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Least-Squares Estimation of the Common Pole-Zero
Filter of Acoustic Feedback Paths in Hearing Aids

Henning Schepker, Student Member, IEEE, and Simon Doclo, Senior Member, IEEE

Abstract—In adaptive feedback cancellation both the conver-
gence speed and the computational complexity depend on the num-
ber of adaptive parameters used to model the acoustic feedback
paths. To reduce the number of adaptive parameters, it has been
proposed to model the acoustic feedback paths as the convolution
of a time-invariant common pole-zero filter and time-varying all-
zero filters, enabling to track fast changes. In this paper, a novel
procedure to estimate the common pole-zero filter of acoustic feed-
back paths is presented. In contrast to previous approaches which
minimize the so-called equation-error, we propose to approximate
the desired output-error minimization by employing a weighted
least-squares procedure motivated by the Steiglitz–McBride itera-
tion. The estimation of the common pole-zero filter is formulated as
a semidefinite programming problem, to which a constraint based
on the Lyapunov theory is added in order to guarantee the sta-
bility of the estimated pole-zero filter. Experimental results using
measured acoustic feedback paths from a two microphone behind-
the-ear hearing aid show that the proposed optimization procedure
using the Lyapunov constraint outperforms existing optimization
procedures in terms of modelling accuracy and added stable gain.

Index Terms—Acoustic feedback cancellation, common part
modeling, hearing aids, Lyapunov stability, semidefinite program-
ming, Steiglitz–McBride, weighted equation-error.

I. INTRODUCTION

IN recent years the number of hearing impaired persons sup-
plied with an open-fitting hearing aid has been steadily in-

creasing. While in general open-fitting hearing aids largely alle-
viate problems related to the occlusion effect (e.g., the percep-
tion of one’s own voice), they are especially prone to acoustic
feedback, which is most often perceived as howling. To reduce
this problem robust and fast-adapting acoustic feedback cancel-
lation algorithms are required.

Several solutions for reducing acoustic feedback exist (see,
e.g., [1]–[4]), where adaptive feedback cancellation (AFC)
seems to be the most promising approach as it theoretically
allows for perfect cancellation of the feedback signal. In AFC
the acoustic feedback path, i.e., the impulse response (IR) be-
tween the hearing aid receiver and the hearing aid microphone,
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is estimated using an adaptive filter. In general, the convergence
speed and the computational complexity of an adaptive filter are
determined by the number of adaptive parameters [5], [6]. To
reduce the number of adaptive parameters it has therefore been
proposed to model the acoustic feedback path as the convolution
of two filters [7]–[10]: a fixed first filter accounting for invariant
or slowly varying parts of the acoustic feedback path (e.g., trans-
ducer characteristics [8] and individual ear characteristics [9])
and an adaptive filter enabling to track fast changes (e.g., caused
by moving objects around the ear). In this paper we consider
the problem of estimating the fixed filter from a set of acoustic
feedback paths, e.g., measured on a multi-microphone hearing
aid or for different positions of the hearing aid microphone(s).
The fixed filter will then correspond to parts that are common in
all acoustic feedback paths and is therefore called common part
in the remainder of this paper. The second filter is assumed to
correspond to parts that are variable in each acoustic feedback
path and is hence called variable part.

Different techniques exist to estimate a common part from
a set of IRs. These include techniques based on the QR-
decomposition [11] or the singular value decomposition [12]
and least-squares techniques [8]–[10], [13], [14]. In this paper
we focus on least-squares techniques, which aim to estimate
the common and the variable part by minimizing the so-called
output-error. Three different filter models for the common part
have previously been considered: an all-zero filter [8], an all-
pole filter [13] and the general pole-zero filter [9]. Since for
the common all-pole filter and the common pole-zero filter it
is not straightforward to minimize the so-called output-error,
it has been proposed to minimize the so-called equation-error
instead [9], [13], leading to an easier optimization problem. In
addition, equation-error minimization is appealing since it has
been shown in [15] for single-input-single-output (SISO) sys-
tems that it yields a stable pole-zero filter. As is shown in this
paper, also for the estimation of the common pole-zero filter
in single-input-multiple-output (SIMO) systems the equation-
error minimization yields a stable filter. Nevertheless, it is known
that pole-zero filters estimated by minimizing the equation-error
typically suffer from poor estimation accuracy in the vicinity of
prominent spectral regions, e.g., spectral peaks [16]. To ap-
proximate the desired output-error minimization the so-called
Steiglitz–McBride iteration [17] can be applied. However, in
general the stability of pole-zero filters estimated by employing
the Steiglitz–McBride iteration cannot be guaranteed [18], such
that the location of the poles needs to be constrained.

Different constraints for the poles have been proposed in the
literature, e.g., [19], [20]. A sufficient condition for the stability
of a pole-zero filter is the strict positive realness of the frequency
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Fig. 1. System models. (a) SIMO system. (b) Approximation of SIMO system.

response of the all-pole filter component [19]. This constraint
was applied to the problem of estimating the common pole-
zero filter in [10]. However, since this sufficient condition may
strongly restrict the solution space of the optimization problem
[21], it is desirable to incorporate constraints that provide a nec-
essary condition for the stability of the pole-zero filter. In [20]
a constraint based on Lyapunov theory has been proposed for
SISO systems, which can be formulated as a so-called linear
matrix inequality (LMI) leading to a convex optimization prob-
lem [22] that can readily be solved using existing semidefinite
programming (SDP) software, e.g., CVX [23], [24]. Therefore,
in this paper we propose to use a constraint based on Lyapunov
theory to improve the least-squares estimation of the common
pole-zero filter in a SIMO system and validate the novel es-
timation procedure using a set of measured acoustic feedback
paths.

This paper is organized as follows. In Section II the consid-
ered filter decomposition into the common pole-zero filter and
the general notation are introduced. In Section III different cost
functions based on the output-error criterion, the equation-error
criterion and the weighted equation-error criterion are presented.
In Section IV the equation-error-based optimization procedure
proposed in [9] is briefly reviewed, where a two-step alternating
optimization procedure is used to minimize the non-linear cost
function. In Section V the Steiglitz-McBride iteration is incor-
porated to approximate the desired output-error minimization.
Furthermore, the constraint based on the positive realness of the
frequency response of the all-pole filter component is introduced
and the optimization problem of estimating the common pole-
zero filter is formulated as a quadratic programming (QP) prob-
lem. Finally, we propose to incorporate the Lyapunov constraint
into the optimization problem and formulate the estimation of
the common pole-zero filter as an SDP problem leading to a
novel optimization procedure for the problem at hand. In Sec-
tion VI the performance of the three optimization procedures is
compared in terms of their estimation accuracy, residual output-
error and added stable gain (ASG) using measured acoustic
feedback paths from a two-microphone behind-the-ear hearing
aid. Additionally, we compare the different common parts when
used in a state-of-the-art AFC algorithm demonstrating the im-
proved performance of the proposed SDP formulation.

II. SCENARIO AND NOTATION

Consider a SIMO system with M outputs as depicted in
Fig. 1(a), where the output signal Ym (z) in the mth microphone

is related to the input signal X(z) by the mth acoustical transfer
function (ATF) Hm (z), i.e.,

Ym (z) = Hm (z)X(z). (1)

Such a SIMO system arises in a single-loudspeaker multiple-
microphone setup like a multi-microphone hearing aid. We
assume that the true (e.g., measured) ATFs Hm (z), m =
1, . . . ,M can be represented by causal all-zero filters of finite
order Nh

z , i.e.,

Hm (z) =
N h

z∑

j=0

hm [j]z−j . (2)

In order to reduce the number of parameters required to model
all M ATFs Hm (z), the approximation as depicted in Fig. 1(b)
can be used, where the estimated ATFs Ĥm (z) are decomposed
into two parts: a microphone-independent common part Ĥc(z)
and a microphone-dependent variable part Ĥv

m (z), i.e.,

⎡

⎢⎣
H1(z)

...
HM (z)

⎤

⎥⎦ ≈

⎡

⎢⎣
Ĥ1(z)

...
ĤM (z)

⎤

⎥⎦ = Ĥc(z)

⎡

⎢⎣
Ĥv

1 (z)
...

Ĥv
M (z)

⎤

⎥⎦ (3)

Assuming that Ĥc(z) is a pole-zero filter with Nc
p poles and Nc

z

zeros and Ĥv
m (z), m = 1, . . . ,M are all-zero filters with Nv

z

zeros each, their respective transfer functions can be written as

Ĥc(z) =
Bc(z)
Ac(z)

=

∑N c
z

j=0 bc [j]z−j

1 +
∑N c

p

j=1 ac [j]z−j
, (4)

Ĥv
m (z) = Bv

m (z) =
N v

z∑

j=0

bv
m [j]z−j , (5)

where bc [j], ac [j], and bv
m [j] denote the coefficients of the poly-

nomials associated with the zeros of the common part, the poles
of the common part and the zeros of the variable parts, respec-
tively. Note that Ac(z) is assumed to be a monic polynomial,
i.e., ac [0] = 1. In vector notation the coefficients of Hm (z),
Ac(z), Bc(z) and Bv

m (z) can be defined as

hm = [hm [0] hm [1] . . . hm [Nh
z ] ]T , (6)

ac = [ac [1] ac [2] . . . ac [Nc
p ] ]T , (7)

bc = [ bc [0] bc [1] . . . bc [Nc
z ] ]T , (8)

bv
m = [ bv

m [0] bv
m [1] . . . bv

m [Nv
z ] ]T , (9)

where [·]T denotes transpose operation. The concatenation of
the variable part coefficient vectors bv

m is defined as

bv = [ (bv
1 )T (bv

2 )T . . . (bv
M )T ]T . (10)

III. LEAST-SQUARES OPTIMIZATION

The objective now is to compute the coefficient vectors
ac , bc and bv minimizing the output-error between the true
ATFs Hm (z) and the estimated ATFs Ĥm (z) in the least-
squares sense, i.e., minimizing the following least-squares cost
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function

J̄OE (ac ,bc ,bv ) =
M∑

m=1

‖Z−1{Hm (z) − Bc(z)
Ac(z)

Bv
m (z)

︸ ︷︷ ︸
E O E

m (z )

}‖2
2 ,

(11)

where Z−1{·} denotes the inverse z-transform. As can be seen
from (11), the output-error EOE

m (z) is non-linear in Ac(z),
Bc(z), and Bv

m (z), such that the output-error cost function is
difficult to minimize. To overcome this difficulty, instead often
the so-called equation-error EEE

m (z) = Ac(z)EOE
m (z) is mini-

mized, i.e.,

J̄EE (ac ,bc ,bv )

=
M∑

m=1

‖Z−1{Ac(z)Hm (z) − Bc(z)Bv
m (z)}‖2

2 .
(12)

Since the equation-error EEE
m (z) is non-linear in only Bc(z)

and Bv
m (z), the equation-error cost function J̄EE can be mini-

mized, e.g., using an alternating least-squares (ALS) procedure
[9] which will be reviewed in Section IV. Additionally, mini-
mization of J̄EE guarantees stability of 1

Ac (z ) . However, min-
imization of the equation-error in (12) essentially corresponds
to multiplying the output-error EOE

m (z) with Ac(z), i.e., the
transfer function of the denominator of Ĥc(z). Hence, although
being easier to optimize, minimization of the equation-error
leads to an undesired weighting of the output-error. In fact, it
has been noted in [16] for SISO systems that minimization of
the equation-error may lead to poor estimation accuracy in the
vicinity of prominent spectral regions of the frequency response
of Hm (z), e.g., spectral peaks. These spectral peaks are most
often modeled by the poles, i.e., 1

Ac (z ) , and hence, by filtering
the output-error with Ac(z), i.e., the inverse pole filter, these
regions are less weighted. However, since the maximum stable
gain (MSG) [25] in hearing aids is typically largely determined
by the output-error in regions of poor modeling accuracy, min-
imizing the equation-error in (12) to model acoustic feedback
paths in hearing aids using a common pole-zero filter model
contradicts the demand for a large MSG. To circumvent the un-
desired spectral weighting associated with the minimization of
the equation-error in (12), the so-called Steiglitz-McBride itera-
tion [17] can be included to approximate the desired output-error
minimization in (11), where at each iteration i the following cost
function is minimized:

J̄W EE (ac
i ,b

c
i ,b

v
i ) =

M∑

m=1

‖Z−1{ 1
Ac

i−1(z)
EEE

m,i (z)
︸ ︷︷ ︸

E W E E
m , i (z )

}‖2
2 , (13)

where EW EE
m,i (z) denotes the weighted equation-error at it-

eration i. Thus at iteration i the all-pole response of the
estimated ATFs Ĥm,i−1(z) from the previous iteration, i.e.,

1
Ac

i−1 (z ) , is used to filter the equation-error EEE
m,i (z). By fil-

tering EEE
m,i (z) with 1

Ac
i−1 (z ) , the goal is to counteract the

weighting of the output-error in the equation-error minimiza-
tion. Hence, ideally, at convergence of the iterative proce-
dure limi→∞(Ac

i (z) − Ac
i−1(z)) = 0 and limi→∞ EW EE

m,i (z) =
EOE

m (z), i.e., the output-error is obtained. The weighted
equation-error based optimization will be described in more de-
tail in Section V. While approximating the desired output-error
minimization, iterative minimization of J̄W EE unfortunately
does not guarantee stability of 1

Ac
i (z ) . This is true even for a

stable 1
Ac

i−1 (z ) , as has been shown for the SISO case in [18]
by using a simple numerical example. Hence, in the weighted
equation-error cost function in (13) the location of the poles of

1
Ac

i (z ) needs to be constrained. This will be discussed in more
detail in Section V-A–V-C.

IV. EQUATION-ERROR BASED OPTIMIZATION

The goal of the equation-error based estimation is to compute
the coefficient vectors ac , bc and bv minimizing the cost func-
tion J̄EE in (12). This cost function can be reformulated in the
time-domain as

JEE (ac ,bc ,bv ) = ‖
[
h̃ H̃

][ 1
ac

]
− B̃vbc‖2

2 (14)

where h̃ is the M(Ñh
z + 1)-dimensional vector of concatenated

and (possibly) zero-padded vectors of the true IRs, i.e.,

h̃ = [ h̃T
1 h̃T

2 . . . h̃T
M ]T , (15)

h̃m = [hT
m 0T ]T , (16)

where Ñh
z = max{Nh

z ,Nc
z + Nv

z } + Nc
p and 0 is a vector of

zeros to achieve the desired length of the (Ñh
z + 1)-dimensional

vector h̃m . H̃ is the M(Ñh
z + 1) × Nc

p -dimensional matrix of

stacked convolution matrices of the zero-padded true IRs h̃m ,
i.e.,

H̃ = [ H̃T
1 H̃T

2 . . . H̃T
M ]T , (17)

H̃m =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0

hm [0] 0
. . .

...
...

. . .
. . . 0

hm [Nc
p − 1]

. . .
. . . hm [0]

...
. . .

. . .
...

hm [Nh
z ]

. . .
. . .

...

0 hm [Nh
z ]

. . .
...

...
. . .

. . . hm [Nh
z ]

...
. . .

. . .
...

0 . . . . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Note that for the construction of H̃m in (18) the true IRs h̃m are
delayed by one sample. This is due to Ac(z) being a monic
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polynomial. Similarly, B̃v is the M(Ñh
z + 1) × (Nc

z + 1)-
dimensional matrix of concatenated convolution matrices of
zero-padded coefficient vectors b̃v

m of the variable zero co-
efficients bv

m , i.e.,

B̃v = [ (B̃v
1 )T (B̃v

2 )T . . . (B̃v
M )T ]T , (19)

B̃v
m =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bv
m [0] . . . 0

...
. . .

...

bv
m [Nc

z − 1]
. . . bv

m [0]
... . . .

...

bv
m [Nv

z ]
. . .

...

0
. . .

...
...

. . . bv
m [Nv

z ]
...

. . .
...

0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

b̃v
m = [ (bv

m )T 0T ]T , (21)

where similarly as in (16) 0 is a vector of zeros to achieve the
desired length of the (Ñh

z + 1)-dimensional vector b̃v
m .

The minimization of JEE in (14) is non-linear in bv and bc .
To minimize (14), an ALS procedure can be applied as proposed
in [9]. The objective of the ALS procedure is to separate the
non-linear least-squares cost function (14) into two linear least-
squares cost functions, which are minimized alternatingly until
convergence is achieved. This is advantageous since closed-
form solutions for the linear least-squares cost functions exist. At
each iteration i the aim of the ALS procedure is to minimize the
following linear least-squares cost functions for the variable part
coefficient vector bv

i and the common part coefficient vectors
ac

i and bc
i

{
Jv

EE (bv
i ) = ‖h̃ + H̃ac

i−1 − B̌c
i−1b

v
i ‖2

2

Jc
EE (ac

i ,b
c
i ) = ‖h̃ + H̃ac

i − B̃v
i b

c
i ‖2

2

(22a)

(22b)

where B̃v
i is the matrix B̃v defined in (19) at iteration i, B̌c

i−1

is the M(Ñh
z + 1) × M(Nv

z + 1)-dimensional block-diagonal
matrix of convolution matrices B̃c

i of the zero-padded (Ñh
z +

1)-dimensional common zero coefficient vector b̃c
i−1 , i.e.,

B̌c
i−1 =

⎡

⎢⎣
B̃c

i−1
. . .

B̃c
i−1

⎤

⎥⎦, (23)

b̃c
i−1 = [ (bc

i−1)
T 0T ]T , (24)

TABLE I
MODULATION SCHEMES FOR COMPARISON

and the (Ñh
z + 1) × (Nv

z + 1)-dimensional convolution matrix
B̃c

i is constructed similar to B̃v
m in (20), i.e.,

B̃c
i−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bc
i−1 [0] . . . 0

...
. . .

...

bc
i−1 [N

v
z − 1]

. . . bc
i−1 [0]

... . . .
...

bc
i−1 [N

c
z ]

. . .
...

0
. . .

...
...

. . . bc
i−1 [N

c
z ]

...
. . .

...
0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

The solutions minimizing (22) are equal to
⎧
⎪⎪⎨

⎪⎪⎩

bv
i = ((B̌c

i−1)
T B̌c

i−1)
−1(B̌c

i−1)
T (h̃ + H̃ac

i−1), (26a)

[
ac

i

bc
i

]
=

(
DT

i Di

)−1 DT
i h̃, (26b)

where

Di = [−H̃ B̃v
i ]. (27)

Note that the minimization of (22) guarantees the stability of the
estimated pole-zero filter (for a proof see Appendix VII). Due
to the convolution of the common all-zero filter coefficients bc

i

and the variable all-zero filter coefficients bv
m,i , both filters can

be identified only up to a constant scaling factor. To achieve a
unique solution and to avoid numerical problems, prior to each
iteration the common all-zero filter coefficients bc

i are scaled
to unit-norm. An overview of the ALS equation-error based
optimization procedure of the common pole-zero filter is given
in Table I.

Note that for the special case Nc
z = 0, i.e., a common all-

pole filter, a closed-form solution to (14) exists [13]. The cost
function in (14) then simplifies to

JC AP Z (ac ,bv ) = ‖h̃ + H̃ac − bv‖2
2 (28)

with closed-form solution
[
ac

bv

]
= (CT C)−1CT h̃, (29)

C = [−H̃ I ], (30)
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where I is the M(Ñh
z + 1) × M(Nv

z + 1)-dimensional block-
diagonal matrix of (Ñh

z + 1) × (Nv
z + 1)-dimensional identity

matrices. Note that when minimizing JC AP Z in (28) using the
ALS procedure in (22), the ALS procedure will converge to the
optimal solution in (29).

V. WEIGHTED EQUATION-ERROR BASED OPTIMIZATION

As mentioned in Section III, to circumvent the problem of
poor estimation accuracy in the vicinity of spectral peaks, the
objective of the weighted equation-error cost function in (13)
is to incorporate the Steiglitz-McBride iteration [17], hence
approximating the output-error minimization. This is accom-
plished by filtering the equation-error for each of the M IRs
at iteration i with the all-pole filter 1

Ac
i−1 (q−1 ) from the previ-

ous iteration, where q−1 denotes the unit-delay operator, i.e,
q−1hm [k] = hm [k − 1]. Therefore, at each iteration i the aim is
to minimize the time-domain cost function

JW EE (ac
i ,b

c
i ,b

v
i )

=
M∑

m=1

‖ 1
Ac

i−1(q−1)
(h̃m + H̃mac

i − B̃v
m,ib

c
i )‖2

2 .

(31)

Since the cost function JW EE is non-linear in bc
i and bv

i , simi-
larly as for the equation-error cost function in (14), minimizing
this non-linear cost function can be performed by using an ALS
procedure, i.e., at each iteration i the following two linear least-
squares cost functions are minimized
⎧
⎨

⎩
Jv

W EE (bv
i ) = ‖h̃p

i + H̃p
i a

c
i−1 − B̌c,p

i−1b
v
i ‖2

2

Jc
W EE (ac

i ,b
c
i ) = ‖h̃p

i + H̃p
i a

c
i − B̃v ,p

i bc
i ‖2

2

(32a)

(32b)

where the superscript p indicates filtered quantities. The vector
h̃p

i and the matrices H̃p
i , B̃v ,p

i and B̌c,p
i−1 are constructed similar

as their non-filtered counterparts h̃, H̃, B̃v and B̌c in (15), (17),
(19), and (23) using the filtered vectors h̃p

m,i , b̃v ,p
m,i and b̃c,p

i−1 ,
where

h̃p
m,i =

1
Ac

i−1(q−1)
h̃m , (33)

b̃c,p
i−1 =

1
Ac

i−1(q−1)
b̃c

i−1 , (34)

b̃v ,p
m,i =

1
Ac

i−1(q−1)
b̃v

m,i . (35)

This filtering operation can be written, e.g., for (33) as

h̃p
m,i [k] =

1
Ac

i−1(q−1)
h̃m [k]

= h̃m [k] −
N c

p∑

j=1

ac
i−1 [j]h̃

p
m,i [k − j],

(36)

for k = 0, . . . , Ñh
z and h̃p

m,i [k] = 0 for k < 0. The linear least-
squares problems in (32) then have similar closed-form solutions

as in (26) but based on the filtered quantities, i.e.,
⎧
⎪⎨

⎪⎩

bv
i = ((B̌c,p

i−1)
T B̌c,p

i−1)
−1(B̌c,p

i−1)
T (h̃p

i + H̃p
i a

c
i−1), (37a)

[
ac

i

bc
i

]
=

(
(Dp

i )
T Dp

i

)−1 (Dp
i )

T , h̃p
i , (37b)

where

Dp
i = [−H̃p

i B̃v ,p
i ]. (38)

Similarly to the alternating minimization of the equation-error
in (22), the filter coefficient vectors bv

i and bc
i can be identified

only up to a constant scalar. Therefore, prior to each iteration
bc

i is normalized to unit-norm.
Note that in general the common pole-zero filter estimated us-

ing (32b) is not guaranteed to be stable such that the location of
the poles needs to be constrained. In the following subsections
two different constraints are proposed to guarantee the stabil-
ity, leading to different optimization problems. In Section V-A
a sufficient but not necessary constraint based on the positive
realness of the frequency response of the all-pole filter [19] is
considered leading to a QP problem. In Section V-B a sufficient
and necessary LMI constraint based on Lyapunov theory [20]
is introduced to guarantee stability. To allow for the incorpo-
ration of LMI constraints, the optimization problem in (32b)
is reformulated as an SDP in Section V-C leading to a novel
optimization procedure for estimating the common pole-zero
filter.

A. Frequency-Domain Stability Constraint

Stability of a causal system is guaranteed when its poles, i.e.,
the roots of Ac

i (z), are located strictly inside the unit circle.
Since this is not guaranteed by the Steiglitz-McBride iteration
employed in (32b), the location of the poles needs to be con-
strained. In [19] it was shown that a sufficient (but not necessary)
condition for the stability of 1

Ac
i (z ) is that the real part of the fre-

quency response Ac
i (e

jΩ) is strictly positive for all normalized
frequencies Ω, i.e.,

Re{Ac
i (e

jΩ)} > 0 ∀Ω, (39)

where Re{·} denotes the real part. To control the stability mar-
gin, a small positive constant δ is typically introduced, i.e.,

Re{Ac
i (e

jΩ)} ≥ δ ∀Ω. (40)

Since (40) requires the evaluation of Ac
i (e

jΩ) over a continuous
frequency range and is hence not realizable in practice, (40) is
evaluated over a dense grid of Q + 1 discrete frequency points,
i.e.,

Re{F}
[

1
ac

i

]
≥ δ1, (41)

where F is the (Q + 1) × (Nc
p + 1)-dimensional discrete

Fourier transformation matrix and 1 is a (Q + 1)-dimensional
vector of ones. Minimizing (32b) subject to the stability
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constraint in (41) corresponds to a QP problem, i.e.,

min
ac

i ,bc
i

(ec,p
i )T ec,p

i

subject to − Re{F}
[

1
ac

i

]
≤ −δo

(42a)

(42b)

where

ec,p
i = h̃p

i + H̃p
i a

c
i − B̃v ,p

i bc
i (43)

is the weighted equation-error in (32b). The QP in (42) can then
be efficiently solved using, e.g., the MATLAB function quad-
prog.

B. LMI Stability Constraint

The constraint in (41) provides a sufficient (but not necessary)
condition for the stability of the common pole-zero filter may
hence restrict the solution space. Furthermore, (41) requires the
computation of the frequency response Ac

i (e
jΩ) over a dense

grid of Q + 1 frequencies, requiring a careful choice of Q. In
the following we propose to use a constraint based on Lyapunov
theory [6], [20], [21] that provides a necessary and sufficient
condition for the stability of the common pole-zero filter and
does not require the computation of the frequency response.

Requiring the roots of Ac
i (z) to be strictly located inside the

unit circle is equivalent to requiring the absolute value of all
eigenvalues of the canonical matrix

Ac
i =

⎡

⎢⎢⎢⎣

−ac
i [1] −ac

i [2] . . . −ac
i [N

c
p ]

1 0
. . .

...
1 0

⎤

⎥⎥⎥⎦ (44)

to be strictly smaller then 1. From Lyapunov theory [6] it is
known that the matrix Ac

i corresponds to a stable IIR filter, if
and only if there exists a positive definite matrix Pi , such that
the following relation holds

Pi − (Ac
i )

T PiAc
i 	 ∅, (45)

where 	 ∅ denotes positive definiteness. Although (45) is a
necessary condition for stability, it is important to realize that it
cannot be implemented directly as an LMI constraint, since it
requires the joint estimation of Pi and Ac

i . Therefore, at each
iteration i the positive definite matrix P̃i is first computed by
solving the Lyapunov equation using the matrix Ac

i−1 from the
previous iteration, i.e.,

P̃i − (Ac
i−1)

T P̃iAc
i−1 = I s.t. P̃i 	 ∅. (46)

Using P̃i computed from (46), the constraint in (45) is then
reformulated by requiring

P̃i − (Ac
i )

T P̃iAc
i − τI 
 ∅, (47)

where τ is a small positive constant to control the stability
margin and 
 ∅ denotes positive semi-definiteness. Note that
since Ac

i now appears affinely in (47) it can be formulated as an

LMI by recognizing the Schur complement [22] in (47), i.e.,

Γstab
i =

[
P̃i − τI (Ac

i )
T

Ac
i P̃−1

i − τI

]

 ∅. (48)

Note that the constraint in (48) is no longer a necessary but a
sufficient condition for stability since P̃i has been computed
from the previous Ac

i−1 . Nevertheless, it has been noted in [26]
for the design of SISO pole-zero filters that the constraint will
become less strict as the iterative procedure converges, i.e.,
limi→∞(Ac

i − Ac
i−1) = 0.

C. SDP Formulation of (32b)

To be able to use the constraint in (48) guaranteeing stability
of the common pole-zero filter, the minimization in (32b) is
also reformulated as an LMI, which can then be solved using
SDP [22]. To write Jc

W EE in (32b) as an LMI first the so-called
auxiliary variable t is introduced which provides an upper bound
on the cost, i.e., the minimization in (32b) can be reformulated as

min
ac

i ,bc
i

t (49a)

subject to (ec,p
i )T ec,p

i ≤ t (49b)

Rewriting (49b) as t − (ec,p
i )T ec,p

i ≥ 0 and recognizing the
Schur complement minimizing (49) subject to the constraint
(48) can be written as an SDP, i.e.,

min
ac

i ,bc
i

t

subject to
[

t (ec,p
i )T

ec,p
i I

]

 ∅

Γstab
i 
 ∅

(50a)

(50b)

(50c)

where I is the M(Ñh
z + 1) × M(Ñh

z + 1)-dimensional iden-
tity matrix. The SDP in (50) can be efficiently solved using
interior-point methods [22], e.g., implemented in the convex
optimization toolbox CVX [23], [24]. An overview of the pro-
posed weighted equation-error based optimization procedure of
the common pole-zero filter optimizing either the QP problem
in (42) or the novel SDP problem in (50) is given in Table II.

VI. EXPERIMENTAL EVALUATION

In this section the optimization procedures minimizing the
equation-error (cf., Table I) and the weighted equation-error (cf.,
Table II) are experimentally compared using measured acous-
tic feedback paths. In Section VI-A the used acoustic setup
and the considered performance measures are introduced. In
Section VI-B the effect of different initializations on the perfor-
mance is investigated. In Section VI-C the resulting amplitude
responses of the output-error are compared and the improved
accuracy of the proposed weighted equation-error optimization
procedure using a stability constraint based on Lyapunov theory
is demonstrated in Section VI-D. In Section VI-E the perfor-
mance is investigated for unknown acoustic feedback paths that
were not included in the optimization of the common pole-zero
filter. In Section VI-F simulations are performed comparing the
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TABLE II
OVERVIEW OF THE OPTIMIZATION PROCEDURES TO MINIMIZE

THE WEIGHTED EQUATION-ERROR (31)

common pole-zero filter obtained from the different optimiza-
tion procedures when the common part decomposition is applied
in a state-of-the-art AFC algorithm.

A. Acoustic Setup, Performance Measures and Algorithm
Parameters

Acoustic feedback paths were measured using a two-
microphone behind-the-ear hearing aid with open-fitting ear-
molds. To account for differences in acoustic feedback paths,
e.g., due to different ear canal geometries a dummy head with
adjustable ear canals similar to [27] was used. In total M = 8
acoustic feedback paths were measured, i.e., using two micro-
phones for two different acoustic scenarios and for two different
ear canals, hence simulating variability across acoustics and sub-
jects. The first set of four IRs, m = 1, 2, 3, 4 was measured using
an ear canal diameter of d1 = 7 mm and a length of l1 = 15 mm,
while the second set of four IRs, m = 5, 6, 7, 8 was measured
using d2 = 8 mm and l2 = 20 mm. The IRs m = 1, 2, 5, 6, were
measured in free field, i.e., no obstruction was in close distance
to the dummy head, while IRs m = 3, 4, 7, 8 were measured
with a telephone receiver positioned in close distance to the
dummy heads ear. An overview of all acoustic feedback paths
used in the experimental evaluation is given in Table III. All IRs
were sampled using a sampling frequency of fs = 16 000 Hz
and truncated to order Nh

z = 99.
Figs. 2 and 3 depict the amplitude and phase responses of the

IRs for the first ear canal setting (d1 = 7 mm and l1 = 15 mm)
and for the second ear canal setting (d2 = 8 mm and l2 = 15
mm), respectively. In general, for each set all four IRs share a
great similarity, which could possibly be exploited by means of
a common pole-zero filter. Only the fourth IR in the first ear
canal setting differs substantially from the other three IRs in the
frequency regions between 5500 Hz and 6500 Hz due to the
presence of the telephone receiver.

TABLE III
OVERVIEW OF THE ACOUSTIC FEEDBACK PATHS USED

IN THE EXPERIMENTAL EVALUATION

m d l Acoustic condition

1 7 mm 15 mm free field
2 7 mm 15 mm free field
3 7 mm 15 mm telephone
4 7 mm 15 mm telephone
5 8 mm 20 mm free field
6 8 mm 20 mm free field
7 8 mm 20 mm telephone
8 8 mm 20 mm telephone

Fig. 2. Amplitude response (top) and phase response (bottom) of the first
set of feedback paths for ear canals with diameter d1 = 7 mm and length l1
= 15 mm.

Fig. 3. Amplitude response (top) and phase response (bottom) of the second
set of feedback paths for ear canals with diameter d2 = 8 mm and length
l2 = 20 mm.
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As performance measures we will use the average normalized
misalignment and the ASG. The average normalized misalign-
ment between the true, i.e., measured, IRs hm and the estimated
IRs ĥm is defined as

ξ = 10 log10
1

|M|
∑

m∈M

‖hm − ĥm‖2

‖hm‖2
, (51)

where M denotes the set of considered IRs and |M|
its cardinality.

The ASG, i.e., the increase in gain of the hearing aid at which
instability occurs due to an AFC algorithm, is used to quantify
the allowable gain of the hearing aid. The average ASG of the
set of acoustic feedback paths is defined as

ASG = 10 log10
1

|M|
∑

m∈M

maxΩ |Hm (ejΩ)|2

maxΩ |Hm (ejΩ) − Ĥm (ejΩ)|2
,

(52)

similarly to the definition of the MSG of [25], i.e.,

MSG = 10 log10
1

|M|
∑

m∈M

1
maxΩ |Hm (ejΩ) − Ĥm (ejΩ)|2

,

(53)

where Hm (ejΩ) and Ĥm (ejΩ) denote the frequency response of
the true, i.e., measured, ATF and the estimated ATF, respectively.
Note that the closed-loop system is actually only unstable if also
the phase at the frequency Ω corresponding to the minimum
difference is a multiple of 2π [28] such that the definition in
(53) is based on the worst-case assumption.

Similarly to the convergence criterion in [26], for all opti-
mization procedures the sum of the normalized norm of the
difference between successive common part coefficient vectors
and successive variable part coefficient vectors, i.e.,

‖pc
i−1 − pc

i ‖2

‖pc
i−1‖2

+
‖bv

i − bv
i−1‖2

‖bv
i−1‖2

< ε, (54)

was used, where pc
i = [ (ac

i )
T (bc

i )
T ]T and ε is a small positive

constant which in this paper was chosen to be ε = 10−4 . We
used the following parameters for all simulations: For the QP-
based approach δ = 10−8 , Q = 1024 and for the SDP-based
approach τ = 10−8 .

B. Effect of Common Pole-Zero Initialization

Since all presented optimization procedures to estimate the
common pole-zero filter aim to minimize a non-linear cost func-
tion, they may converge to a local minimum. Therefore, in gen-
eral, a good initialization ac

0 and bc
0 (cf., Table I and II) is

essential for all procedures. For all optimization procedures we
tried different initializations over a wide range of parameters.
For the equation-error based optimization procedure the best
results were obtained when initializing the poles of the com-
mon pole-zero filter using the poles estimated from a common
all-pole filter and Nc

z + Nv
z variable zeros and initializing the

zeros of the common pole-zero filter using a delta pulse. For the
weighted equation-error based optimization procedure the best
results were obtained, when initializing the poles of the common

Fig. 4. Average normalized misalignment for different initializations of the
common pole-zero filter using feedback paths m = 3, 4 (Nc

z = 6, N c
z = 4).

pole-zero filter using the poles estimated from the equation-error
based optimization procedure and initializing the zeros of the
common pole-zero filter using a delta pulse. Exemplary results
are depicted in Fig. 4 for different initializations:

(1) Init A: b̂c
0 = [ 1 0 . . . 0 ] and âc

0 = [ 0 . . . 0 ]
(2) Init B: b̂c

0 = [ 1 0 . . . 0 ] and âc
0 was computed by mini-

mizing (28) with Nc
p common poles and Nc

z + Nv
z vari-

able zeros,
(3) Init C: b̂c

0 = [ 1 0 . . . 0 ] and âc
0 was obtained from the

final results for the equation-error based optimization
procedure using the same parameters of Nc

p , Nc
z and Nv

z .
As can be observed from Fig. 4 for the equation-error based

optimization procedure Init B leads to a lower misalignment
compared to Init A, while for the weighted equation-error based
optimization procedure Init C leads to a lower misalignment
than Init A. The difference is observed to be as large as 4 dB.
In the following hence Init B and Init C will be used for the
equation-error based optimization procedure and the weighted
equation-error based optimization procedure, respectively.

C. Exemplary Comparison of Output-Error

The proposed weighted equation-error based optimization
procedure is motivated by the observation that the equation-
error based optimization procedure leads to poor estimation ac-
curacy in the vicinity of large spectral peaks [16]. It is therefore
expected that the weighted equation-error based optimization
procedure leads to an increased accuracy in the vicinity of these
spectral peaks. To demonstrate this, Fig. 5 shows the ampli-
tude response of the first IR h1 [k] and the amplitude responses
of the corresponding output-errors for the equation-error based
optimization procedure and the weighted equation-error based
optimization procedures for both constraints. As expected the
output-error for the weighted equation-error based optimization
procedure is spread across the whole frequency range, whereas
the output-error of the equation-error based optimization
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Fig. 5. Amplitude response of h1 and amplitude responses of the resid-
ual output-errors for all three optimization procedures (Nc

p = 10, N c
z = 0,

N v
z = 15).

procedure more or less follows the spectral shape of H1(f).
Hence, the largest peak in the output-error occurs in the fre-
quency range of the largest peak of H1(f). In a hearing aid this
would directly affect the MSG as defined in (53), which corre-
sponds to the largest peak of the output-error signal. For the pre-
sented example the MSG is 35 dB for the equation-error based
optimization procedure and 43 dB and 48 dB for the weighted
equation-error based optimization procedure using the QP and
SDP formulations, respectively. These results indicate that the
weighted equation-error based optimization procedure success-
fully counteracts the weighting introduced in the equation-error
based optimization procedure.

D. Misalignment and ASG

To show the improved modeling accuracy of the weighted
equation-error based optimization procedures for several
choices of the parameters Nc

p , Nc
z , and Nv

z , simulations have
been carried out for both acoustic scenarios (free field, tele-
phone) separately. The impact of a change in the acoustic sce-
nario on the validity of the common pole-zero filter is investi-
gated in Section VI-E.

1) Free Field: Fig. 6 shows the average normalized mis-
alignment for different choices of Nc

p and Nc
z as a function

of Nv
z . The common and variable parts have been estimated for

IRs measured in free field, i.e., m = 1, 2 (top row) and m = 5, 6
(bottom row). Note that for the right-most column (Nc

p = 10,
Nc

z = 0) the results for the equation-error based optimization
procedure correspond to the CAPZ model proposed in [13]. As
can be observed the weighted equation-error based optimization
procedures lead to a lower normalized average misalignment
than the equation-error based optimization procedure. Further-
more, it can be observed that in general the SDP-based optimiza-
tion procedure leads to a lower average normalized misalign-
ment than the QP-based optimization procedure. Improvements
of the SDP-based optimization procedure compared to the QP-
based optimization procedure are in general consistent across

different values of Nv
z , but tend to decrease for larger Nv

z . This
can be intuitively explained by the larger amount of zeros be-
ing available to model the variable parts. Only for Nc

p = 4 and
Nc

z = 6 for the second ear canal setup (d2 = 8 mm, l2 = 20
mm) the SDP-based optimization procedure is outperformed by
the QP-based optimization procedure for Nv

z = 20, which can
most likely be explained by the SDP-based optimization proce-
dure converging to a poor local minimum. Comparison between
the top and the bottom row shows that the assumption of a com-
mon pole-zero filter is valid for different ear canal geometries.
Although the absolute improvements are slightly different, the
same trends are visible.

Using the same parameter choices and IRs, Fig. 7 depicts
the results for the average ASG. Similar as for the average
normalized misalignment, the weighted equation-error based
optimization procedures outperform the equation-error based
optimization procedure. Furthermore, the proposed SDP-based
optimization procedure using the Lyapunov constraint leads to
the largest ASG of all optimization procedures. This is consistent
with the results shown in Section VI-C.

For an increase in Nc
p the weighted equation-error based opti-

mization procedure using the SDP-based optimization in general
outperforms the QP-based optimization procedure. This indi-
cates that using the Lyapunov constraint in the SDP-based opti-
mization procedure allows for an improved modeling accuracy
and ASG compared to the positive realness frequency-domain
constraint in the QP-based optimization procedure.

The use of the Lyapunov constraint is motivated by the fact
that this constraint does not restrict the solution space as much
as the positive realness constraint. To show that the positive re-
alness constraint may be too restrictive, we consider the choice
of Nc

p = 10, Nc
z = 0, Nv

z = 10, i.e., a common all-pole fil-
ter. For this parameter choice, the solution of the equation-
error based optimization procedure using the ALS procedure in
Table I converges to the globally optimal solution and is guaran-
teed to be stable, such that the stability constraints are actually
not necessary. Fig. 8 depicts the pole locations for the equation-
error based optimization procedure (without constraints) and
when adding the stability constraints on the pole location using
either the positive realness constraint (QP-based optimization
procedure) or the Lyapunov constraint (SDP-based optimiza-
tion procedure). As can be observed, the pole locations using
the Lyapunov constraint coincide with the pole locations of the
unconstrained equation-error optimization procedure, while the
pole locations using the positive realness constraint are signif-
icantly different. This experimentally demonstrates the more
restrictive effect of the positive realness constraint and the im-
proved performance of the Lyapunov constraint.

2) Telephone Receiver: To investigate the performance for
less similar feedback paths, Fig. 9 shows the average normalized
misalignment for different choices of Nc

p and Nc
z as a function of

Nv
z using IRs measured in the presence of a telephone receiver,

i.e., m = 3, 4 (top row) and m = 7, 8 (bottom row).
Similarly as for the free-field simulations in Fig. 6, both

weighted equation-error based optimization procedures lead to
a lower misalignment than the equation-error based optimiza-
tion procedure. However, in general the improvements tend to
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Fig. 6. Average normalized misalignment as a function of Nc
z for different choices of N c

p and N c
z for several IRs measured in free field (cf., Table III).

Fig. 7. Average ASG as a function of N c
z for different choices of N c

p and N c
z for several IRs measured in free field (cf., Table III).

be smaller for all considered combinations of Nc
p and Nc

z . Sim-
ilarly as for the free field simulations, the proposed SDP-based
optimization procedure outperforms the QP-based optimization
procedure, with the exception of Nc

p = 4 and Nc
z = 6 for the

first ear canal setup (d1 = 7 mm, l1 = 15 mm), which can again
most likely be explained by the SDP-based optimization proce-
dure converging to a poor local minimum.

E. Robustness to Unknown Acoustic Scenarios

In the previous sections the common pole-zero filter has been
estimated using feedback paths measured in a single (static)
acoustic scenario. While this allows to compare different esti-
mation procedures, the estimated common pole-zero filter may
not be robust to variations of the feedback path. Therefore, in

Fig. 8. Location of the poles for N c
p = 10, N c

z = 0, N v
z = 10 using the

equation-error based optimization procedure (without constraints) and when
using constraints on the pole location used in the QP-based and SDP-based
optimization procedures.
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Fig. 9. Average normalized misalignment as a function of Nc
z for different choices of N c

p and N c
z for several IRs measured in the presence of a telephone

receiver (cf., Table III).

Fig. 10. Average normalized misalignment to investigate the robustness of
the proposed optimization procedure as a function of Nv

z . The common pole-
zero filter was estimated from IRs m = 3, 4 using Nc

p = 8 and N c
z = 2. The

variable parts were optimized assuming a fixed common pole-zero filter. Dashed
lines indicate no common pole-zero filter, i.e., Nc

p = N c
z = 0.

this sections simulations are performed where the common pole-
zero filter is first estimated from IRs m = 3, 4 (in the presence of
a telephone receiver) and then only the variable part coefficient
vector bv minimizing (32a) is estimated for a set of different
IRs (assuming a fixed common pole-zero filter). This set of IRs
included m = 1, 2 as well as four additional IRs, where two IRs
were measured in free field after repositioning the hearing aid
(Free field) and two IRs were measured with the dummy-head
positioned close to a wall (Wall).

Fig. 10 depicts the average normalized misalignment when
the common pole-zero filter is estimated using the proposed

weighted equation-error based SDP-based optimization pro-
cedure using Nc

p = 8 and Nc
z = 2. As can be observed, in

general the performance degrades for IRs that have not been
included in the optimization of the common pole-zero filter.
However, the average normalized misalignment of the proposed
decomposition using the common pole-zero filter is better com-
pared to modeling the IRs using only the variable part, i.e.,
Nc

p = Nc
z = 0, as indicated by the dashed lines.

To investigate the performance for the same number of co-
efficients required to model the complete feedback path, i.e.,
Nv

z + Nc
p + Nc

z , the same data are plotted in Fig. 11 as a func-
tion of the total number of coefficients. Performance in gen-
eral can be considered similar for the proposed feedback path
decomposition using the common pole-zero filter (solid lines)
compared to not using this decomposition (dashed lines), how-
ever, for Nv

z + Nc
p + Nc

z = 30 this difference in performance
is largest with about 5 dB. Nevertheless, these results show
that, although an expected performance reduction for unknown
feedback paths occurs, the proposed decomposition can lead to
similar performance with fewer variable part parameters.

F. Application to AFC in Hearing Aids

In this section we investigate the performance of the different
optimization procedures to estimate the common part within an
adaptive feedback canceller. We will consider a single-receiver-
single-microphone AFC framework as depicted in Fig. 12. The
incoming signal is denoted as S(z), the microphone signal Y (z)
is processed by the hearing aid forward path G(z) and played
back by the loudspeaker. The loudspeaker and the microphone
are coupled by the acoustic feedback path H(z), yielding a
closed-loop system. The (fixed) common part filter Ĥc(z) and
the adaptive filter Ĥv (z) are used to subtract an estimate of the
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Fig. 11. Average normalized misalignment to investigate the robustness of the
proposed optimization procedure as function of the total number of parameters
required to model the feedback path, i.e., N v

z + N c
p + N c

z . The common pole-
zero filter was estimated from IRs m = 3, 4 using Nc

p = 8 and N c
z = 2. The

variable parts were optimized assuming a fixed common pole-zero filter. Dashed
lines indicate the misalignment using no common pole-zero filter, i.e., Nc

p =
N c

z = 0.

Fig. 12. Schematic of an AFC system using the common part decomposition.

feedback signal Ĥc(z)Ĥv (z)X(z) from the microphone signal
Y (z), resulting in the error signal E(z) which is used to the
steer the adaptive filter Ĥv (z).

In our simulations the adaptive filter is updated using the
normalized least mean squares (NLMS) algorithm in the time-
domain. In order to reduce the bias of the estimated filter, the
prediction-error method (PEM) [1], [29] is applied. As incom-
ing signal we have used an 80s long speech signal compris-
ing several male and female speakers as used in [30]. The
hearing aid forward path was chosen as G(z) = |G|z−dG with
|G| = 10(20/20) and dG = 96 corresponding to a delay of 6 ms
at a sampling rate of fs = 16 kHz. The prediction-error filter
was estimated from the error signal E(z) using the Burg-lattice
algorithm [31], where the order of the prediction filter was set
to P = 9. In all conditions the step-size of the NLMS algorithm
was set to μ = 0.00025.

Fig. 13. Normalized misalignment (top) and ASG (mid) and ΔASG (bottom)
as a function of time using an AFC algorithm without CP and an AFC algorithm
using a common part obtained using the different optimization procedures. The
ΔASG depicts the difference between the ASG using a common part and not
using a common part.

Fig. 13 depicts the normalized misalignment and the ASG
as well as the ΔASG as a function of time for the follow-
ing two settings of the common and variable parts: 1) Nc

p = 0,
Nc

z = 0, Nv
z = 30, i.e., without a common part, and 2) Nc

p = 8,
Nc

z = 2, Nv
z = 20, i.e., using a common part estimated from

the telephone receiver IRs m = 3, 4 for all three optimization
procedures. The ΔASG was computed as the difference in ASG
between using a common part, i.e., setting 2), and not using a
common part, i.e., setting 1), for all optimization procedures.
During the first 40 s the acoustic feedback path m = 3 was
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used and during the remaining 40 s the acoustic feedback path
m = 1 was used, which was not included in the optimization
of the common part. In general, it can be observed that using
a common part increases the convergence speed compared to
not using a common part which has also been shown in [32].
During the first 40 s using the common part obtained from the
weighted equation-error based optimization procedures outper-
forms using the common part obtained from the equation-error
based optimization, where the common part obtained from the
SDP-based optimization procedure yields the largest ASG and
the lowest misalignment. This shows that similar results as in
the previous sections can be achieved when the common part
decomposition is applied in a state-of-the-art AFC algorithm.
However, note that the differences in general appear smaller
when adaptive algorithms are used to obtain an online estimate
of the variable part. During the second half of the signal, the
QP-based optimization procedure yields the highest ASG and
lowest misalignment, indicating that in this case a better gen-
eralization to unknown feedback paths can be achieved by the
common part obtained from the QP-based optimization pro-
cedure. While between 42 s–57 s the ASG when not using a
common part is larger than the ASG when using a common part
(approximately 1–2 dB), it should be noted that between 57 s–
80 s using a common part outperforms not using a common part
by approximately the same amount. Note that the performance
can possibly be improved by increasing the set of acoustic feed-
back paths from which the common part is estimated, however,
setting the requirements for such a set is beyond the scope of
this work.

VII. CONCLUSION

In this paper we proposed to estimate the common pole-zero
filter of acoustic feedback paths in hearing aids using differ-
ent least-squares optimization procedures. We provided a proof
of the stability of the common pole-zero filter estimated us-
ing the equation-error based approach and incorporated two
different stability constraints into the weighted equation-error
based approach, leading to two different optimization problems.
The first constraint is based on the positive realness of the fre-
quency response of the common poles yielding a sufficient but
not necessary condition for stability and leading to a QP-based
optimization procedure. Furthermore, we propose a novel SDP-
based optimization procedure which uses a Lyapunov constraint
yielding sufficient and necessary conditions for the stability.
Simulations using measured acoustic feedback paths from a two-
microphone behind-the-ear hearing aid for different ear canal
geometries showed that the weighted equation-error based opti-
mization procedures enable to counteract the inherent weighting
of the equation-error based optimization procedure. Moreover,
it was experimentally shown that the proposed SDP-based opti-
mization procedure of the weighted equation-error leads to the
best modelling accuracy and the largest ASG. In addition, we
demonstrated that, although a performance degradation occurs
for unknown acoustic feedback paths, the proposed decompo-
sition improves compared to using only the variable part. Sim-
ulations using a state-of-the-art AFC algorithm show that the

convergence speed can be improved by using the common part
decomposition and that the proposed weighted equation-error
optimization procedures still yield the best modeling accuracy
and ASG.

APPENDIX A
STABILITY OF IRS ESTIMATED USING EQUATION-ERROR

MINIMIZATION

Proving the stability of the IRs estimated minimizing (14) for
the special case Nv

z = Nc
z = 0, i.e., only considering common

poles, has been done in [13]. For this special case, the closed-
form solution in (29) reduces to

ac = −(H̃T H̃)−1H̃T h̃. (55)

Since H̃T H̃ is a symmetric positive definite matrix with Toeplitz
structure, it can be shown that the all-pole filter 1

Ac (z ) is stable
[13], [33].

In the following we will show that this proof can be gener-
alized to the case of arbitrary values of Nv

z and Nc
z . For the

problem at hand we only need to guarantee stability of the poles
when minimizing (22b). Although a closed-form solution ex-
ists (cf., (26b)), minimizing (22b) can also be carried out using
an alternating optimization procedure, i.e., minimizing at each
iteration l

⎧
⎨

⎩

Jc
EE (bc

i,l) = ‖h̃ + H̃ac
i,l−1 − B̃v

i b
c
i,l‖2

2 , (56a)

Jc
EE (ac

i,l) = ‖h̃ + H̃ac
i,l − B̃v

i b
c
i,l‖2

2 . (56b)

The filter minimizing (56b) is equal to

ac
i,l = −(H̃T H̃)−1H̃T (h̃ − B̃v

i b
c
i,l), (57)

where similar as in (55) H̃T H̃ is symmetric, positive definite
and of Toeplitz structure. Hence, at each iteration l the all-pole
filter 1

Ac
i , l (z ) is stable. Since for l → ∞ the filter ac

i,l minimizing

(56b) is equal to the closed-form solution ac
i in (26b), also the

filter ac
i in (26b) is stable such that the common pole-zero filter

minimizing (14) is stable.
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