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ABSTRACT

In adaptive feedback cancellation the convergence speed and the
computational complexity depend on the number of adaptive param-
eters used to model the acoustic feedback path. To improve the con-
vergence speed and reduce the computational complexity, it has been
proposed to model the acoustic feedback path as the convolution
of a time-invariant common pole-zero part and a time-varying vari-
able part. Previous approaches to estimate all the coefficients mini-
mized the so-called equation-error which possibly suffers from poor
estimation accuracy in the vicinity of prominent spectral regions,
e.g., spectral peaks. In this paper we therefore propose to minimize
the so-called output-error by using a Steiglitz-McBride-like itera-
tion scheme. To ensure the stability of the estimated pole-zero filter
a frequency domain constraint is used leading to a quadratic pro-
gramming problem. Experimental results using measured impulse
responses from a two-microphone behind-the-ear hearing aid show
that the proposed estimation scheme outperforms the existing esti-
mation scheme in terms of modeling accuracy.

Index Terms— acoustic feedback cancellation, common part
modeling, hearing aids, weighted least-squares, quadratic program-
ming, Steiglitz-McBride iteration

1. INTRODUCTION

In recent years more and more hearing impaired persons have been
supplied with open-fitting hearing aids. While largely alleviating
problems related to the occlusion effect (e.g. the perception of one’s
own voice), open-fitting hearing aids are especially prone to acoustic
feedback. This requires robust and fast-adapting acoustic feedback
cancellation algorithms.

Although several different approaches exist to solve the prob-
lem of acoustic feedback in hearing aids (see e.g. [1] and refer-
ences therein), adaptive feedback cancellation (AFC) seems the most
promising, as it theoretically allows for perfect feedback cancella-
tion. In AFC an adaptive filter is used to model the acoustic impulse
response (IR) between the receiver and the microphone of the hear-
ing aid. It is known that in general the computational complexity and
the convergence speed of an adaptive filter depend on the number of
its adaptive parameters [2]. To reduce the number of adaptive pa-
rameters in AFC it was hence proposed [3, 4] to model the feedback
path as the convolution of two filters: (1) a fixed filter accounting
for invariant or slowly varying parts of the feedback path, and (2)
an adaptive filter enabling to track fast changes in the feedback path.

This work was supported in part by the Research Unit FOR 1732 ”In-
dividualized Hearing Acoustics” and the Cluster of Excellence 1077 ”Hear-
ing4All”, funded by the German Research Foundation (DFG).

The fixed filter can be thought to account for, e.g., fixed mechani-
cal couplings, and fixed transducer and microphone characteristics
[4] as well as individual characteristics of a particular ear [5]. In-
cluding such a fixed filter aims at reducing the number of adaptive
parameters and thereby increasing the speed of convergence of the
adaptive filter. The fixed filter may be estimated, e.g., from the IRs
of multiple microphones, with the aim of modeling the common part
of these IRs. Hence, in the remainder of the paper the fixed filter will
be called common part, while the time-varying filter that is assumed
to be different for each microphone will be called variable part.

Different models can be assumed for the common part, e.g., an
all-zero filter [4], an all-pole filter [6] or a more general pole-zero
filter [5]. An alternating least-squares (ALS) procedure was pre-
sented in [5] to estimate the coefficients of the common part using
a pole-zero filter and the variable parts using all-zero filters. Sim-
ilar to [6], where a common all-pole filter was assumed, the cost
function that minimizes the so-called output-error was modified to
yield an equation-error minimization, thereby simplifying the opti-
mization procedure. However, pole-zero filters estimated using an
equation-error minimization may suffer from poor estimation accu-
racy in the vicinity of prominent spectral regions, e.g., large spectral
peaks [7]. One well-known approach to circumvent this problem
is the Steiglitz-McBride scheme [8], which iteratively approximates
the desired minimization of the output-error. In this paper we pro-
pose to use the Steiglitz-McBride scheme in the ALS procedure pre-
sented in [5] to estimate all the coefficients of the common part and
the variable parts. Thus, we extend the ALS procedure of [5] to ap-
proximate the output-error and extend the Steiglitz-McBride scheme
[8] to incorporate a common pole-zero model. Since the Steiglitz-
McBride scheme in general does not guarantee stability of estimated
poles (see e.g. [9]), their location has to be constrained to yield sta-
ble IRs. We propose to use a frequency-domain constraint previously
used in [10], leading to a quadratic programming problem. Experi-
mental results using measured acoustic feedback paths indicate that
the proposed estimation scheme enables to achieve a better modeling
accuracy compared to the previously proposed estimation scheme of
[5]. Note that this paper is exclusively about the modeling of acous-
tic feedback paths and may not be confused with acoustic feedback
cancellation algorithms.

2. SCENARIO AND NOTATION

Consider a single-input-multiple-output (SIMO) system with M
outputs as depicted in Figure 1(a). Such a SIMO system arises,
e.g., in a single-loudspeaker multiple-microphone setup in a multi-
microphone hearing aid. The m-th output signal Ym(z) is related to
the input signal X(z) by the m-th acoustic transfer function (ATF)
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Fig. 1. System models.

Hm(z), i.e.,

Ym(z) = Hm(z)X(z). (1)

We assume that the true ATFs Hm(z) are causal all-zero filters of
finite order Nh

z each. To reduce the number of coefficients required
to model the M ATFs, we will approximate these ATFs as depicted
in Figure 1(b) using Ĥ1(z)

...
ĤM (z)

 = Ĥc(z)

 Ĥ
v
1 (z)
...

Ĥv
M (z)

 , (2)

where Ĥm(z) is split into two parts: a common (microphone-
independent) part Ĥc(z) and a variable (microphone-dependent)
part Ĥv

m(z). We assume that Ĥc(z) is a pole-zero filter with Nc
p

poles and Nc
z zeros and Ĥv

m(z) is an all-zero filter with Nv
z zeros

for each of the M microphones, i.e.,

Ĥc(z) =
Bc(z)

Ac(z)
=

∑Nc
z

k=0 b
c[k]z−k

1 +
∑Nc

p

k=1 a
c[k]z−k

(3)

Ĥv
m(z) = Bv

m(z) =

Nv
z∑

k=0

bvm[k]z−k (4)

where ac[k], bc[k], and bvm[k] are the coefficients associated with
the poles of the common part, the zeros of the common part and the
zeros of the variable parts, respectively. The coefficient vectors are
defined as

hm = [ hm[0] hm[1] . . . hm[Nh
z ] ]T , (5)

ac = [ ac[1] ac[2] . . . ac[Nc
p ] ]T , (6)

bc = [ bc[0] bc[1] . . . bc[Nc
z ] ]T , (7)

bv
m = [ bvm[0] bvm[1] . . . bvm[Nv

z ] ]T . (8)

In addition we also define the zero-padded vectors

h̃m = [ hT
m 0T ]T , (9)

b̃c = [ (bc)T 0T ]T , (10)

b̃v
m = [ (bv

m)T 0T ]T , (11)

where 0 is a vector containing zeros such that the length of h̃m, b̃c

and b̃v
m is equal to Ñh

z +Nc
p+1, where Ñh

z = max{Nh
z , N

c
z +Nv

z }.
We also define the concatenated vectors

h̃ = [ h̃T
1 h̃T

2 . . . h̃T
M ]T , (12)

bv = [ (bv
1)T (bv

2)T . . . (bv
M )T ]T , (13)

b̃v = [ (b̃v
1)T (b̃v

2)T . . . (b̃v
M )T ]T . (14)

In the following an iterative scheme is presented to minimize the
weighted least-squares cost function using the Steiglitz-McBride
scheme estimating all the required coefficients to model the M
ATFs using the approximate SIMO system.

3. LEAST-SQUARES ESTIMATION

The objective is to compute the coefficient vectors ac, bc and bv

that minimize the least-squared error between the true ATFs Hm(z)

and the approximated ATF model Ĥm(z) in (2), (3) and (4), i.e.,
minimizing the cost function

J̄OE(ac,bc,bv) =

M∑
m=1

‖Z−1{Hm(z)− Bc(z)

Ac(z)
Bv

m(z)︸ ︷︷ ︸
EOE

m (z)

}‖22,

(15)

where Z−1{·} denotes the inverse z-transform. The error term
EOE

m (z) corresponds to the so-called output-error and is in general
known to be difficult to minimize [11]. To overcome this diffi-
culty it has been proposed in e.g. [5, 6] to minimize the so-called
equation-error EEE

m (z) instead, i.e.,

J̄EE(ac,bc,bv) =

M∑
m=1

‖Z−1{Ac(z)Hm(z)−Bc(z)Bv
m(z)︸ ︷︷ ︸

EEE
m (z)=Ac(z)EOE

m (z)

}‖22. (16)

The equation-error is easier to minimize and for the problem at hand
can be solved using e.g. an ALS procedure in the time-domain
[5]. As can been seen from (16) minimizing the equation-error es-
sentially corresponds to minimizing the output-error EOE

m (z) pre-
filtered withAc(z) corresponding to the inverse of the all-pole trans-
fer function 1

Ac(z)
to be estimated. Although being easier to opti-

mize, the minimization of J̄EE in (16) may thus lead to poor esti-
mation accuracy in the vicinity of prominent regions, e.g., spectral
peaks, in the frequency response Hm(ejΩ) of Hm(z) (see e.g. [7]).
To circumvent this undesired property, in this paper we propose to
incorporate the well-known iterative Steiglitz-McBride scheme [8]
into the ALS procedure of [5] yielding a novel estimation scheme
for the approximate SIMO system in Fig. 1(b). Thus, we aim to
minimize the following cost function at each iteration step i:

J̄WLS(ac
i ,b

c
i ,b

v
i ) =

M∑
m=1

‖Z−1{ 1

Ac
i−1(z)

EEE
m,i(z)︸ ︷︷ ︸

EWLS
m,i (z)

}‖22, (17)

where EEE
m,i(z) is the equation-error at iteration i. As can be

seen from (17) in each iteration the equation-error EEE
m,i(z) is

prefiltered with the all-pole filter 1
Ac

i−1(z)
from the previous itera-

tion. Thus, ideally, at convergence limi→∞A
c
i (z) ≈ Ac

i−1(z) and
limi→∞E

WLS
m,i (z) ≈ EOE

m (z) approximating the output-error.
In the following first the minimization of the equation-error cost

function in the time-domain using the ALS procedure proposed in
[5] is briefly discussed and then the Steiglitz-McBride iteration of
(17) is incorporated yielding a novel estimation scheme to approxi-
mate the minimization of the output-error cost function for the con-
sidered approximate SIMO system.
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3.1. Equation-error based estimation scheme [5]

In the time-domain, the equivalent cost function to J̄EE in (16) is
given by [5]

JEE(ac,bc,bv) = ‖h̃ + H̃ac − B̃vbc‖22, (18)

where the concatenated vector of the zero-padded true IRs h̃ is de-
fined in (12) and

H̃ = [ H̃T
1 . . . H̃T

M ]T (19)

is the M(Ñh
z +Nc

p + 1)×Nc
p -dimensional matrix of concatenated

convolution matrices H̃m of delayed versions of h̃m, i.e.,

H̃m =



0 . . . . . . 0

hm[0] 0
. . .

...
...

. . .
. . . 0

hm[Nc
p − 1]

. . .
. . . hm[0]

...
. . .

. . .
...

hm[Nh
z ]

. . .
. . .

...

0 hm[Nh
z ]

. . .
...

...
. . .

. . . hm[Nh
z ]

...
. . .

. . .
...

0 . . . . . . 0



. (20)

Similarly, B̃v is theM(Ñh
z +Nc

p+1)×(Nc
z +1)-dimensional matrix

constructed by concatenating theM convolution matrices B̃v
m of the

zero-padded variable part coefficient vectors b̃v
m in (11), i.e.,

B̃v = [ (B̃v
1)T (B̃v

2)T . . . (B̃v
M )T ]T . (21)

To minimize the non-linear cost function JEE in (18) an ALS pro-
cedure was proposed in [5], thus at each iteration i JEE is split into
the following least-squares problems{

Jv
EE(bv

i ) = ‖h̃ + H̃ac
i−1 − B̌c

i−1b
v
i ‖22,

Jc
EE(ac

i ,b
c
i ) = ‖h̃ + H̃ac

i − B̃v
i bc

i‖22,

(22a)

(22b)

where

B̌c
i−1 =

B̃c
i−1

. . .
B̃c

i−1

 (23)

and B̃c
i−1 is the (Ñh

z +Nc
p +1)×(Nv

z +1)-dimensional convolution
matrix of the zero-padded common part zero coefficient vector b̃c

i−1

defined in (10). The cost functions in (22) are then minimized alter-
natingly until convergence is achieved. Due to the convolution of the
common all-zero filter bc

i and the variable all-zero filters bv
m,i both

filters can only be uniquely identified up to a constant scalar. There-
fore, to achieve a unique solution, prior to each iteration i bc

i−1 is
normalized to unit-norm [5]. The complete estimation scheme of [5]
is summarized in Table 1.

Table 1. Overview of ALS procedure [5]

input Nc
p , Nc

z , Nv
z , hm ∀m ∈ [1,M ]

initialize ac
i−1, bc

i−1

repeat
normalize common part zero coefficients for uniqueness

bc
i−1 ← bc

i−1/‖bc
i−1‖2,

estimate variable part coefficients
bv
i ← minimize (22a),

estimate common part coefficients
ac
i ,b

c
i ← minimize (22b),

i← i+ 1
until convergence

3.2. Proposed estimation scheme

It is known that the equation-error based optimization procedures
may suffer from poor estimation accuracy in the vicinity of promi-
nent spectral regions [7]. Therefore, we aim to approximate the de-
sired minimization of the output-error in (15) by incorporating the
Steiglitz-McBride scheme [8], i.e., the iterative prefiltering of the
equation-error using 1

Ac
i−1(z)

, into the ALS procedure minimizing
the equation-error presented in [5]. Thus, the goal of the proposed
estimation scheme is to estimate the coefficient vectors that mini-
mize the equivalent cost function to (17) in the time-domain, i.e.,

JWLS(ac
i ,b

c
i ,b

v
i )

=

M∑
m=1

‖ 1

Ac
i−1(q−1)

(h̃m + H̃mac
i − B̃v

m,ib
c
i )‖22,

,

(24)
where q−1 is the unit-delay operator, i.e., q−1h[k] = h[k − 1]. As
can be seen be comparing the cost functions JEE in (18) and JWLS

in (24), the equation-error being minimized in (18) is prefiltered
with the all-pole filter 1

Ac
i−1(q−1)

in (24) aiming to approximate the

output-error. Similar to the minimization of JEE in (18) the mini-
mization of JWLS in (24) can be carried out by using an alternating
scheme similar to (22) with the following least-squares problems{

Jv
WLS(bv

i ) = ‖h̃p
i + H̃p

i a
c
i−1 − B̌c,p

i−1b
v
i ‖22,

Jc
WLS(ac

i ,b
c
i ) = ‖h̃p

i + H̃p
i a

c
i − B̃v,p

i bc
i‖22.

(25a)

(25b)

The superscript p indicates prefiltered quantities, i.e., by filtering
the corresponding quantities in (22) by 1

Ac
i−1(q−1))

, i.e.,

h̃p
m,i = (Âc

i−1(q−1))−1h̃m, (26)

b̃c,p
i−1 = (Âc

i−1(q−1))−1b̃c
i−1, (27)

b̃v,p
m,i = (Âc

i−1(q−1))−1b̃v
m,i. (28)

The matrices H̃p
i−1, B̃v,p

i−1 and B̌c,p
i in (25) are similarly defined as

H̃i−1, B̃v
i−1 and B̌c

i in (19), (21) and (23) but using the prefiltered
quantities h̃p

m,i, b̃c,p
i−1 and b̃v,p

m,i in (26) - (28). Again, due to the
convolution of bv

m,i and bc
i the individual filters can only be deter-

mined uniquely up to a constant scalar, therefore, similar as in [5],
bc
i is normalized to unit-norm prior to each iteration.

3.3. Stability constraint

Since it is known that in general the iterative scheme in (25) does not
guarantee the stability of the estimated filter (see e.g. [9]), the poles,
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Table 2. Overview of proposed estimation scheme

input Nc
p , Nc

z , Nv
z , hm ∀m ∈ [1,M ]

initialize ac
i−1, bc

i−1

repeat
prefilter true IRs

h̃p
m,i ← (Âc

i−1(q−1))−1h̃m ∀m ∈ [1,M ],
normalize common part zero coefficients for uniqueness

bc
i−1 ← bc

i−1/‖bc
i−1‖2,

prefilter common part zero coefficients
b̃c,p
i−1 ← (Âc

i−1(q−1))−1b̃c
i−1,

estimate variable part coefficients
bv
i ← minimize (25a),

prefilter variable part zero coefficients
b̃v,p
m,i ← (Âc

i−1(q−1))−1b̃v
m,i ∀m ∈ [1,M ],

estimate common part coefficients
ac
i ,b

c
i ← minimize (25b) s.t. (30),

i← i+ 1
until convergence

i.e., the roots of Ac(z), need to be constrained to strictly lie inside
the unit circle. In [10] it has been shown, that a sufficient (but not
necessary) condition for the stability of 1

Ac(z)
is that the real part of

the frequency response Ac(ejΩ) is strictly positive, i.e.,

R{Ac(ejΩ)} > 0 ∀Ω (29)

whereR{·} denotes the real part and Ω is the normalized frequency.
To control the strength of the constraint a small positive constant
δ > 0 is typically introduced [10], i.e.

R{Ac(ejΩ)} ≥ δ ∀Ω. (30)

This constraint can then be implemented by evaluating (30) over
a dense grid of frequencies. The minimization of (25b) subject to
the constraint (30) corresponds to a quadratic programming problem
[12] and can be efficiently solved using, e.g., the MATLAB function
quadprog.m. An overview summarizing all steps of the proposed
estimation scheme is given in Table 2.

4. EXPERIMENTAL VALIDATION

In this section the proposed estimation scheme minimizing the
weighted least-squares error using the iterative Steiglitz-McBride
scheme (cf. Table 2) is evaluated and compared to the estimation
scheme minimizing the equation-error proposed in [5]. Two acoustic
feedback paths (M = 2) were measured using a two-microphone
behind-the-ear hearing aid with open-fitting earmolds on a dummy
head with adjustable ear canals similar to the ear canals presented in
[13]. The IRs were sampled at fs = 16 kHz and truncated to order
Nh

z = 99. The measured feedback paths are depicted in Figure
2. As a performance measure for modeling accuracy the average
normalized misalignment ε between the true (measured) IRs hm

and the estimated IRs ĥm is used, i.e.,

ε = 10 log10

1

2

2∑
m=1

‖hm − ĥm‖22
‖hm‖22

. (31)

The coefficient vectors were initialized as âc
0 = 0 and b̂c

0 =
[ 1 0 . . . 0 ]. Although in general different initializations are
possible, e.g., random or all-one sequences, it is beyond the scope
of this paper to compare different initializations. The constraint in
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Fig. 2. Two measured feedback paths used in the experiment. The
black line and gray line indicate h1[k] and h2[k], respectively.

−35
−30
−25
−20
−15
−10

−5
0

A
v
e
ra

g
e

 M
is

a
lig

n
m

e
n
t 

/ 
d

B

 

 
N

p

c
=2, N

z

c
=8

Scheme of [5]

Proposed Scheme

5 10 15 20 25 30

−35
−30
−25
−20
−15
−10

−5
0 N

p

c
=5, N

z

c
=5

5 10 15 20 25 30
N

z

v

N
p

c
=8, N

z

c
=2

Fig. 3. Average misalignment as a function ofNv
z for different com-
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(30) was evaluated over a grid of 1024 equally spaced frequencies
in the range [0− 8] kHz and δ = 10−8 was used. Convergence was
assumed when the relative change of each of the coefficients of the
common part and the variable parts as well as the relative change of
Jc
WLS in (25b) was smaller than 5 · 10−4.

To compare the impact of different numbers of common poles
and zeros, results for three different combinations of Nc

p and Nc
z

leading toNc
p +Nc

z = 10 as a function ofNv
z are depicted in Figure

3. This allows for direct comparison of the three combinations. It
can be seen that an improvement over the estimation scheme pro-
posed in [5] in almost all conditions is achieved. For the combina-
tion of Nc

p = 2, Nc
z = 8 the improvements as large as 7 dB for

Nv
z = 20 can be achieved. In comparison, for both other combina-

tions (Nc
p = 5, Nc

z = 5 and Nc
p = 8, Nc

z = 2) improvements tend
to be smaller but decreases in normalized misalignment of as large
as 5 dB can be observed for the proposed estimation scheme. In
general, results indicate that the proposed estimation scheme shows
largest improvements for low to medium number of variable part co-
efficients, i.e., for the presented dataNv

z < 25. Similar performance
is observed for other sets of feedback paths. Thus, by using the pro-
posed estimation scheme to estimate a common pole-zero model an
increase in modeling accuracy can be achieved compared to the pre-
viously proposed estimation scheme of [5].

5. CONCLUSION

In this paper an iterative weighted least-squares scheme for estimat-
ing a common part and M variable parts from a set of M impulse-
responses based on the well-known Steiglitz-McBride scheme was
proposed. To guarantee the stability of the estimated common pole-
zero model a frequency-domain constraint was incorporated yield-
ing a quadratic programming problem. Experimental results using
measured acoustical feedback paths indicate that the proposed esti-
mation scheme outperforms the estimation scheme minimizing the
equation-error in terms of modeling accuracy.
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