for the p-norm approaches LEQ = 16384. The

Spec Sup algorithm processed the reverberant speech signals in the

short-term spectral domain based on an estimate of the RT60 and the

DRR [8, 9]. Altogether, 35 speech samples (5 RT60s x 6 algorithms

and 5 reverberated samples as a reference condition) were included

in the subjective quality assessment. The root mean square (RMS)

values of the processed speech samples were set to the RMS of the

original (clean) signals to allow for a comparison across the different

algorithms. Prior to the measurements, a training session was con-

ducted to familiarize the listeners with the stimuli under test and the

task. All speech samples were presented diotically via headphones

(Sennheiser HDA200) in quiet at a comfortable level which could be

adjusted individually during the training session. The listeners’ task

was to assess the speech quality at the 5-point mean opinion score

(MOS) scale according to the ITU-T P.835 recommendations [15]

(with slight modifications, cf. [2]) ranging from 1 (corresponding to

bad overall quality, very reverberant, distorted or colored signals)

to 5 (corresponding to excellent overall quality, not reverberant,

colored or distorted signals) with steps of 0.1. The order of listening

conditions (RT60s and algorithms) was randomized across listeners.

3.2. Objective Quality Measures

In general, various objective quality measures exist that can be

applied for quality assessment of dereverberated speech signals.
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Following [2, 16, 3], we separated them into (i) measures that are

based on the IR or the transfer function of a system (channel-based,

i.e. system-based measures, cf. Section 3.2.1) and (ii) measures that

are based on signals (cf. Section 3.2.2). The set of the objective

quality measures used in this study is similar to that used in [16, 3].

The detailed description of the implementation of the objective

quality measures for the dereverberation algorithms can be found in

[3]. Generally, for listening-room compensation (LRC) algorithms

(e.g. LS, WLS, p-norm), both the filter impulse response cEQ and

the RIR h are available during simulations, thus system-based mea-

sures can be used. However, e.g. algorithms working in short-term

spectral domain (Spec Sup and F-Inv) can only be assessed based

on processed signal and reference signal (by means of signal-based

measures).

3.2.1. System-Based Measures and Speech Intelligibility Measures

Acoustic impulse responses can be characterized by several objec-

tive measures, see e.g. [1, 3, 17], often based on a ratio between

early and late part of the respective IR.

We will analyse different measures assessing IRs in time- as

well as frequency domain. The ratio between the energy of the

first 50 ms (or the first 80 ms) after the main peak to the over-

all energy of the RIR is called Definition. It is denoted by D50 or

D80, respectively [17]. The Clarity [17] is the logarithmic ratio of

the energy within 50 ms (80 ms) after the main peak to the rest of

the IR, denoted here by C50 and C80, respectively. The Direct-to-

Reverberation-Ratio (DRR) [18] is defined as the logarithmic ratio

between the main peak and all others. The Central Time (CT) [17]

is the center of gravity of the energy of an impulse response (IR). In

addition to the previously introduced six measures commonly used

to describe IRs, two more quality measures are analyzed in this study

developed for assessing reverberation explicitly, i.e. the Reverbera-

tion Quantization Measure (RQ) [19] and the perceivable Reverber-

ation Quantization Measure (pRQ) [20] that assess the energy of the

equalized IR exceeding the temporal masking limit on the logarith-

mic scale, i.e. the amount of reverberation that is perceivable.

Dereverberation by mean of channel equalization often aims at

archiving a flat spectrum of an equalized transfer function. Thus, the

variance (VAR) of the logarithmic equalized transfer function was

proposed in [21] to evaluate LRC algorithms. A second measure

that assesses the flatness of the equalized transfer function is the so-

called Spectral Flatness Measure (SFM) [22].

A further class of objective measures used in this study are

speech intelligibility (SI) measures. We evaluated the Speech Trans-

mission Index (STI) [23], the Rapid STI (RASTI) [24], and the STI

for Telecommunication Systems (STITEL) [25]. Although these al-

gorithms have been developed to assess speech intelligibility rather

than speech quality, they may, in general, be used for both pur-

poses. We chose the implementations of the SI measures based

on the knowledge of the used IRs and therefore the SI algorithms

are considered as system-based measures although signal-based

implementations exist as well.

3.2.2. Signal-Based Measures

For spectral-domain reverberation suppression algorithms (such as

Spec Sup or F-Inv in this study), equalized linear time-invariant

(LTI) IRs or transfer functions are not accessible or appropriate

for objective testing. Thus, these algorithms have to be assessed

based on the processed signals. Several signal-based measures exist

that can, in general, be used for assessment of dereverberation ap-

proaches. Due to the large extent of this topic, the chosen measures

are just briefly summarized in the following and the interested reader

is referred to the respective references for further reading. A more

detailed summary can be found in [3].

Simple measures like the Signal-to-Noise-Ratio (SNR) or the

Segmental Signal-to-Reverberation Ratio (SSRR) [26] have been

adopted from SNR-based measures for noise-reduction quality as-

sessment [27]. The Frequency-Weighted SSRR (FWSSRR) [1] and

the Weighted Spectral Slope (WSS) [1] represent a first step towards

exploiting findings in the human auditory system by analyzing

the SSRR in critical bands. To account for logarithmic loudness

perception within the human auditory system the Log-Spectral Dis-

tortion (LSD) compares logarithmically weighted spectra. Since

dereverberation of speech is the aim in most scenarios, we also

tested measures based on the linear predictive coding (LPC) models

such as the Log-Area Ratio (LAR) [28], the Log-Likelihood Ratio

(LLR) [1], the Itakura-Saito Distance (ISD) [1], and the Cepstral

Distance (CD) [1]. As a further extension towards modeling of the

human auditory system the Bark Spectral Distortion (BSD) [29]

compares perceived loudness based in spectral masking effects.

More recent objective measures like the Reverberation Decay

Tail (RDT) [30], the Speech-to-Reverberation Modulation Energy

Ratio (SRMR) [31] and the Objective Measure for Coloration in Re-

verberation (OMCR) [32] have been specifically designed for the

assessment of dereverberation algorithms.

From quality assessment in the fields of audio coding and noise

reduction it is known that measures that are based on more exact

models of the human auditory system show high correlation with

subjective data [27]. Thus, we also incorporated the Perceptual Eval-

uation of Speech Quality (PESQ) measure [33] and the Perceptual

Similarity Measure (PSM, PSMt) from PEMO-Q [34] that compares

internal representations according to the auditory model described

in [35]. PSMt calculates the 5th percentile of the PSM output vec-

tor and showed high correlation with subjective ratings for quality

assessment of audio codes [34].

4. RESULTS AND DISCUSSION

Table 2 shows the correlations between subjective data and system-

based quality measures and Table 3 the correlations between sub-

jective data and signal-based quality measures. Correlations |r| of

0.75 or greater are highlighted using bold-face letters. Stars indi-

cate statistically significant correlations (p < 0.05). For each quality

measure the correlations are shown (i) for the case that all algorithms

under test are considered (see ’All algos’ in Tables 2 and 3) and (ii)

the mean and standard deviation for the correlations for single al-

gorithms (’Mean (Std)’). It can be seen, that the correlations are

generally higher, if they are applied to single algorithms than if they

are used for comparison over all algorithms.

To illustrate this, Fig. 2 exemplarily shows the correlation plot

for the quality measure PESQ and the respective correlations for

each single algorithm are given in Table 4. It can be seen e.g. for the

attribute distorted (lower left panel) that the subjective and objective

ratings mostly correlate well for the single algorithms (e.g. between

rSpecSup = 0.67 and rPNormA = 0.93 with a mean of rMean =
0.84), however, the correlation if all algorithms are considered is

considerably lower (rAll = 0.43).

The correlations in Tables 2 and 3 indicate, that none of the qual-

ity measures correlates well with the attribute colored which is in

consilience with the findings in [16, 3]. This reflects the difficulties

that listeners reported assessing coloration in general and, further-

more, distinguishing between coloration and distortion in the signals
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Table 2: Pearson correlations coefficient |r| between MOS values

of subjective ratings and system-based objective measures (values

above 0.75 are indicated in boldface).

Measure Method Reverberant Colored Distorted Overall
All algos .30 .45∗ .52∗ .55∗

D50
Mean (Std) .85 (.06) .38 (.34) .81 (.15) .75 (.23)
All algos .27 .41∗ .48∗ .51∗

D80
Mean (Std) .85 (.06) .38 (.34) .77 (.19) .75 (.17)
All algos .30 .44∗ .54∗ .54∗

C50
Mean (Std) .84 (.08) .39 (.34) .82 (.13) .71 (.26)
All algos .25 .41∗ .48∗ .48∗

C80
Mean (Std) .81 (.09) .41 (.32) .77 (.20) .70 (.22)
All algos -.48∗ -.14 -.20 -.50∗

CT
Mean (Std) .91 (.05) .39 (.29) .77 (.10) .81 (.19)
All algos .42∗ .23 .48∗ .56∗

DRR
Mean (Std) .84 (.10) .39 (.30) .80 (.15) .63 (.29)
All algos -.48∗ -.23 -.37 -.47∗

RQ
Mean (Std) .81 (.18) .40 (.38) .79 (.06) .71 (.29)
All algos -.54∗ .06 -.04 -.46∗

pRQ
Mean (Std) .90 (.03) .43 (.23) .78 (.06) .81 (.20)
All algos .03 -.55∗ -.35 -.35

VAR
Mean (Std) .44 (.29) .64 (.25) .60 (.26) .43 (.35)
All algos .13 .52∗ .39 .47∗

SFM
Mean (Std) .50 (.33) .69 (.34) .71 (.21) .52 (.31)
All algos .28 .37 .46∗ .45∗

STI
Mean (Std) .90 (.02) .37 (.33) .79 (.12) .79 (.22)
All algos .27 .35 .40∗ .42∗

RASTI
Mean (Std) .88 (.07) .33 (.34) .78 (.10) .76 (.22)
All algos .27 .38 .44∗ .44∗

STITEL
Mean (Std) .89 (.04) .35 (.34) .81 (.12) .79 (.23)

Table 3: Pearson correlations coefficient |r| between MOS values of

subjective ratings and signal-based objective measures (values above

0.75 are indicated in boldface).

Measure Method Reverberant Colored Distorted Overall
All algos .35∗ .04 .03 .23

BSD
Mean (Std) .59 (.37) .56 (.23) .70 (.24) .58 (.31)
All algos -.81∗ -.56∗ -.45∗ -.81∗

CD
Mean (Std) .89 (.12) .46 (.30) .86 (0.09) .77 (0.26)
All algos .74∗ .65∗ .49∗ .82∗

FWSSRR
Mean (Std) .86 (.14) .37 (.20) .67 (.15) .75 (.23)
All algos -.60∗ -.31 -.36∗ -.60∗

ISD
Mean (Std) .81 (.26) .40 (.25) .80 (.11) .75 (.25)
All algos -.79∗ -.47∗ -.38∗ -.77∗

LAR
Mean (Std) .90 (.07) .38 (.21) .77 (.15) .69 (.36)
All algos -.80∗ -.64∗ -.48∗ -.82∗

LLR
Mean (Std) .88 (.09) .43 (.22) .78 (.18) .73 (.26)
All algos -.29 -.40∗ -.27 -.34∗

LSD
Mean (Std) .73 (.30) .40 (.31) .62 (.24) .56 (.23)
All algos .23 .28 .29 .35∗

OMCR
Mean (Std) .42 (.33) .46 (.32) .52 (.32) .44 (.34)
All algos .70∗ .66∗ .43∗ .77∗

PESQ
Mean (Std) .75 (.15) .53 (.25) .84 (.11) .72 (.27)
All algos .69∗ .52∗ .37∗ .72∗

PSM
Mean (Std) .88 (.09) .52 (.32) .89 (.06) .77 (.34)
All algos .80∗ .27 .24 .68∗

PSMt
Mean (Std) .86 (.12) .46 (.29) .73 (.28) .74 (.31)
All algos -.38∗ -.23 -.11 -.38∗

RDT
Mean (Std) .87 (.13) .47 (.32) .82 (.09) .78 (.29)
All algos .52∗ .22 .23 .50∗

SSRR
Mean (Std) .65 (.29) .36 (.16) .53 (.33) .53 (.33)
All algos .06 .12 -.12 .06

SNR
Mean (Std) .23 (.11) .51 (.22) .37 (.22) .44 (.35)
All algos .49∗ .29 .03 .43∗

SRMR
Mean (Std) .54 (.33) .37 (.24) .52 (.38) .61 (.36)
All algos -0.66∗ -0.65∗ -0.43∗ -0.76∗

WSS
Mean (Std) .85 (.11) .54 (.26) .87 (.16) .79 (.30)

under test. E.g. for the LS equalizer, typical time-domain artefacts

(late echoes) sometimes sound like frequency-domain distortions.

Correlations for the system-based measures shown in Table 2

show that most time-domain measures correlate well with the at-

tribute reverberant and distorted at least on the basis of single algo-

rithms. The correlations for the frequency-domain measures is much

lower (cf. also [16, 3]). Although the speech intelligibility measures
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Fig. 2: PESQ score as function of MOS for the four attributes.

Table 4: Pearson correlation coefficient r, between PESQ scores and

MOS for the four attributes and the algorithms under test.

Reverberant Colored Distorted Overall
Reverberant 0.59 0.72 0.93 0.80
LS-EQ 0.92 0.30 -0.90 -0.16
WLS-EQ 0.83 0.55 0.76 0.88
PNormS 0.84 -0.22 0.92 0.74
PNormA 0.59 0.92 0.93 0.96
Spec Sup 0.57 0.37 0.67 0.84
F-Inv 0.88 0.64 0.74 0.66
Mean (Std) 0.75 (0.15) 0.53 (0.25) 0.84 (0.11) 0.72 (0.27)
All 0.70 0.66 0.43 0.77

(STI and its variants) have not been designed to assess speech qual-

ity, they show very high correlations for all attributes besides col-

ored for the data under test in this study. A thorough study regarding

speech intelligibility measurements will be subject to future work.

The correlations for the signal-based measures in Table 3 show

that high correlations can also be achieved for the attributes rever-

berant and distorted, again mostly for single algorithms. Regarding

comparison between different algorithms (’All algos’), FWSSRR

and LLR show highest correlation (0.82) for the attribute overall

quality and LLR and PSMt show highest correlation (0.8) for the

attribute reverberant.

5. CONCLUSION

This paper presented a correlation analysis between data from sub-

jective listening test for dereverberated sound samples and differ-

ent objective quality measures. While several objective quality mea-

sures showed high intra-class correlations, i.e. for single algorithms

(e.g. for comparison of different parameters), much lower correla-

tion was found if several algorithms are compared with each other.

Surprisingly, speech intelligibility measures like the STI correlate

well with subjective rating for quality although they aim at assessing

speech intelligibility rather than quality.
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