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Abstract

This paper proposes an exemplar-based speech enhancement
method based on high-resolution STFT magnitude spectro-
grams, where a selection of the nonnegative training data is used
as the dictionary to provide a holistic nonnegative representa-
tion of the test data. We discuss how this exemplar-based model
ensures that the enhanced speech signal falls on the speech man-
ifold, which improves the quality of the enhanced speech sig-
nal. To exploit the temporal continuity, a vector autoregressive
model is used to model the activations where the model param-
eters are learned using a new NMF-based approach. Results
from several supervised and semi-supervised speech enhance-
ment experiments indicate that the proposed exemplar-based
method outperforms the considered supervised and unsuper-
vised denoising algorithms in terms of both segmental SNR and
PESQ at different input SNRs.
Index Terms: nonnegative matrix factorization, exemplar-
based noise reduction, overcomplete dictionary

1. Introduction
Most of the state-of-the-art noise reduction algorithms estimate
the clean speech signal from a noisy signal in an unsuper-
vised fashion [1]. When some additional information about
the acoustic environment or speaker identity is available, super-
vised speech enhancement methods, e.g., [2, 3, 4, 5, 6, 7, 8], can
be used to obtain a higher-quality enhanced speech signal. In
the supervised scenario, it is assumed that training samples cor-
responding to the targeted noise environment and/or the speaker
are available. The required information about the speaker iden-
tity and noise type can be obtained using speaker recognition
and acoustic environment classification algorithms, or are read-
ily available in some special applications, e.g., in pilot commu-
nications [4].

In this paper, we propose a dynamic exemplar-based speech
enhancement algorithm that operates in the high-resolution
short-time discrete Fourier transform (STFT) magnitude spec-
trogram domain. The proposed technique is closely related to
nonnegative matrix factorization (NMF) [9], where instead of
learning a low-dimensional dictionary, an overcomplete dictio-
nary is obtained by sampling from the training data. By do-
ing so, the source dictionaries become more representative of
the underlying classes and the obtained source estimates will
lie on the manifolds of the original sources (cf. Section 2).
Other exemplar-based techniques have been proposed in the
past for the purpose of speech recognition and source sepa-
ration [10, 11]. The approach in [10] was designed in the
low-resolution Mel-scale magnitude spectrogram domain and
was used for both sparse classification and feature enhancement
and improved the speech recognition results. In [11], a sparse
exemplar-based single-channel source separation method was
proposed that significantly outperformed the competing algo-
rithm.
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Figure 1: Visualization of exemplar- and NMF-based represen-
tations. Three Mel bands are chosen from the speech and babble
noise Mel-scale magnitude spectrograms and are normalized
to sum to one and are plotted in a two-dimensional simplex.
An enhancement example is also shown, where the NMF-based
speech estimate lies outside the speech manifold.

We use a recently proposed nonnegative vector autoregres-
sive model (N-VAR) to efficiently exploit the temporal conti-
nuity of the speech and noise signals, where the nonnegative
model parameters are obtained using a new NMF-based scheme
(cf. Section 3). Our proposed method is causal and does not de-
pend on the future short-time frames, where the sliding window
approach in [10] admits a delay around 200 ms to produce the
best results.

This paper focuses on the speech enhancement application
and several experiments are carried out in order to evaluate the
performance of the exemplar-based denoising algorithms. Our
supervised and semi-supervised (where a general speech model
is used and a single noise model is constructed using the training
samples of the four targeted noise types) experiments show that
the proposed method significantly outperforms the competing
approaches ([10], [12], and [13]) in terms of both segmental
SNR and PESQ.

2. Exemplar- versus NMF-based
Representations

NMF is a popular representation method and has been success-
fully used in different applications. In a source separation or
speech enhancement problem, it is common to learn a dictio-
nary for each source in advance using source-specific training
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data. The dictionary elements of each source define a convex
hull that surrounds the training data of that source [11]. In the
following, we use speech and noise signals to describe and vi-
sualize why this may lead to unsatisfactory enhancement per-
formance.

Speech data is obtained using 54 sentences from the TIMIT
database [14], where as the noise data, the babble noise sig-
nal from the NOISEX-92 database [15] is considered. Both
speech and noise signals were transformed to a time-frequency
domain by applying the STFT using a frame length of 64 ms
with 75% overlapping Hann windows. A subset of the result-
ing high-resolution magnitude spectrograms were chosen and
transformed into the Mel-domain, with 26 Mel-scale frequency
bands. Figure 1 shows the scatter plot of the resulting speech
and noise data marked with blue and black dots, respectively,
where only three Mel bands are chosen and plotted in a two-
dimensional simplex. The convex hulls of the speech and noise
data are also plotted using dashed lines in Figure 1. The three
vertices of the convex hulls correspond to the learned dictionary
elements.

As can be seen in the figure, the convex hulls of the speech
and noise data are highly overlapped, which causes an ambi-
guity in signal separation. In other words, each convex hull
surrounds not only the samples from the corresponding source
but also the samples associated with the other source. There-
fore, the speech dictionary can also be used to approximate the
points that do not belong to the speech class. Figure 1 addition-
ally shows a noisy sample, a possible NMF approximation of
the noisy sample and corresponding estimates of the underlying
speech and noise samples. As can be seen, the speech estimate
lies outside the speech manifold in this example. If only a few
points (ideally one point) from the speech data were used to
obtain an estimate for the speech sample, the resulting speech
estimate would have lied on the speech manifold.

Although in the preceding discussion we used three-
dimensional data points for the purpose of visualization, the
reasoning is valid for higher dimensions as well. Using training
data (STFT magnitudes of the training signals) as the dictionary
elements for one source provides a richer model that can better
explain an unseen magnitude spectra from that source. In the
enhancement phase, a sparse combination of the speech train-
ing data provides an estimate for the underlying speech STFT
magnitude spectra that lies on the manifold of the speech magni-
tude spectra, which results in a higher-quality enhanced speech
signal, as also verified by our experiments (cf. Figure 2).

3. Proposed Method
We present our new exemplar-based speech enhancement ap-
proach in this section. The signal model and speech estima-
tion method are presented in Subsection 3.1, where we assume
that the speech and noise dictionaries are given. In Subsection
3.2, we explain how the speech and noise dictionaries are con-
structed from the training data.

3.1. High-resolution Exemplar-based Processing

We assume an additive noise model where speech and noise
signals are added to obtain the noisy signal. All the signals
are transformed into a time-frequency domain by applying the
STFT. The magnitude spectrogram matrices (the magnitude of
the STFT) of the noisy, speech, and noise signals are respec-
tively denoted by Y, S and N. Let yt = [y1t . . . yKt]

T denote
the noisy spectral vector at time t, where K is the number of

STFT frequency bins, and T denotes the vector transpose. The
speech and noise spectral vectors, st and nt, are defined simi-
larly. In the following, the noisy spectral vector is approximated
by adding the speech and noise spectral vectors [5], and each
source’s spectral vector is approximated by a linear combina-
tion of the associated dictionary elements:

yt ≈ st + nt

≈ Wshst +Wnhnt = Wht, (1)

where Ws and Wn are the speech and noise exemplar-based
dictionaries (cf. Subsection 3.2), and hst and hnt are the corre-
sponding activation vectors. Eq. (1) is basically an NMF repre-
sentation of the input vector yt. There is however an important
remark that the dictionary elements in (1) are samples from the
training data and therefore the representation is holistic, rather
than a parts-based representation usually learned by NMF [9].
In contrast to [10], Eq. (1) models the noisy signal in the high-
resolution STFT domain rather than the reduced-resolution Mel
domain.

To model the temporal modulations of the speech and noise
signals, we model the activation vectors using a first-order non-
negative vector autoregressive (N-VAR) model, where the acti-
vation vector at time t is approximated by multiplying the non-
negative coefficient matrix A and the activation vector at time
t− 1:

hst ≈ Ashst−1, hnt ≈ Anhnt−1. (2)

Since (2) can be seen as an NMF approximation of hst and
hnt , we propose an NMF-based approach to learn the source-
dependent matrices As and An from the training data in Sub-
section 3.2.

Eq. (1) and (2) describe our signal model. Given a noisy
spectral vector yt and the estimated activation vector at time
t − 1 (ĥt−1), we would like to estimate the enhanced speech
spectral vector ŝt. For this purpose, we first use a two-step al-
gorithm to obtain ĥt. In the first step, (2) is used to predict the
activation vector as

h̃t = Aĥt−1, (3)
where A is the diagonal concatenation of As and An. In the
second step, we apply probabilistic latent component analysis
(PLCA)1 [16] on yt to obtain ht such that Wht best approx-
imates the input yt. Following the approach proposed in [13],
ĥt is now obtained as

ĥt =
ht � (h̃t)

β∑
ht � (h̃t)β

, (4)

where �, ·
· , and (·)β denote the element-wise multiplication,

division, and power operators, respectively, and β is a prior
weight vector. We use two different scalar weights (βs, βn)
for speech and noise activations. A sparse PLCA approach [11]
can also be used to obtain ht; however, as the resulting estimate
using (4) is usually sparse (sparser than ht), the sparse PLCA
did not substantially improve the results over the basic PLCA in
our experiments, and it is not considered in our evaluations.

After estimating ĥt, a real-valued gain function is com-
puted as

g =
Wsĥst

Wĥt
, (5)

1PLCA is a probabilistic NMF approach that minimizes a weighted
Kullback-Leibler divergence between the input and its approximation.
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after which the enhanced speech signal is obtained using g�yt,
the inverse DFT, and the overlap-add method.

We additionally suggest a modified Mel-scale counterpart
of the proposed method and evaluate its performance in Section
4. For this purpose, all the spectral vectors in (1) are trans-
formed into the Mel spectral domain by summing the adjacent
elements using overlapping triangular filters. The resulting vec-
tors are denoted by ymel

t , smel
t , and nmel

t . To use the robustness of
the Mel-scale representation with respect to the pitch changes,
and also to use the high resolution of the original STFT rep-
resentation, in addition to Ws and Wn, we construct Mel-
domain dictionaries for each source that are identically aligned
with Ws and Wn. In the enhancement phase, the activation
vector ĥt is estimated using the noisy spectral vector ymel

t and
the Mel-domain speech and noise dictionaries. The real-valued
gain function g is however calculated using the computed ĥt,
Ws and Wn, as explained before. Pilot tests indicated that this
hybrid approach yields better results than the pure Mel-domain
enhancement method, and hence only this hybrid scheme is
considered in our experiments in Section 4.

3.2. Dictionary Construction

In the following, we explain how the speech and noise dictio-
naries Ws and Wn and the N-VAR coefficient matrices As

and An are obtained using speech and noise training data that
are denoted by Str, Ntr, respectively, where the columns of Str

and Ntrare normalized to sum to one. Here, we only explain the
procedure for the speech signal, as the same algorithm is also
used for the noise signal.

As the training signal might be too long and redundant, it
is sufficient to only select a subset of Str to create Ws, which
reduces the memory requirements and the computational com-
plexity. We used two selection approaches for this purpose. The
first approach is adopted from [10], where we use a uniformly-
distributed random frame-shift of 4 to J samples to construct
Ws from Str. J is chosen such that the resulting Ws has ap-
proximately Is elements, where Is is our desired number of
dictionary elements. If required, additional samples are taken
from Str such that Ws has exactly Is columns. As the second
approach, we implemented the manifold-preserving quantiza-
tion approach from [17]. The performance of both approaches
is compared in Section 4.

To learn the coefficient matrix As, we propose an NMF-
based algorithm. To do so, we first obtain the nonnegative ap-
proximation of the entire speech training data using the con-
structed speech dictionary as:

Str ≈ WsHs,tr, (6)

where we use PLCA approach to estimate Hs,tr. Let us define
the matrix Vs such that its t-th column is the (t− 1)-th column
of Hs,tr. Eq. (2) can now be written as:

Hs,tr ≈ AsVs, (7)

which provides an NMF approximation of Hs,tr in terms of the
dictionary As and the activation matrix Vs. We learn As by
applying the PLCA approach on Hs,tr, while Vs is held fixed.

4. Experimental Results
We used speech signals from the TIMIT database [14], babble
and factory noise signals from the NOISEX-92 database [15],
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Figure 2: Results of supervised speech enhancement for babble
(top) and city traffic (bottom) noise types. Speaker- and noise-
dependent dictionaries are used for all the methods except the
spectral enhancement approach.

and highway traffic and city traffic noise signals from the Sound
Ideas database [18]. All the signals were down-sampled to 16-
kHz and the STFT analysis was performed using a frame length
of 1024 samples (64 ms) with 75% overlapping Hann windows.
The Mel-scale spectrograms were obtained using 26 overlap-
ping triangular filters.

The performance of the proposed method is studied with
(βs = 0.4, βn = 0.1) and without (βs = βn = 0) the temporal
continuity and are referred to as “dynamic exemplar-based” and
“static exemplar-based”, respectively. We also consider the pro-
posed hybrid (STFT+Mel) scheme, which is referred to as “dy-
namic exemplar-based, hybrid”. We additionally compare the
denoising performance of the proposed approaches with that of
[10] (referred to as “sparse exemplar-based” where the sparsity
weight parameters were experimentally set to obtain the best de-
noising performance and T [8] was set to 12 frames that results
to a delay around 180 ms for the output signal), [13] (referred
to as “dynamic PLCA”), and the speech spectral enhancement
using generalized Gamma priors [12] (referred to as “spectral
enhancement”, with ν[10] = γ[10] = 1 and noise power spec-
tral density estimated using [19]). We use the segmental SNR
(SegSNR) and PESQ implemented by Loizou [1] to evaluate the
speech enhancement performance.

4.1. Supervised Speech Enhancement

We present the results of our supervised speech enhancement
experiments in this subsection. We constructed noise-dependent
and speaker-dependent dictionaries, each consisting of 800
randomly-sampled spectral vectors. Speech signals from 14
speakers were considered in our experiments, where the speech
dictionary was constructed using 9 out of 10 available speech
sentences from each speaker and the other speech sentence was
used for testing. The first 75% of each noise signal was used
for noise dictionary construction and the last 25% was used for
testing.

Figure 2 shows the SegSNR and PESQ improvements at
different input SNRs for the babble noise (top panel) and the
city traffic noise (bottom panel). The results show that the best
performance is obtained using our “dynamic exemplar-based”
approach, which is significantly better than the other methods
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Figure 3: Semi-supervised noise reduction performance as a
function of the number of exemplars used to construct the dic-
tionary. Speech and noise dictionaries have identical number of
exemplars. The input SNR is 5 dB and the results are averaged
over four noise types.

including “static exemplar-based” and “sparse exemplar-based”
methods, especially for the babble noise. As indicated by the
results, most of the supervised algorithms fail to outperform
the unsupervised spectral enhancement algorithm in the babble
case. Since the speech and babble signals mostly share a simi-
lar manifold, a more constrained NMF approach can be used to
improve the performance in this case [6].

As can be seen in Figure 2, all the supervised methods out-
perform the spectral enhancement approach for the city traffic
noise. City traffic noise is a very non-stationary signal that in-
cludes different horn sounds and its NMF dictionary is distinct
enough from that of the speech signal. As a result, dynamic
PLCA is also able to achieve very good results in this case.

4.2. Semi-supervised Speech Enhancement

This subsection presents the results of our semi-supervised ex-
periments, where the speech model was constructed from 216
speech sentences uttered by 24 speakers (around 41000 spectral
vectors), while for the test purposes, 14 speech sentences ut-
tered by 14 speakers (none of which were included in the train-
ing) were used. A single noise dictionary was constructed using
the first 75% of the noise signals from the four considered noise
types, and the last 25% of the signals were used for the testing.

We first study the effect of the number of exemplars on the
speech enhancement performance. Figure 3 shows the SegSNR
and PESQ improvements for different dictionary sizes, where
the speech and noise dictionaries have identical number of dic-
tionary elements. The input SNR is equal to 5 dB and the results
are averaged over all noise types. As can be seen, when there are
more than 1600 elements in the dictionaries the noise reduction
performance does not depend on the sampling approach and that
the performance does not change very much by changing the
dictionary size. The large performance gap between our pro-
posed method and that of the sparse exemplar-based approach
is due to designing a high-resolution filter and having a more
efficient approach to use the temporal dynamics.

Figure 4 shows the results for the babble (top) and the city
traffic (bottom) noise types, where speech and noise dictionar-
ies, each having 3200 elements, are constructed by the random
sampling method. As can be seen, the proposed approach (dy-
namic exemplar-based) has yielded the best performance. As
the dynamic PLCA approach resulted to a poor performance,
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Figure 4: Semi-supervised speech enhancement results for bab-
ble (top) and city traffic (bottom) noise types. Speaker- and
noise-independent dictionaries are used for all the model-based
approaches.

it is omitted from the figure for brevity. We see that although
the proposed hybrid method provides a good performance for
the city traffic noise, it yields a poor performance for the babble
noise, especially at 10dB input SNR.

Comparing Figures 2 and 4, we see that all the model-
based methods admit a performance loss when less super-
vision is used for the model training. This is more pro-
nounced for the proposed method, which is partially due to
pitch mismatch between the training and the testing speech
signals. Nevertheless, our experiments indicate that the
developed method leads to a better performance compared
to the other competing algorithms both for the supervised
and semi-supervised scenarios, which was also verified by
our informal listenings. Some sound examples are avail-
able at http://www.sigproc.uni-oldenburg.de/
audio/nmoh/exemplar-based-nr/main.html.

5. Conclusion
We proposed a causal high-resolution exemplar-based speech
enhancement algorithm, where we used a vector autoregressive
model to efficiently model the temporal modulations of the ac-
tivations. A hybrid counterpart of the proposed method was
also developed by using both the STFT and Mel-scale dictionar-
ies. We provided a geometrical argument and discussed how an
exemplar-based approach can lead to a better-quality enhanced
speech signal compared to the similar NMF-based method. The
results of our speech enhancement experiments indicate that
the proposed high-resolution method outperforms the similar
NMF-based method, an exemplar-based feature enhancement
approach, and a speech spectral enhancement method with a
high margin. Moreover, the results indicate that the proposed
high-resolution method outperforms the hybrid counterpart.
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