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ABSTRACT

The REVERB challenge provides a common framework for

the evaluation of speech enhancement algorithms in the pres-

ence of both reverberation and noise. This contribution pro-

poses a system consisting of a commonly used combination

of a beamformer with a single-channel speech enhancement

scheme aiming at joint dereverberation and noise reduction.

First, a minimum variance distortionless response beam-

former with an on-line estimated noise coherence matrix is

used to suppress the noise and possibly some reflections. The

beamformer output is then processed by a single-channel

speech enhancement scheme, incorporating temporal cep-

strum smoothing which suppresses both reverberation and

residual noise. Experimental results show that improvements

are particularly significant in conditions with high reverbera-

tion times.

Index Terms— REVERB challenge, dereverberation,

noise reduction.

1. INTRODUCTION

In teleconferencing applications, voice-controlled systems

and hearing aids, the recorded speech signals are often cor-

rupted by both reverberation and noise, resulting in speech

quality and speech intelligibility degradation, as well as de-

terioration in automatic speech recognition (ASR) perfor-

mance. Several algorithms have been proposed in the litera-

ture to deal with these issues [1–6], but the lack of a common

evaluation framework made the comparison between differ-

ent approaches difficult. The REVERB challenge proposes

an evaluation framework aiming to facilitate the progress of

speech enhancement algorithms for noisy and reverberant

environments [7].

The research leading to these results has received funding from the EU

Seventh Framework Programme project DREAMS under grant agreement

ITN-GA-2012-316969, from the DFG Cluster of Excellence 1077 Hear-

ing4All, from a GIF grant, and from the MWK PhD Program Signals and

Cognition.

The system proposed in this contribution consists of a

commonly used combination of a beamformer and a single-

channel speech enhancement scheme. First, the multi-channel

input signals are processed using a minimum variance distor-

tionless response (MVDR) beamformer [8], which aims to

suppress sound sources not arriving from the direction of ar-

rival (DOA) of the target speaker. The noise coherence matrix

in the MVDR beamformer is estimated from noise-only peri-

ods, determined using a voice activity detector (VAD) [9], and

the DOA of the target speaker is estimated using the multiple

signal classification (MUSIC) algorithm [10, 11].

The beamformer output is then processed using a single-

channel speech enhancement scheme, which aims at jointly

suppressing the remaining noise and reverberation and relies

on estimates of the power spectral densities (PSDs) of the

noise and of the reverberation similarly as in [5]. The pro-

posed scheme computes a real-valued gain function combin-

ing the clean speech amplitude estimator in [12], the noise

PSD estimator based on minimum statistics in [13], and the

estimator of the PSD of the late reverberation based on statis-

tical room acoustics in [14]. In addition, adaptive smoothing

in the cepstral domain is used to estimate the speech PSD in

order to reduce the musical noise which is often a byproduct

of spectral enhancement schemes [15].

This paper is organized as follows. In Section 2 the no-

tation is introduced and the proposed system is described. A

description of the used beamformer is provided in Section 3,

while the single-channel spectral enhancement scheme is de-

scribed in Section 4. The challenge and the evaluation corpus

are introduced in Section 5 and the results achieved by the

proposed system are presented in Section 6.

2. NOTATION AND CONFIGURATION

Consider an acoustic system with a single speech source and

M microphones. The reverberant and noisy m-th microphone

REVERB Workshop 2014
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Fig. 1. Overview of the proposed system.

signal ym(n) at time index n is given by

ym(n) = s(n) ∗ hm(n) + vm(n)

= xm(n) + vm(n), m = 1, · · · , M,
(1)

with s(n) being the clean speech signal, hm(n) being the

room impulse response (RIR) between the source and the m-

th microphone, and xm(n) and vm(n) denoting the reverber-

ant speech component and the additive noise component of

the m-th microphone signal, respectively. Aiming to obtain

an estimate ŝ(n) of the clean speech signal s(n), the speech

enhancement scheme depicted in Fig. 1 is proposed.

First, the received microphone signals ym(n) are used to

estimate the noise coherence matrix and the DOA of the target

speech signal. The DOA estimation is based on the MUSIC

algorithm [10, 11] which will be briefly described in Sec-

tion 3.2. The estimated noise coherence matrix and DOA are

then used to design an MVDR beamformer, which aims at

noise reduction and some dereverberation by suppressing the

sound sources not arriving from the target DOA while provid-

ing a unity gain in the direction of the target speaker. Finally,

the beamformer output x̂(n) is processed by a single-channel

speech enhancement scheme, described in Section 4, which

aims at joint noise and reverberation suppression.

In the remainder of this paper, the short-time Fourier

transform (STFT) representations of s(n), xm(n), vm(n),
ym(n) and x̂(n) are denoted by S(k, ℓ), Xm(k, ℓ), Vm(k, ℓ),
Ym(k, ℓ) and X̂(k, ℓ), respectively, with k and ℓ representing

the frequency bin and frame indices.

3. BEAMFORMER

3.1. MVDR beamformer

The M -dimensional stacked vector of the received micro-

phone signals Y(k, ℓ) can be written as

Y(k, ℓ) = X(k, ℓ) +V(k, ℓ), (2)

with

Y(k, ℓ) = [Y1(k, ℓ) Y2(k, ℓ) . . . YM (k, ℓ)]T , (3)

and X(k, ℓ) and V(k, ℓ) defined similarly as in (3). The

beamformer output signal X̂(k, ℓ) is obtained by filtering and

summing the microphone signals, i.e.,

X̂(k, ℓ) = W
H
θ (k)Y(k, ℓ)

= W
H
θ (k)X(k, ℓ) +W

H
θ (k)V(k, ℓ),

(4)

with Wθ(k) denoting the stacked filter coefficient vector of

the beamformer steered towards the angle θ. Aiming at min-

imizing the noise output power while providing a unity gain

in the direction of the target speaker, the filter coefficients of

the MVDR beamformer are computed as

Wθ(k) =
Γ
−1(k)dθ(k)

dH
θ (k)Γ−1(k)dθ(k)

, (5)

with dθ(k) denoting the steering vector of the target speaker

and Γ(k) denoting the noise coherence matrix. Using a far-

field assumption, the steering vector is equal to

dθ(k) = [e−j2πfkτ1(θ) e−j2πfkτ2(θ) · · · e−j2πfkτM (θ)], (6)

with fk denoting the center frequency of bin k and τm(θ)
denoting the time difference of arrival of the source signal

between the m-th microphone and a reference position, which

has been arbitrarily chosen as the center of the microphone

array.

As can be clearly seen from equations (5) and (6), in order

to compute the beamformer filter coefficients, the DOA of the

target speaker as well as the noise coherence matrix need to

be estimated. Estimation of the target DOA will be discussed

in Section 3.2. To estimate the noise coherence matrix Γ(k),
the VAD described in [9] is used and Γ(k) is computed using

all detected noise-only frames. However, if the length of the

detected noise-only period is too short (cf. Section 5), the co-

herence matrix Γdiff(k) of a diffuse noise field is used instead,

resulting in the well-known superdirective beamformer [8].

Since superdirective beamformers are known to be sensitive

to uncorrelated noise, a white noise gain constraint WNGmax
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Fig. 2. Overview of the proposed single-channel enhancement scheme for a single frame.

is imposed in this case. With such a constraint the filter coef-

ficients are computed as

Wθ(k) =
(Γdiff(k) + ̺(k)IM )−1

dθ(k)

dH
θ (k) (Γdiff(k) + ̺(k)IM )

−1
dθ(k)

(7)

with IM the M ×M -dimensional identity matrix and ̺(k) a

frequency-dependent regularization parameter which is iter-

atively computed such that WH
θ (k)Wθ(k) ≤ WNGmax [16]

.

3.2. DOA estimation

Since an error in the DOA estimate θ̂ of the target speech sig-

nal can lead to the beamformer suppressing the desired signal,

a robust subspace-based algorithm (MUSIC) has been used to

estimate the DOA of the target speaker [10, 11]. Using the

MUSIC algorithm, this DOA can be estimated as

θ̂ = argmax
θ

1

K

khigh
∑

klow

Uθ(k, ℓ), (8)

where K denotes the total number of considered frequency

bins k = klow . . . khigh and U(k, ℓ, θ) denotes the so-called

MUSIC pseudo-spectra, which are calculated as

Uθ(k, ℓ) =
1

dH
θ (k)E(k, ℓ)EH(k, ℓ)dθ(k)

. (9)

The noise subspace

E(k, ℓ) = [eQ+1(k, ℓ) . . .eM (k, ℓ)] , (10)

is an M × (M − Q)-dimensional matrix, with Q being the

number of sources (i.e. Q = 1 in this case), composed of the

eigenvectors of the covariance matrix of Y(k, ℓ) correspond-

ing to the (M −Q) smallest eigenvalues.

Assuming that speech and noise are uncorrelated, the

steering vector corresponding to the true DOA is orthogonal

to the noise subspace such that the DOA of the target speaker

can be estimated as the angle maximizing the sum of the

MUSIC-pseudo-spectra in equation (9).

4. SINGLE-CHANNEL ENHANCEMENT

The single-channel enhancement scheme which is applied to

the output signal x̂(n) of the MVDR-beamformer is sum-

marized in Fig. 2. The signal x̂(n) is assumed to contain

the clean speech signal s(n) as well as residual reverberation

r(n) and noise ṽ(n), i.e.

x̂(n) = s(n) + r(n) + ṽ(n). (11)

In the STFT domain, (11) is expressed as

X̂(k, ℓ) = Z(k, ℓ) + Ṽ (k, ℓ), (12)

where

Z(k, ℓ) = S(k, ℓ) +R(k, ℓ). (13)

Aiming at jointly reducing reverberation and noise, a real-

valued gain G(k, ℓ) is applied to the beamformer output sig-

nal, i.e.

Ŝ(k, ℓ) = G(k, ℓ)X̂(k, ℓ), (14)

with Ŝ(k, ℓ) being the STFT of the estimated target signal.

The gain is computed by using the minimum mean square

error (MMSE) estimator for the clean speech magnitude pro-

posed in [12]. This estimator, similarly to the Wiener filter,

requires the PSDs of the clean speech, of the noise and of the

reverberation components, which have to be estimated from

the beamformer output signal. First, an estimate of the noise

PSD is obtained using minimum statistics [13] and further

used to estimate the reverberant speech PSD. As the dere-

verberation task is treated separately from the denoising task,

care has to be taken that no reverberation leaks into the noise

PSD estimate and vice versa. Thus, in order to avoid the

reverberation leaking into the noise PSD estimate, a longer

minimum search window is used in the minimum statistics

approach as compared to [13] (cf. Section 5).

The PSD of the reverberant speech is estimated using tem-

poral cepstrum smoothing [15] and the late reverberation PSD

is estimated from the reverberant speech PSD using the ap-

proach proposed in [17]. This approach requires an estimate

of the reverberation time T60, which has been obtained using

3



the estimator described in [18]. The PSD of the clean speech

component is finally obtained by a re-estimation, again using

temporal cepstrum smoothing. The following sections give a

more detailed description of the different components of the

proposed single-channel enhancement scheme.

4.1. Gain function

In [12], it is assumed that the speech magnitude |S(k, ℓ)| fol-

lows a chi probability density function (PDF) with a shape

parameter µ, while the phase of S(k, ℓ) is assumed to be uni-

formly distributed between −π and π. Furthermore, the in-

terference J(k, ℓ) = R(k, ℓ) + Ṽ (k, ℓ) is modeled by a com-

plex Gaussian random variable with PSD σ2
j (k, ℓ). Assuming

that R(k, ℓ) and Ṽ (k, ℓ) are uncorrelated, σ2
j (k, ℓ) can be ex-

pressed as

σ2
j (k, ℓ) = E

{

|J(k, ℓ)|2
}

= σ2
ṽ(k, ℓ) + σ2

r (k, ℓ), (15)

with σ2
r (k, ℓ) and σ2

ṽ(k, ℓ) denoting the PSDs of the reverber-

ation and of the noise component, respectively. With σ2
s (k, ℓ)

denoting the PSD of the clean speech and ξ(k, ℓ) denoting the

a priori signal-to-interference ratio (SIR) defined as,

ξ(k, ℓ) =
σ2
s (k, ℓ)

σ2
r(k, ℓ) + σ2

ṽ(k, ℓ)
, (16)

the clean speech magnitude is estimated by optimizing the

MMSE criterion
∣

∣

∣
Ŝ(k, ℓ)

∣

∣

∣
= argmin

|Ŝ(k,ℓ)|
E
{

ǫ(k, ℓ)|X̂(k, ℓ), σ2
j (k, ℓ), ξ(k, ℓ)

}

,

(17)

with

ǫ(k, ℓ) =

(

|S(k, ℓ)|β −
∣

∣

∣
Ŝ(k, ℓ)

∣

∣

∣

β
)2

, (18)

where the parameter β is a compression factor such that a

different emphasis is given on estimation errors for small am-

plitudes in relation to large amplitudes.

According to [12], with γ(k, ℓ) denoting the a posteriori

SIR defined as

γ(k, ℓ) =
|X(k, ℓ)|2

σ2
r(k, ℓ) + σ2

ṽ(k, ℓ)
, (19)

and

ν(k, ℓ) =
γ(k, ℓ)ξ(k, ℓ)

µ+ ξ(k, ℓ)
, (20)

the solution to (17) leads to the gain function G̃(k, ℓ)

G̃(k, ℓ) =

√

ξ(k, ℓ)

µ+ ξ(k, ℓ)
×





Gam
(

µ+ β
2

)

Gam (µ)

Φ
(

1− µ− β
2 , 1;−ν(k, ℓ)

)

Φ (1− µ, 1;−ν(k, ℓ))





1/β

×

(

√

γ(k, ℓ)
)−1

,

(21)

where Φ(·) denotes the confluent hypergeometric function

while Gam (·) denotes the complete Gamma function. De-

pending on the choice of β and µ, this estimator can resemble

other well known estimators, such as the short-time spectral

amplitude estimator [19] or the log-spectral amplitude esti-

mator [20]. To compute the expression in (21), the PSDs

σ2
s(k, ℓ), σ

2
ṽ(k, ℓ) and σ2

r (k, ℓ) have to be estimated from the

beamformer output.

In order to reduce artifacts which may be introduced

by (21), the gain G(k, ℓ) used in (14) is restricted to values

larger than a spectral floor Gmin (cf. Section 5), i.e.,

G(k, ℓ) = max
(

G̃(k, ℓ), Gmin

)

. (22)

4.2. Noise PSD estimator

The noise PSD σ2
ṽ(k, ℓ) is estimated using the minimum

statistics approach [13], which tracks the minima of the input

signal PSD over a sliding window and has been shown to be

reliable for slowly varying and stationary noises. A realiza-

tion of the PSD of the noise signal is first estimated as the

smoothed periodogram of the input signal which is obtained

as

Pṽ(k, ℓ) = αPṽ(k, ℓ− 1) + (1− α)|X(k, ℓ)|2, (23)

with α denoting a smoothing parameter. The PSD σ2
ṽ(k, ℓ) is

estimated as the minimum of Pṽ(k, ℓ) over a short temporal

sliding window, with a usual length corresponding to 1.5 s.

This technique relies on the assumption that the minimum of

Pṽ(k, ℓ) within a 1.5 s window is not affected by speech, al-

lowing for an inference of the noise PSD. In reverberant envi-

ronments, however, the decay time in speech pauses may be

increased. Thus, in order to avoid reverberant speech to affect

the noise PSD estimate σ2
ṽ(k, ℓ), a longer tracking window is

used (cf. Section 5).

Tracking the minimum of the PSD using a time-frequency

independent α can lead to an inaccurate estimate of Pṽ(k, ℓ)
and a delay in detecting augmentation of the noise power.

In order to circumvent these issues, a time-frequency variant

smoothing constant α(k, ℓ) has been derived in [13], which

aims to minimize the MMSE

α(k, ℓ) = argmin
α(k,ℓ)

E
{

Pṽ(k, ℓ)− σ2
ṽ(k, ℓ)|Pṽ(k, ℓ− 1)

}

. (24)

The solution to (24) is given by

α(k, ℓ) =
1

1 +
(

Pṽ(k,ℓ−1)
σ2

ṽ
(k,ℓ)

− 1
)2 , (25)

in which σ2
ṽ(k, ℓ) is in practice unavailable and replaced by

σ2
ṽ(k, ℓ − 1). In order to compensate for the delay in the

4



adaptation of σ2
ṽ(k, ℓ), which could lead to overestimation or

underestimation, the smoothing parameter is corrected as

α(k, ℓ) =
αmaxαc(k, ℓ)

1 +
(

Pṽ(k,ℓ−1)
σ2

ṽ
(k,ℓ−1)

− 1
)2 , (26)

where αmax is the maximum allowable smoothing constant

and αc(k, ℓ) is given by

αc(k, ℓ) = 0.7 αc(k, ℓ− 1) + 0.3 max (α̃c(k, ℓ), 0.7) ,

α̃c(k, ℓ) =
1

1 +
(∑

L−1

k=0
Pṽ(k,ℓ−1)

∑
L−1

k=0
|X(k,ℓ)|2

− 1
)2 .

(27)

Additionally, a lower limit αmin(k, ℓ) is applied to αc(k, ℓ) in

order to improve the performance of the estimator in high lev-

els of non-stationary noise. The resulting estimate σ̂2
ṽ (k, ℓ) of

σ2
ṽ(k, ℓ) is used to estimate both σ2

s (k, ℓ) and σ2
r (k, ℓ) as de-

scribed in the following section.

4.3. Speech PSD estimator

Once the estimate σ̂2
ṽ (k, ℓ) is available, temporal cepstrum

smoothing, proposed in [15], is used to estimate the PSD

σ2
z(k, ℓ) of the reverberant speech component Z(k, ℓ). The

same method can also be used to estimate the dereverberated

speech component σ2
s (k, ℓ) if an estimate of the reverberation

power σ2
r(k, ℓ) is available. The modifications of the formula

required for the latter case are described in the end of this

section.

In order to estimate the reverberant speech PSD σ2
z(k, ℓ),

the maximum likelihood (ML) estimator of the a priori signal

to noise ratio (SNR)

ξml
z (k, ℓ) =

|X(k, ℓ)|2

σ2
ṽ(k, ℓ)

− 1 (28)

is employed. The speech power Pz(k, ℓ) can then be obtained

as

Pz(k, ℓ) = σ2
ṽ(k, ℓ) max

(

ξml
z (k, ℓ), ξml

min

)

, (29)

where ξml
min > 0 is a lower bound to avoid negative or very

small values of ξml
z (k, ℓ). In the cepstral domain, Pz(k, ℓ)

can be represented by λml
z (q, ℓ) as

λml
z (q, ℓ) = IDFT

{

log
(

Pz(k, ℓ)|k=0,··· ,(L−1)

)}

, (30)

where q is the cepstral bin index. A recursive temporal

smoothing is applied to λml
z (q, ℓ), i.e.,

λz(q, ℓ) = δ(q, ℓ)λz(q, ℓ− 1)+ (1− δ(q, ℓ))λml
z (q, ℓ), (31)

With δ(q, ℓ) being a time-quefrency dependent smoothing pa-

rameter. Finally, σ̂2
z (k, ℓ) can be obtained by transforming

λz(q, ℓ) into the spectral domain as

σ̂2
z (k, ℓ) = exp

(

κ+ DFT {λz(q, ℓ)} |q=0,··· ,(L−1)

)

, (32)

Simulated Real

# of sentences 2176 (∼ 4.8 hrs.) 372 (∼ 0.6 hrs.)

# of speakers 28 10

Table 1. Quantity of data in the evaluation set.

where κ, estimated as in [21], is a constant introduced to com-

pensate for the bias due to the recursive smoothing in the log-

domain in (31). Only little smoothing is applied to the cep-

stral bins which are mainly related to speech while for the re-

maining coefficients a stronger smoothing is employed. Con-

sequently, small smoothing constants are chosen for the low

quefrencies, as they contain information about the vocal tract

shape. The same holds for the coefficients corresponding to

the fundamental frequency f0 in voiced speech. In order to

protect these quefrencies, especially the ones corresponding

to the fundamental frequency, the constant δ(q, ℓ) in (31) is

adapted. After determining f0 by picking the highest peak in

the cepstrum within a limited search range, δ(q, ℓ) is defined

as

δ(q, ℓ) =

{

δpitch if q ∈ Q

δ̄(q, ℓ) if q ∈ {0, · · · , L/2} \ Q
(33)

where Q is a small set of cepstral bins around the quefrency

corresponding to f0 and δpitch is the smoothing constant for

the pitch coefficients [15]. The quantity δ̄(q, ℓ) is given as

δ̄(q, ℓ) = ηδ(q, ℓ− 1) + (1− η)δ̄const(q), (34)

where δ̄const(q) is time-independent and chosen such that

less smoothing is applied in the lower cepstral bins. Further-

more, η is a forgetting factor which defines how fast the tran-

sition from δ(q, ℓ) to δ̄const(q) can occur.

The reverberant speech PSD can be used to estimate

the PSD of the late reverberation σ2
r (k, ℓ) as shown in the

following section. After having estimated σ2
r (k, ℓ), cep-

stral smoothing is also used to estimate the dereverberated

speech PSD σ2
s (k, ℓ). In this case, the noise PSD σ2

ṽ(k, ℓ) in

equation (28) and (29) is replaced by the interference PSD

σ2
j (k, ℓ) = σ2

ṽ(k, ℓ) + σ2
r(k, ℓ). The dereverberated speech

PSD Ps(k, ℓ) can finally be computed and used to obtain the

estimate σ̂2
s (k, ℓ) of σ2

s (k, ℓ).

4.4. Reverberation estimation

The reverberant PSD σ2
r(k, ℓ) is estimated using the method

described in [17], which is based on the RIR model suggested

in [14] that represents the RIR as a Gaussian stationary noise

signal multiplied by an exponential decay rate ∆ dependent

of the T60

∆ =
3 ln 10

T60fs
. (35)

This estimator represents the PSD of the reverberant speech

σ2
z(k, ℓ) as

σ2
z(k, ℓ) = σ2

r(k, ℓ) + σ2
s (k, ℓ), (36)
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Simulated Data Real Data

T60=250ms T60=500ms T60=700ms
Mean

T60=700ms
Mean

near far near far near far near far

1
ch

an
n

el

SRMR [dB] 4.7(4.5) 4.8(4.6) 4.3(3.8) 3.9(3.0) 4.3(3.6) 3.9(2.7) 4.3(3.7) 4.9(3.2) 4.8(3.2) 4.8(3.2)

FWSSNR [dB] 10.3(8.2) 8.9(6.8) 6.2(3.3) 3.5(1.0) 4.9(2.3) 2.8(0.3) 6.0(3.6)

CD [dB] 2.0(2.0) 2.7(2.7) 3.8(4.6) 4.7(5.2) 3.7(4.4) 4.4(5.0) 3.6(4.0)

LLR 0.5(0.4) 0.4(0.4) 0.5(0.5) 0.8(0.8) 0.6(0.7) 0.8(0.9) 0.6(0.6)

PESQ 2.4(2.2) 1.7(1.6) 1.7(1.4) 1.3(1.2) 1.6(1.4) 1.3(1.2) 1.7(1.5)

8
ch

an
n

el
s SRMR [dB] 6.7(4.5) 5.3(4.6) 3.7(3.8) 3.4(3.0) 5.3(3.6) 4.4(2.7) 4.8(3.7) 4.9(3.2) 4.8(3.2) 4.8(3.2)

FWSSNR [dB] 11.3(8.2) 10.4(6.8) 6.9(3.3) 4.1(1.0) 7.0(2.3) 4.5(0.3) 7.3(3.6)

CD [dB] 2.4(2.0) 2.8(2.7) 3.0(4.6) 4.1(5.2) 3.6(4.4) 4.4(5.0) 3.4(4.0)

LLR 0.5(0.5) 0.5(0.4) 0.6(0.5) 0.8(0.8) 0.7(0.7) 0.8(0.9) 0.6(0.6)

PESQ 2.9(2.2) 2.1(1.6) 2.5(1.4) 1.5(1.2) 1.8(1.4) 1.3(1.2) 2.0(1.5)

Table 2. Mean signal-based measures over all utterances using either 1 or 8 channels. The scores of the unprocessed signals

are displayed between parentheses.

which leads to the estimate of σ2
r (k, ℓ),

σ̂2
r (k, ℓ) = e−2∆Tdfsσ2

z(k, ℓ− Td/Ts). (37)

In (37), Ts denotes the frame shift whereas Td is the duration

of the direct path and early reflections of the RIR, typically

set between 50 ms and 80 ms. As a result, σ̂2
r (k, ℓ) can be

estimated using σ̂2
z (k, ℓ) and the reverberation time.

5. EXPERIMENTAL SETUP

5.1. Corpus description

The results presented in this contribution have been obtained

using the evaluation set of the REVERB challenge [7], which

consists of a large corpus of speech corrupted by reverbera-

tion and noise. This corpus is divided into simulated and real

data as described in Table 1. All recordings have been made

at a sampling frequency of 16 kHz with a circular array with

20 cm diameter and 8 equidistant microphones.

The simulated data is composed of close talk speech taken

from the WSJCAM0 corpus [22] which has been convolved

with recorded RIRs and to which measured noise signals at a

fixed SNR of 20 dB have been added. The RIRs have been

measured in three different rooms with reverberation times of

250, 500 and 700 ms. The distance between the source and

the array is either 0.5 m (condition “near”) or 2 m (condition

“far”).

The real data is composed of utterances from the MC-

WSJ-AV corpus [23] and contains speech recorded in a noisy

reverberant room with T60 ≈ 700 ms at a distance between

the source and the array of either 1 m (condition “near”) or

2.5 m (condition “far”). Utterances have been spoken from

different unknown positions within the room but the position

was constant during each utterance.

5.2. Algorithm settings

The proposed system, described in Section 2, has been ap-

plied using utterance-based processing, assuming that the T60

and the DOA of the target speaker remained constant within

each utterance. The STFT has been computed using a 32 ms

Hann window with 50 % overlap. The DOA as been esti-

mated as the angle minimizing the sum of the MUSIC pseudo-

spectra, for θ = 0◦ . . . 360◦ for every 2◦, using all 8 micro-

phones of the circular array for a frequency range from 50 Hz

to 5 kHz. The beamformer, described in Section 3, uses a

theoretically diffuse noise field and a white noise constraint

WNGmax =-10 dB if less than 10 frames of noise-only pe-

riod have been detected within the utterance. The speech

amplitude estimator in Section 4.1 assumed a chi PDF with

µ = 0.5, a minimum gain Gmin of -10 dB and a compression

parameter β = 0.5. The noise PSD estimator described in

Section 4.2 uses the same parameters as in [13], except for the

length of the sliding window used for minima tracking which

has been set to 3 s. In Section 4.3, the parameters used to es-

timate the speech PSD have been set as in [12] while in Sec-

tion 4.4, Td has been set to 80 ms. The evaluation has been run

for 1 channel and for 8 channels, with the single-channel sce-

nario referring to only applying the proposed single-channel

enhancement scheme to the first microphone signal, y1(n).

6. RESULTS

6.1. Signal-based quality assessment

The different performance for each condition, as well as the

mean performance over all conditions are presented in Ta-

ble 2. The performance of the proposed system has been

evaluated using the signal-based measures defined in [7],

i.e., the signal to reverberant modulation ratio (SRMR) [24],

the frequency-weighted segmental SNR (FWSSNR) [25],
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Fig. 3. WER obtained using the baseline recognizer of the REVERB challenge trained on clean data. Numbers indicate the

difference with the WER obtained on unprocessed data.

the cepstral distance (CD) [25], the log-likelihood ratio

(LLR) [25] and the perceptual evaluation of speech qual-

ity (PESQ) [26]. Among these 5 measures, the SRMR is the

only non-intrusive measure and is hence the only measure

that can be used to evaluate the performance for real data, for

which no reference signal is available. The other measures

use the clean speech s(n) as reference signal.

The increase in SRMR for all considered conditions

shows that reverberation is reduced for both the single- and

multi-channel scenarios, with the results being more sig-

nificant for higher reverberation times as expected. While

the SRMR increase is typically higher for the multi-channel

scenario, for the condition of T60 = 500 ms, the single-

channel scenario seems to achieve a higher dereverberation

performance. The reason behind this performance difference

might lie in the fact that the statistical model of the RIR used

in Section 4.4 may not hold for the output of the MVDR-

beamformer. However, further investigations are needed to

derive a sound explanation.

Furthermore, the presented FWSSNR values depict a

significant increase in comparison to the unprocessed micro-

phone signal, illustrating the noise reduction capabilities of

the proposed system. The difference in the FWSSNR values

between the single- and multi-channel scenario further illus-

trates the benefit of using an MVDR beamformer aiming at

noise reduction in the first stage. Finally, the improvement

in the overall perceptual quality of the processed signal is

illustrated in the average PESQ score increase of 0.5 and 0.2
for the multi- and single-channel scenarios, respectively.

6.2. Word error rate

In order to evaluate the potential benefit of the proposed

scheme on the performance of an ASR system, the pro-

cessed data have been used as the input for the baseline

speech recognition system provided by the REVERB chal-

lenge [7]. This system is based on the hidden Markov model

toolkit (HTK) [27] and uses mel-frequency cepstral coeffi-

cients, including Deltas and double-Deltas, as features and

acoustic models using tied-state hidden Markov models with

10 Gaussian components per state. In this contribution, the

models have been trained on clean data containing 7861 sen-

tences uttered by 92 speakers for a total of approximately

17.5 hours. The achieved performance is measured in terms

of word error rate (WER) as depicted in Fig. 3.

Compared to the scores obtained using the unprocessed

signals, the absolute WER improvement on simulated data is

of 19.17 % and 10.18 % for the multi- and single-channel

scenarios, respectively. Greater absolute WER improvement

is obtained on real data, i.e. 25.85 % for the multi-channel and

12.11 % for the single-channel scenario. On the other hand,

the WER increases slightly for the conditions with the lowest

reverberation time, i.e. T60 = 250 ms. This suggests that

spectral coloration introduced by the enhancement scheme

may reduce the performance of the ASR system while the

benefit of dereverberation is limited for small reverberation

times. This drawback could be avoided by training the acous-

tic models on processed signals.

7. CONCLUSION

This contribution proposes to achieve joint dereverberation

and noise reduction a combination of an MVDR-beamformer

and a single-channel speech enhancement scheme. In the

MVDR-beamformer the noise coherence matrix is estimated

on-line using a VAD and the DOA of the target speaker, which

is required to compute the steering vector, is obtained using

the MUSIC algorithm.

The output of this beamformer is processed using a

speech-enhancement scheme combining statistical estima-

tors of the speech, noise and reverberant PSDs and aiming

at joint dereverberation and residual noise suppression. The

evaluation of the proposed system, carried out using signal-

based quality measures and a speech recognizer trained on

clean speech, illustrates the benefit of the proposed scheme.
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