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In many speech communication applications, such as public address systems, speech is degraded by

additive noise, leading to reduced speech intelligibility. In this paper a pre-processing algorithm is

proposed that is capable of increasing speech intelligibility under an equal-power constraint.

The proposed AdaptDRC algorithm comprises two time- and frequency-dependent stages, i.e., an

amplification stage and a dynamic range compression stage that are both dependent on the Speech

Intelligibility Index (SII). Experiments using two objective measures, namely, the extended SII and

the short-time objective intelligibility measure (STOI), and a formal listening test were conducted

to compare the AdaptDRC algorithm with a modified version of a recently proposed algorithm in

three different noise conditions (stationary car noise and speech-shaped noise and non-stationary

cafeteria noise). While the objective measures indicate a similar performance for both algorithms,

results from the formal listening test indicate that for the two stationary noises both algorithms lead

to statistically significant improvements in speech intelligibility and for the non-stationary cafeteria

noise only the proposed AdaptDRC algorithm leads to statistically significant improvements. A

comparison of both objective measures and results from the listening test shows high correlations,

although, in general, the performance of both algorithms is overestimated.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4932168]
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I. INTRODUCTION

In many speech communication applications, such as

public address systems, mobile telephony, or any audio de-

vice with speech output, a high quality of communication

needs to be provided. To achieve a high communication

quality, first a high speech intelligibility must be ensured.

However, in typical communication situations speech is

degraded by additive noise and/or reverberation. The influ-

ence of these disturbances may lead to reduced speech

intelligibility and increased listening effort (Beutelmann and

Brand, 2006; Bronkhorst, 2000; George et al., 2010;

Morimoto et al., 2004; Rennies et al., 2014). A straightfor-

ward solution to obtain a high speech intelligibility in noise

is to increase the speech level to achieve a good signal-

to-noise ratio (SNR). A similar phenomenon can be observed

in human speech production in noisy environments referred

to as the Lombard effect (Van Summers et al., 1988). The

Lombard effect is characterized not only by an increase in

speech level but it has also been found that, among several

other modifications, the spectral tilt of speech is reduced (Lu

and Cooke, 2008; Van Summers et al., 1988). Subjective lis-

tening tests comparing speech intelligibility of Lombard

speech and normal speech have shown that Lombard speech

is better intelligible compared to normal speech even when

presented at the same physical level (Lu and Cooke, 2008).

Although the aforementioned broadband amplification

can easily be implemented, it may lead to an overload of the

amplification system and/or loudspeaker or to unpleasantly

high sound levels. Therefore, it is desirable to design algo-

rithms that are able to increase speech intelligibility in such

a way that they maintain equal powers of both the unpro-

cessed signal and the processed signal.

In general, algorithms that modify the speech signal

prior to presentation can be classified into one of the follow-

ing five categories: (1) algorithms that change the frequency

characteristics by applying spectral modification techniques

(e.g., Brouckxon et al., 2008; Kleijn et al., 2015; Sauert and

Vary, 2010b, 2012; Taal and Jensen, 2013; Taal et al.,
2014), (2) algorithms that explicitly employ non-linear mod-

ifications such as dynamic range compression (DRC, e.g.,

Licklider and Pollack, 1948; Niederjohn and Grotelueschen,

1976; Zorila et al., 2012; Zorila and Stylianou, 2014), (3)

algorithms that selectively enhance signal components (e.g.,

Arai et al., 2010; Ortega and Huckvale, 2000; Skowronski

and Harris, 2006), (4) algorithms that aim at enhancing the

modulation of speech signals (e.g., Kusumoto et al., 2005),
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and (5) algorithms that modify the time-scale of the speech

signal (e.g., Tang and Cooke, 2011; Verhelst, 2000). In the

following, we will focus on the first two categories, i.e.,

spectral modification and DRC.

In addition these algorithm can be classified into noise-

adaptive algorithms, which take into account the characteris-

tics of the near-end noise (e.g., Brouckxon et al., 2008;

Sauert and Vary, 2010b, 2012; Taal et al., 2014; Tang and

Cooke, 2011), and noise-independent algorithms (e.g.,

Kusumoto et al., 2005; Licklider and Pollack, 1948;

Niederjohn and Grotelueschen, 1976; Ortega and Huckvale,

2000; Zorila et al., 2012; Zorila and Stylianou, 2014).

One of the first analyses of signal pre-processing algo-

rithms (i.e., processing prior to presentation) was made by

Licklider and Pollack (1948). They investigated the effects

of high-pass and low-pass filtering as well as peak-clipping

and several combinations of these on speech intelligibility in

quiet. They found only minor effects on speech intelligibility

for most of the considered combinations, while intelligibility

was severely degraded when low-pass filtering was followed

by peak-clipping.

Recently, Sauert and Vary (2010b) proposed an algo-

rithm, in which time- and frequency-dependent amplification

of the speech signal is carried out aiming to maximize the

Speech Intelligibility Index (SII). Although maximizing the

SII, they found that their approach suffered from spectral

adaptation to the noise characteristics. This is especially

undesired for noises with band-pass characteristics where the

speech signal after processing exhibits the same band-pass

characteristics as the noise and is hence strongly distorted.

To circumvent this problem, Sauert and Vary (2012) pro-

posed to use a transition between an SII-based weighting

proposed in Sauert and Vary (2010b) and unity-weighting.

Other algorithms have also been proposed that aim at maxi-

mizing other objective measures such as a low-complexity

distortion measure (Taal et al., 2014), a loudness metric

(Shin and Kim, 2007), a glimpse portion measure (Tang and

Cooke, 2012), or the speech magnitude distortions (Crespo

and Hendriks, 2013).

In the class of non-linear modification algorithms

Niederjohn and Grotelueschen (1976) proposed to use high-

pass filtering followed by static rapid amplitude compres-

sion. They reported an increase in speech intelligibility in

white noise over the unprocessed signal at the same SNR.

The idea of combining frequency-shaping, i.e., linear filter-

ing, and DRC was recently adopted by Zorila et al. (2012).

They used a speech signal-dependent frequency-shaping and

a static broadband DRC scheme and reported improvements

in speech-shaped noise (SSN) and a competing speaker for

three different SNRs.

The previously mentioned approaches use either only

frequency-shaping or in addition a static broadband compres-

sion characteristic. While these approaches yield increased

intelligibility over a wide range of SNRs, they also modify

the speech signal in conditions of good speech intelligibility.

This may be disadvantageous, since any modification of

the speech signal may also lead to a degradation in perceived

speech quality. Therefore, in the recently proposed

AdaptDRC algorithm (Schepker et al., 2013) a processing

scheme is employed that combines a time- and frequency-

dependent frequency-shaping and a time- and frequency-

dependent dynamic range compression characteristic,

preserving the original speech signal in cases of good

intelligibility.

In a recent study, Cooke et al. (2013a) compared a large

variety of pre-processing algorithms in a subjective listening

test. Within their study also the algorithms of Sauert and

Vary (2010a) and Zorila et al. (2012) as well as Lombard

speech were included. They found that, for a stationary SSN,

despite their differences in processing (frequency-shaping

and/or DRC), all algorithms that modified the clean speech

signal improved speech intelligibility at equal output powers.

However, for a non-stationary speech masker not all algo-

rithms were able to improve speech intelligibility, but the

DRC algorithm of Zorila et al. (2012) and Lombard speech

showed largest improvements. The study of Cooke et al.
(2013a) was extended in Cooke et al. (2013b) in the

so-called 2013 Hurricane Challenge, where similar noise and

SNR conditions were used but different algorithms were

evaluated. Results indicated that algorithms that used a DRC

stage showed large improvements in the considered station-

ary and non-stationary noises, while most gain amplification

algorithms only improved speech intelligibility for stationary

noises.

In this paper a more detailed description of the

AdaptDRC algorithm of Schepker et al. (2013) is presented.

Extensive evaluations using objective measures and a formal

listening test in three different real-world noises are per-

formed that provide insights into the performance of the

AdaptDRC algorithm in stationary as a well as non-stationary

noisy environments. Thus, the results presented by Cooke

et al. (2013b) and Schepker et al. (2013) are extended using

additional noises and different speech material. Furthermore,

a correlation analysis is carried out to investigate the per-

formance of the objective measures to predict speech intelli-

gibility for signals modified by state-of-the-art pre-processing

algorithms.

The remainder of this paper is organized as follows. In

Sec. II the considered scenario and some important assump-

tions are discussed. In Sec. III the proposed AdaptDRC algo-

rithm is described. In Sec. IV the proposed algorithm is

evaluated using two objective measures (extended SII and

the short-time objective intelligibility measure, STOI) and a

formal listening test. In Sec. V both evaluation methods are

compared by means of a correlation analyses and the results

are discussed.

II. SCENARIO

Consider the acoustic scenario depicted in Fig. 1. The

unprocessed (clean) speech signal s½k� at discrete time k is

modified using the processing stage Wf�g and the modified

speech signal ~s½k� is played back via a loudspeaker. A

microphone picks up the disturbed speech signal y½k�, which

is the mixture of the modified speech signal ~s½k� convolved

with the room impulse response h½k� between the loud-

speaker and the microphone and the additive noise disturb-

ance r½k�, i.e.,
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y½k� ¼ ~s½k� � h½k� þ r½k�; (1)

where * denotes convolution. An estimate of the noise signal

r̂ ½k� can be obtained by using, e.g., adaptive filtering techni-

ques to model the room impulse response ĥ½k� (Haensler and

Schmidt, 2008) and subtracting ~s½k� � ĥ½k� from the micro-

phone signal y½k�. Using the estimated noise signal r̂ ½k�, the

estimated room impulse response ĥ½k�, and the clean speech

signal s½k�, the processed speech signal ~s½k� is then computed

as

~s½k� ¼ Wfs½k�; r̂½k�; ĥ½k�g: (2)

The goal of a signal pre-processing algorithm is to

derive a processing stage Wf�g that enhances the intelligibil-

ity of ~s½k� þ r½k� compared to s½k� þ r½k� under an equal

power constraint, i.e., the power of ~s½k� is equal to the power

of s½k�. To provide an insight into the optimal performance

of the proposed algorithm, estimation errors will be

neglected in this paper and no reverberation is assumed to be

present (i.e., ĥ½k� ¼ h½k� ¼ d½k�) and hence we assume a per-

fect noise estimate to be available (i.e., r̂½k� ¼ r½k�). An over-

view of the notation used in this paper is provided in Table I.

III. PRE-PROCESSING ALGORITHMS

In this section a detailed description of the proposed

AdaptDRC pre-processing algorithm as well as the imple-

mentation of a state-of-the-art algorithm of Sauert and Vary

(2012) used as a reference algorithm is provided. In Sec.

III A the used processing framework and some general defi-

nitions are provided. In Sec. III B the proposed AdaptDRC
pre-processing algorithm is described in detail and our modi-

fied implementation of the reference algorithm by Sauert

and Vary (2012) referred to as ModSau in the remainder is

discussed as a special case of the amplification stage of the

proposed AdaptDRC algorithm.

A. Processing framework and definitions

The signal s½k� is first split into N subband signals

sn½k�; n ¼ 1;…;N, using a real-valued non-decimated filter-

bank. In our implementation, we have used an all-pass filter-

bank based on doubly-complementary IIR filters (Regalia

et al., 1987), splitting the signals into N¼ 8 octave-bands

with center frequencies ranging from 125 Hz to 16 kHz.

Each subband signal sn½k� is framed into non-overlapping

blocks of length M with the lth block denoted as

sl
n½m� ¼ sn½lM þ m�; m ¼ 0;…;M � 1. The speech power of

the lth block in the nth subband is equal to

/s;n l½ � ¼ 1

M

XM�1

m¼0

sl
n m½ �

� �2
: (3)

FIG. 1. Considered acoustic scenario.

TABLE I. Overview of symbols and parameters used in the algorithmic description.

Parameter Description Parameter Description

k Discrete time index s½k� Speech signal

l Discrete block index ~s½k� Processed speech signal

m Discrete sample index in block r½k� Noise signal

M Block length r̂ ½k� Estimate of r½k�
n Subband index h½k� Room impulse response

N Number of subbands /s½l� Broadband speech power

in Band importance function /s;n½l� Subband speech power

un Stand. equiv. speech spectrum level en½l� Equiv. speech spectrum level

vn Subband dependent weighting dn½l� Equiv. dist. spectrum level

aa Attack smoothing constant ŜII ½l� Estimated SII

ar Release smoothing constant âðen½l�; dn½l�Þ Approx. audibility function

� Conversion constant from dB FS to dB SPL qðen½l�; dn½l�Þ Mapping function

crðmaxÞ Maximum compression ratio ĝðdn½l�Þ Speech distortion function

ab IOC parameter smoothing constant wn½l� Amplification gain

ap Compressive gain smoothing constant h½l� Transition parameter

aL Broadband level smoothing constant pðkn; ð�sn½k�Þ2Þ Compressive gain function

�pð�kn; ð�sn½k�Þ2Þ Smoothed compressive gain function

kn½l� IOC parameter vector
�kn½l� Smoothed IOC parameter vector

�sn½k� Estimated speech envelope

cn;i½l� i-th input power of IOC parameter vector

nn;i½l� i-th output power of IOC parameter vector

crn½l� Time-varying compression ratio
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The broadband input speech power /s½l� in the lth block

is defined as the sum over all subband powers. Similarly, the

broadband output speech power /~s ½l� is calculated from the

output speech signal ~s½k�. Furthermore, the equivalent speech

spectrum level is defined as (ANSI, 1997)

en l½ � ¼ 10 log10

/s;n l½ �
Dfn

 !

¼ 10 log10

1

MDfn

XM�1

m¼0

sl
n m½ �

� �2

 !
; (4)

with Dfn the bandwidth of the nth subband. Similarly, the

equivalent disturbance spectrum level is defined as

dn l½ � ¼ 10 log10

1

MDfn

XM�1

m¼0

r̂ l
n m½ �

� �2
 !

; (5)

where r̂ l
n½m� is defined similarly as sl

n½m�, i.e., r̂ l
n½m�

¼ r̂ n½lM þ m�; m ¼ 0;…;M � 1.

B. Proposed algorithm: AdaptDRC

The proposed AdaptDRC algorithm is depicted in Fig. 2.

It combines a time- and frequency-dependent amplification

stage with a time- and frequency-dependent DRC stage,

where both the amplification and the DRC are either func-

tions of the short-term SII estimate or employ intermediate

results from the short-term SII estimation. In the following

first the short-term SII estimation procedure and second

the amplification stage and the DRC stage as well as the

gain-smoothing procedure will be described.

1. Short-term SII estimation

The short-term SII estimation procedure is adopted from

Sauert and Vary (2010b) but has been slightly modified. The

short-term SII in the lth block is estimated from the clean

speech signal s½k� and the estimated noise signal r̂½k� as

ŜII½l� ¼
XN

n¼1

inâðen½l�; dn½l�Þ; (6)

where in denotes the band importance function of the nth

subband according to ANSI (1997) and âðen½l�; dn½l�Þ approx-

imates the audibility function defined in ANSI (1997), which

estimates the audibility of the speech signal relative to the

noise signal as

âðen½l�; dn½l�Þ ¼ qðen½l�; dn½l�Þĝðdn½l�Þ: (7)

The function qðen½l�; dn½l�Þ is a mapping function of the

SNR according to

q en l½ �;dn l½ �
� �

¼ max min
en l½ � � dn l½ � þ 15 dB

30 dB
;1

� �
;0

� �
(8)

and the function ĝðdn½l�Þ describes the speech distortion for

louder levels. Assuming the particular case of en½l� ¼ dn½l�
þ 15 dB, maximizing qðen½l�; dn½l�Þ in Eq. (8), ĝðdn½l�Þ may

be approximated as (Sauert and Vary, 2010b)

ĝ dn l½ �ð Þ ¼ min 1� dn l½ � þ 15 dB� un � 10 dB

160 dB
; 1

� �
;

(9)

which depends on the so-called standardized equivalent

speech spectrum level un, which has been defined in ANSI

(1997) for a broadband speech level of 62.35 dB sound pres-

sure level (SPL) for normal speech. Note that âðen½l�; dn½l�Þ
in Eq. (7) differs from the approximation of the audibility

function proposed by Sauert and Vary (2010b) in that it takes

into account the flooring and ceiling effect of the function

qðen½l�; dn½l�Þ in Eq. (8), which was neglected in Sauert and

FIG. 2. Detailed block diagram of the

AdaptDRC algorithm.
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Vary (2010b). Additionally, by using the approximation

ĝðdn½l�Þ in Eq. (9) it is assumed that en½l� ¼ dn½l� þ 15 dB

< un þ 170 dB, which can be assumed to be valid in nearly

all conditions. In conditions that would violate this assump-

tion the equivalent speech spectrum level en½l� in a particular

subband would be at least 155 dB larger than the standar-

dized equivalent speech spectrum level un, which is highly

unlikely in realistic acoustic scenarios.

In addition, note that for the original definition of the

SII in ANSI (1997) only octave-bands in the range of

250 Hz–8 kHz are considered. Since, in our implementation,

we have also taken into account the lowest octave-band

with center frequency 125 Hz, the values for i1, i2, u1, and

u2 (i.e., the band importance function and the standardized

equivalent speech spectrum levels in the two lowest octave-

bands) were slightly changed. The values were chosen as

i1 ¼ 0:0083; i2 ¼ 0:0534; u1 ¼ 28:60 dB and u2 ¼ 34:75

dB, being a trade-off between the original octave-band val-

ues and the values defined for third-octave-bands. An over-

view on the used band importance function and the

standardized equivalent speech spectrum levels is depicted

in Table II.

2. Amplification

In this section, first, the application of the amplification

gain and its general description are provided. Second, the

amplification gain of the proposed AdaptDRC algorithm (cf.

Fig. 2) and the amplification gain of our implementation of

the algorithm by Sauert and Vary (2012) are presented. The

aim of the amplification stage for both algorithms is to pro-

vide a transition between modification of the speech signal

in severe disturbance and no modification in low disturbance

of the speech signal. The amplification gain wn½l� is applied

to each samples of a block of samples of the input speech

signal, i.e.,

~sl
n½m� ¼ wn½l�sl

n½m�; m ¼ 1;…;M: (10)

To achieve a trade-off between spectral modification

and no spectral modification, a similar amplification gain as

proposed by Sauert and Vary (2012) is used. This general

amplification gain is defined as

wn l½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1�h l½ �

n ð/s;n l½ �Þh l½ �

XN

k¼1

v1�h l½ �
k ð/s;k l½ �Þh l½ �

� /s l½ �
/s;n l½ �

vuuuuut ; (11)

where vn is a subband dependent weighting with
PN

n¼1 vn

¼ 1 and h½l� is a time-dependent transition parameter that

can take values in the range 0 � h½l� � 1. From Eq. (11) it

can be shown that
PN

n¼1 w2
n½l�/s;n½l� ¼ /s½l�. Hence, Eq. (11)

does preserve the broadband power of the input. In general,

Eq. (11) has the following properties:

h l½ �¼0!wn l½ �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn

/s l½ �
/s;n l½ �

s
!/~s;n l½ �¼ vn/s l½ �; (12a)

h l½ �¼1!wn l½ �¼1: (12b)

8>><
>>:
Hence, Eq. (11) provides a trade-off between distributing

the broadband speech power /s½l� according to the weighting

defined by vn for h½l� ¼ 0 and unity weighting for h½l� ¼ 1.

a. AdaptDRC. Since speech signals in general contain

more energy in lower frequency subbands compared to

higher frequency subbands, on the one hand the amplifica-

tion stage of the AdaptDRC algorithm aims at uniformly

distributing the speech signal power over all subbands in

case of low (predicted) speech intelligibility, i.e., for

ŜII½l� ! 0. On the other hand, the speech signal should not

be altered to avoid any distortions in the case of high pre-

dicted speech intelligibility, i.e., for ŜII½l� ! 1. Therefore,

the subband dependent weighting is chosen as vn ¼ 1=N. To

control the trade-off between distributing the speech signal

power and avoiding distortions, we chose h½l� ¼ ŜII½l� in

(11), where ŜII½l� is defined in (6). Hence, the amplification

gain of the AdaptDRC algorithm is defined as

wAdaptDRC
n l½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ŜII l½ �

s;n l½ �XN

k¼1

/ŜII l½ �
s;k l½ �

� /s l½ �
/s;n l½ �

vuuuuut : (13)

From Eq. (13) one observes the following properties:

ŜII l½ � ¼ 0! wAdaptDRC
n l½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

/s l½ �
/s;n l½ �

s
! /~s;n l½ � ¼ 1

N
/s l½ �; (14a)

ŜII l½ � ¼ 1! wAdaptDRC
n l½ � ¼ 1: (14b)

8>><
>>:

TABLE II. Modified band importance functions and the modified standardized equivalent speech spectrum levels as a function of octave-band center fre-

quency as used in the SII estimation.

fn/Hz 125 250 500 1000 2000 4000 8000 16 000

in 0.0083 0.0534 0.1671 0.2373 0.2648 0.2142 0.0549 0.0

un/dB 28.60 34.75 34.75 25.01 17.32 9.33 1.13 0.00
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Hence, a uniform distribution of the speech signal power

/s½l� is achieved for ŜII½l� ¼ 0 and for ŜII½l� ¼ 1 the result-

ing gain is wAdaptDRC
n ½l� ¼ 1, obtaining the desired properties.

Note that the application of the amplification gain wAdaptDRC
n

½l� in general leads to an increased speech power in higher

frequency subbands, while in lower frequency subbands the

output speech power is reduced.

b. Implementation of Sauert and Vary (2012). In con-

trast to the amplification gain of the proposed AdaptDRC
algorithm, Sauert and Vary (2012) proposed to set the

subband dependent weighting vn according to the band

importance function as defined in ANSI (1997) and the

function ĝðdn½l�Þ in Eq. (9), i.e., vn ¼ inĝðdn½l�Þ and used a

heuristically chosen parameter h½l�. It was found that their

particular choice of h½l� resulted in a good compromise for

the performance in different noise conditions. In our

implementation of the algorithm proposed in Sauert and

Vary (2012) we have modified the transition parameter

h½l�. The transition parameter is chosen in a non-heuristic

way based on the transformation of estimated SII values to

the speech intelligibility of words as proposed by

Beutelmann and Brand (2006), i.e.,

h l½ � ¼ 0:0204

0:01996þ e�20�ŜII l½ �
� 0:01996; (15)

where ŜII½l� is defined in Eq. (6). Although the choice of h½l�
is different from Sauert and Vary (2012), no major differen-

ces between the two parameters were found when the

algorithm output was compared by objective quality meas-

ures and informal listening tests. The amplification gain of

the ModSau algorithm is thus defined as

wModSau
n l½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
inĝ dn l½ �ð Þ
� �1�h l½ �

/h l½ �
s;n l½ �XN

k¼1

ðikĝ dk l½ �ð ÞÞ1�h l½ �/h l½ �
s;k l½ �

� /s l½ �
/s;n l½ �

vuuuuut ; (16)

where h½l� is defined in Eq. (15). For the ModSau algorithm

one observes the following properties:

h l½ � ¼ 0! wModSau
n l½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
inĝ dn l½ �ð Þ
� � /s l½ �

/s;n l½ �

s
! /~s;n l½ � ¼ inĝ dn l½ �ð Þ

� �
/s l½ �; (17a)

h l½ � ¼ 1! wModSau
n l½ � ¼ 1: (17b)

8>><
>>:

Hence, for h½l� ¼ 0 a distribution of the speech signal

power /s½l� according to the band importance function in of

the SII and ĝðdn½l�Þ is obtained and for h½l� ¼ 1 the resulting

gain is wModSau
n ½l� ¼ 1. According to Sauert and Vary (2010b),

this is optimal with respect to the SII under the equal power

constraint for h½l� ¼ 0, but has to be deemed sub-optimal with

respect to the SII for h½l� > 0. Nevertheless, the performance

as evaluated by the SII is comparable to using the algorithm

proposed by Sauert and Vary (2010b) aiming to optimize the

SII under an equal power constraint (Sauert and Vary, 2012).

3. Dynamic range compression

The DRC stage of the AdaptDRC algorithm (cf. Fig. 2)

aims at amplifying low-level signals that are assumed to be

not well audible and attenuating high-level signals that are

assumed to be well audible.

In general, in multiband DRC algorithms the processed

speech signal ~sn½k� in the nth subband is computed as

~sn½k� ¼ sn½k�pðkn; ð�sn½k�Þ2Þ; m ¼ 0;…;M � 1; (18)

where pðkn; ð�sn½k�Þ2Þ is a compressive gain function which

computes a gain at each sample k by evaluating the input-

output-characteristic (IOC) defined by the parameter vector

kn for the input speech power �s2
n½k�. The input speech power

is estimated from the envelope of the nth subband signal,

i.e.,

FIG. 3. Exemplary IOC for three different cases. Symbols indicate the

points defined by the input and output powers cn;i½l� and nn;i½l� and lines indi-

cate pðkn½l�; ð�sn½k�Þ2Þ. It is assumed that /s;n½l� ¼ 1050=10 and crmax ¼ 8. The

following cases are shown: case 1: crn½l� ¼ 1; case 2: crn½l� ¼ crmax; case 3:

wAdaptDRC
n ¼ 1015=20 and crn½l� ¼ crðmaxÞ.
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�sn½k� ¼

aa�sn½k � 1� þ ð1� aaÞjsn½k�j
if jsn½k�j � �sn½k � 1�;

ar�sn½k � 1� þ ð1� arÞjsn½k�j
if jsn½k�j < �sn½k � 1�;

8>><
>>: (19)

where aa and ar are attack and release smoothing constants.

The IOC parameter vector kn usually contains a set of sev-

eral input and output powers cn;i and nn;i. Figure 3 depicts

exemplary IOCs for different parameter vectors kn defined

by three input and output powers (i¼ 1, 2, 3).

In DRC algorithms typically fixed compression ratios

are applied to either the broadband signal (Zorila et al., 2012)

or the subband signals. However, in case sn½k� is already well

audible, DRC can lead to signal degradation that may harm

the perceived quality or even reduce speech intelligibility.

Therefore, the novelty of the proposed AdaptDRC algo-

rithm in comparison to previously proposed algorithms

(Niederjohn and Grotelueschen, 1976; Zorila et al., 2012) is

the fact that the IOC changes for each block l, depending on

the speech and noise characteristics. In the AdaptDRC algo-

rithm three input and output powers are used to define the

IOC, i.e.,

kn½l� ¼ ½ cn;1½l� cn;2½l� cn;3½l� nn;1½l� nn;2½l� nn;3½l� �; (20)

with

cn;1½l� ¼ 1;

cn;2½l� ¼ /s;n½l�;
cn;3½l� ¼ �; (21)

and

nn;1½l� ¼ ð/s;n½l�Þ1�1=crn½l�;

nn;2½l� ¼ /s;n½l�;
nn;3½l� ¼ ð/s;n½l�Þ1�1=crn½l��1=crn½l�; (22)

where � is a conversion constant from dB FS to dB SPL cho-

sen to be � ¼ 10ð100=10Þ and crn½l� is the time-varying com-

pression ratio. The time-varying compression ratio is

computed independently for each subband and employs the

SNR mapping function of the SII qðen½l�; dn½l�Þ as defined in

Eq. (8), which is an intermediate step in the SII calculation,

to provide a transition between maximum compression and

no compression. It is defined as

crn½l� ¼ maxfcrðmaxÞ � ð1� qðen½l�; dn½l�ÞÞ; 1g; (23)

where crðmaxÞ is assumed to be larger than 1 and denotes the

maximum compression ratio. For subband SNRs lower than

or equal to �15 dB, qðen½l�; dn½l�Þ ¼ 0, such that crðmaxÞ will

be applied, while for subband SNRs larger than or equal to

þ15 dB, qðen½l�; dn½l�Þ ¼ 1, such that no compression will be

applied, hence achieving the desired property of no modifi-

cation in case of good speech intelligibility.

The amplification stage of the proposed AdaptDRC
algorithm discussed in Sec. III B 2 can be directly incorpo-

rated into the IOC kn½l� by redefining nn;i½l� in Eq. (22) as

nn;1½l� ¼ ð/s;n½l�Þ1�1=crn½l�wAdaptDRC
n ½l�;

nn;2½l� ¼ /s;n½l�wAdaptDRC
n ½l�;

nn;3½l� ¼ ð/s;n½l�Þ1�1=crn½l�wAdaptDRC
n ½l��1=crn½l�: (24)

Figure 3 depicts exemplary IOCs for the proposed

AdaptDRC assuming that /s;n½l� ¼ 1050=10 and crmax ¼ 8.

Case 1 depicts a scenario where the SNR is sufficiently high

(SNR � þ15 dB) such that crn½l� ¼ 1 and hence no compres-

sion is applied. For case 2, the opposite extremum is consid-

ered (SNR � �15 dB) such that crn½l� ¼ crðmaxÞ ¼ 8 leading

to the desired compressive IOC where a large amplification

is applied for low input levels and a strong attenuation is

applied for high input levels. Case 3 assumes an additional

amplification of wAdaptDRC
n ¼ 1015=20 compared to case 2,

resulting in a shift of the IOC.

4. Smoothing of gain functions and broadband
normalization

Directly applying the gain derived from the IOC defined

in Eqs. (21) and (24) may lead to noticeable artifacts due to

large gain changes over time especially at block boundaries.

To mitigate these artifacts, a two-stage smoothing procedure

is applied. In a first step, each IOC parameter is smoothed

independently, i.e.,

�kn;j½l� ¼ ab
�kn;j½l� 1� þ ð1� abÞkn;j½l�; (25)

where kn;j½l� is the jth element of the IOC parameter vector

kn½l� and ab is a smoothing constant. Note that the applica-

tion of this smoothing procedure influences the appearance

of the resulting IOC. Considering the exemplary IOCs in

Fig. 3, the IOCs without smoothing can also be described by

a straight line in the dB-domain. When smoothing is applied,

only the connection between two neighboring elements of

the IOC �kn½l� can be described by a straight line. While this

procedure leads to smooth changes of the IOC over time and

reduces some major artifacts, it does not completely resolve

the problem of larger gain changes at block boundaries.

Thus, in a second step, the resulting gain is recursively

smoothed with a smoothing factor ap, i.e.,

�pð�kn½l�; ð�sl
n½m�Þ

2Þ ¼ ap �pð�kn½l�; ð�sl
n½m� 1�Þ2Þ

þ ð1� apÞpð�kn½l�; ð�sl
n½m�Þ

2Þ: (26)

The processed subband signals ~sn½k� are then obtained

by applying Eq. (26) to the input signal sn½k� in Eq. (18).

The application of Eq. (26) typically leads to changes in

the broadband signal power and, therefore, does not satisfy

the equal power constraint given in Sec. II. While in an

offline procedure the signal could easily be rescaled after

processing to satisfy this constraint, this is not possible in an

online application. Therefore, after applying the inverse fil-

terbank, a normalization gain is applied to the time-domain

signal to yield approximately equal powers. This normaliza-

tion gain is calculated by dividing the smoothed versions of

the broadband input and output powers, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�/s½l�=�/~s ½l�

q
,
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where �/s½l� and �/~s ½l� are obtained by first-order recursive

smoothing of the corresponding input speech power and out-

put speech power, respectively, with smoothing constant aL.

IV. EVALUATION

The proposed AdaptDRC algorithm was evaluated both

using objective measures as well as by performing a formal

subjective listening test. In both cases the speech material

was taken from the Oldenburg Sentence Test (OLSA;

Wagener et al., 1999a,b; Wagener et al., 1999c), which con-

sists of 120 sentences spoken by a German male speaker. All

sentences exhibit the same five word syntactical structure

(noun verb numeral adjective noun) with ten possible alter-

natives each. The used sentences were generated by random

combinations given the fixed syntactical structure, resulting

in semantically unpredictable sentences. As additive disturb-

ance three different noises were considered: (1) a stationary

SSN that was generated by random superposition of the

speech material, thus yielding the same long-term spectrum

as the speech material, (2) a stationary (low-frequency) car

noise, and (3) a non-stationary cafeteria noise, which com-

prises different speakers and some dish clanging. This allows

to investigate the impact of noises that comparable in terms

of their long-term spectra (SSN and the cafeteria noise) but

differ in their temporal structure and noises that differ in

their long-term spectra (SSN and the car noise) but are com-

parable in terms of their temporal structure. Hence, the

results are expected to provide an indication about the influ-

ence of both spectral changes and temporal changes of the

noise disturbance on the performance of both algorithms.

For all evaluations, the parameters for the smoothing con-

stants and block length given in Table III were used. Note

that for clarity Table III depicts the corresponding integra-

tion time constants.

A. Objective evaluation

To quantitatively evaluate the performance of the pro-

posed AdaptDRC algorithm, two different objective meas-

ures (ESII and STOI) were used that have shown high

correlations with speech intelligibility in previous studies.

Both the ModSau algorithm and the AdaptDRC algorithm

and the unprocessed Reference condition were evaluated for

a wide range of SNRs from �30 dB SNR to þ30 dB SNR for

all noises. All 120 sentences of the OLSA corpus were used

as speech signals and an average speech level of 60 dB SPL

was assumed, accordingly the noise was scaled to achieve

the desired SNRs. Both measures are described briefly in

Sec. IV A 1. The results are presented in Sec. IV A 2 and dis-

cussed in Sec. IV A 3.

1. Measures

To objectively predict the influence of the algorithms on

speech intelligibility, the ESII measure (Rhebergen and

Versfeld, 2005) and the STOI measure (Taal et al., 2011)

were used. Both objective measures have successfully been

applied in previous studies (e.g., Taal et al., 2014; Zorila

et al., 2012) to evaluate the impact of pre-processing

algorithms.

The ESII measure (Rhebergen and Versfeld, 2005) can

be interpreted as a sophisticated time-dependent SNR mea-

sure, taking into account the relative importance of different

frequency regions for speech intelligibility and considering

several properties related to speech perception, e.g., the

smearing of speech at high levels and the upward-spread of

masking as well as different time integration constants

across frequency. The ESII measure essentially computes

the SII in short time frames of speech and noise and averages

the resulting time-dependent SII values, thus considering

short-term fluctuations of both speech and noise.

The STOI measure (Taal et al., 2011) is based on the

correlation between the undisturbed speech signal and the

disturbed speech signal. It is calculated in short time-frames

and thus takes into account fluctuations of both the speech

signal and the noise signal. Only the frequency range from

150 Hz to 4.3 kHz is taken into account. Both measures are

computed as an index between 0 and 1, where 0 represents

maximum disturbance and 1 represents minimum disturb-

ance of the speech signal.

2. Results

Figure 4 shows the results of the objective evaluation

for the ESII measure (top row) and the STOI measure (bot-

tom row). The left column shows the results for the cafeteria

noise, in the mid column the results for the SSN are shown,

and the right column shows results for the car noise. The

results show an increase in predicted speech intelligibility

relative to the unprocessed Reference for both algorithms in

all considered noises and for both objective measures. In

general, for the ESII measure the proposed AdaptDRC algo-

rithm shows a better performance than the ModSau algo-

rithm at higher SNRs, while the AdaptDRC algorithm and

the ModSau algorithm show almost the same performance at

low SNRs, which is not observed in STOI. At higher SNRs

the differences between both algorithms as measured by

STOI tend to disappear for both stationary noises and small

improvements for the AdaptDRC algorithm over the

ModSau algorithm can be observed for the cafeteria noise.

3. Discussion

Two different algorithms were compared with respect to

their performance by employing two objective measures that

have shown high correlations to speech intelligibility in pre-

vious studies. Sauert and Vary (2012) evaluated their algo-

rithm using the SII measure for a car noise and a speech

TABLE III. Integration constants of the different smoothing parameters and

the block length used in the evaluation.

Parameter Value Parameter Value

sa 0.005 s sp 0.250 s

sr 0.001 s sb 0.250 s

sL 0.250 s M 0.020 s

crðmaxÞ 8
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babble noise. This is different from the present study where

the ESII was used to evaluate the performance of both algo-

rithm. For stationary noises the SII and ESII yield very simi-

lar results (Rhebergen et al., 2006) when using an SSN to

simulate the speech signal. However, in the present study the

speech signals were used as an input to the ESII, hence, in

the following only the improvement over the Reference is

considered to compare the results from Sauert and Vary

(2012) and the present study. Although the ModSau algo-

rithm used in the present study differs from the original

implementation of Sauert and Vary (2012), for the car noise

they reported similar improvements over the unprocessed

Reference compared to the improvements shown in Fig. 4.

Furthermore, they reported improvements for the speech

babble noise that are comparable to the results for the cafete-

ria noise in the present study. This leads to the conclusion

that with respect to the evaluation using the ESII measure

the proposed implementation and the original implementa-

tion of Sauert and Vary (2012) may be considered similar.

Both the proposed AdaptDRC algorithm as well as the

ModSau algorithm show an increased performance in both

objective measures when compared to the unprocessed

Reference. At low SNRs, the ModSau algorithm shows about

the same improvements in ESII values as the AdaptDRC
algorithm. However, for larger SNRs the ESII shows an

improved performance of the AdaptDRC algorithm over the

ModSau algorithm. For the STOI measure these differences

are not observed and both algorithms show similar results.

B. Subjective evaluation

The use of objective measures often provides a good

indication about the performance of the algorithms and is

therefore a valuable tool when designing algorithms.

However, in some cases results from objective measures and

formal listening tests indicate contradicting results, i.e.,

objective measures predict an increased speech intelligibil-

ity, while formal listening tests show a decreased speech

intelligibility (Taal and Jensen, 2013) or vice versa. Hence,

the impact of speech pre-processing algorithms on speech

intelligibility can only be truly assessed using subjective lis-

tening tests. Therefore, a formal listening test was conducted

to compare the performance in terms of speech intelligibility

as measured by the number of correctly understood words

for both algorithms. This section organizes as follows. In

Sec. IV B 1 the used method is presented. In Sec. IV B 2 the

results are presented and discussed in Sec. IV B 3.

1. Method

a. Subjects. The listening test was performed with eight

normal-hearing subjects with pure-tone thresholds below

20 dB hearing level for all audiometric frequencies between

125 Hz and 8 kHz. The mean age of the subject group was

25.9 years with the youngest subject being 23 years and the

oldest 28 years. The subjects participated voluntarily and

were paid a small compensation for their time investment.

None of the authors participated in the listening test.

b. Equipment. The measurements were conducted using

a personal computer and MATLAB software. The stimuli were

processed at the desired SNRs and stored on a hard-drive

prior to the listening test. An RME Fireface UC Soundcard

was used and the signals were presented via Sennheiser

HD650 headphones in a soundproof booth. All stimuli were

sampled at 44.1 kHz. The speech signals were presented at a

level of 60 dB SPL, i.e., the time-average speech level was

calibrated to 60 dB SPL, while the noise level was varied to

achieve the desired SNRs.

c. Procedure. The focus of the formal listening tests was

to measure the performance of the proposed algorithm over

a wide range of SNRs and, hence, to cover condition ranging

from low speech intelligibility to high speech intelligibility.

Therefore, in a preliminary study with four of the eight sub-

jects an adaptive procedure (Brand and Kollmeier, 2002)

was applied to estimate the SNRs corresponding to 20%,

50%, and 80% correctly understood words for each of the

three noises and the unprocessed Reference speech signals.

The following SNRs were determined:

FIG. 4. Results from the objective

evaluation using 120 sentences from

OLSA speech material (Wagener

et al., 1999c) as a function of the SNR

for the ESII measure (top row) and the

STOI measure (bottom row). Results

are shown for the cafeteria noise (left

column), the SSN (mid column) and

the car noise (right column).
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• Cafeteria noise: SNR20 ¼ �14; SNR50 ¼ �10; SNR80

¼ �6 dB SNR.
• SSN: SNR20 ¼ �11; SNR50 ¼ �9; SNR80 ¼ �7dB SNR.
• Car noise: SNR20 ¼ �18; SNR50 ¼ �16; SNR80

¼ �14 dB SNR.

These results indicate that SSN is the most difficult condi-

tion which can be explained by its large spectral overlap with

the speech signal. For the car noise the opposite holds, due to

its concentration of energy mostly in lower frequency regions.

The choice of these SNRs allowed to reliably fit psycho-

metric functions for the Reference condition with the pur-

pose of estimating the performance at other SNRs than the

measured SNRs. From informal listening tests large

improvements especially for low SNRs (corresponding to

20% and 50% speech intelligibility in the unprocessed

Reference condition) were expected. For each combination

of algorithm (Reference, ModSau, AdaptDRC) and noise

(cafeteria noise, SSN, car noise) the simuli were presented at

three different SNRs for each subject.

Aiming at reliably estimating psychometric functions

for each subject, a semi-adaptive procedure for determining

these three fixed SNRs for each combination and subject

was employed in the listening test for the processed

and unprocessed signals. For the sake of clarity, let

DSNR ¼ SNR50 � SNR80, with SNR50 and SNR80 the SNRs

corresponding to 50% and 80% speech intelligibility for the

unprocessed speech signals as determined in the preliminary

study, and let SIðSNRbÞ denote the intelligibility measured

at the SNRb. For all subjects and combinations first the

speech intelligibility at the SNR50 was measured. In order to

allow for reliably fitting of the psychometric function, the

subsequent SNRs for a specific combination were chosen

based on the previous results for this combination. When

speech intelligibility was considered large the next SNR

decreased, whereas the next SNR was increased when

speech intelligibility was considered small. More specifi-

cally, the following semi-adaptive procedure for choosing

the SNRs was applied:

(1) Measure SIðSNR50Þ.
(2) Choose the second SNR, SNRð2Þ, as

SNRð2Þ ¼
SNR50 � 2DSNR if SIðSNR50Þ � 70%;
SNR50 þ 2DSNR if SIðSNR50Þ � 30%

randomly SNR20 or SNR80 otherwise:

8<
:

(27)

(3) Based on SIðSNR50Þ and SIðSNRð2ÞÞ choose the third

SNR, SNRð3Þ, as

SNRð3Þ ¼

SNR50 � 4DSNR if SIðSNR50Þ � 70% and SIðSNRð2ÞÞ � 70%;

SNR50 � 3DSNR if SIðSNR50Þ � 70% and 70% > SIðSNRð2ÞÞ � 50%;

SNR50 � DSNR if SIðSNR50Þ � 70% and SIðSNRð2ÞÞ < 50%;

SNR50 þ 4DSNR if SIðSNR50Þ � 30% and SIðSNRð2ÞÞ � 30%;

SNR50 þ 3DSNR if SIðSNR50Þ � 30% and 50% � SIðSNRð2ÞÞ > 30%;

SNR50 þ DSNR if SIðSNR50Þ � 30% and SIðSNRð2ÞÞ > 50%;

SNR20 if SNRð2Þ ¼¼ SNR80;

SNR80 if SNRð2Þ ¼¼ SNR20:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(28)

This procedure was applied for every combination of

noise and algorithm, where the sequence of combina-

tions was randomized. In addition, after one SNR of a

particular combination of noise and algorithm was meas-

ured, a new combination was chosen randomly. In order

to avoid any effect of training (Wagener et al., 1999b),

each subject was familiarized with the speech material

prior to the listening test.

d. Statistical analyses. Statistical analyses were con-

ducted using R statistics software. Shapiro-Wilk tests

showed that not all data could be assumed to be normally

distributed. Therefore, an aligned rank transform (ART;

Wobbrock et al., 2011) was employed before using standard

analyses of variance (ANOVA) procedures. For a two-factor

data-set the ART produces three different data-sets, one for

each of the main factors and a third one for the interaction of

the factors. Each data-set is then assumed to only depend on

either one of the main factors or the interaction. For each of

these data-sets, a two-way ANOVA is carried out while only

the results for the dependent factor may be interpreted

(Wobbrock et al., 2011). Post hoc analyses were carried out

(if appropriate) using the student t-test. Differences were

assumed to be significant for p-values smaller than 0.05. The

level of significance was adjusted using Bonferroni correc-

tion when multiple comparisons were conducted.

2. Results

The results of the formal listening test are shown in

Fig. 5. The three different subplots show the results for the

cafeteria noise (top), SSN (mid), and the car noise (bot-

tom). Symbols indicate results for individual listeners,

while lines show the average psychometric functions

obtained by parametric averaging of the individual psycho-

metric functions which were estimated according to Brand

and Kollmeier (2002).
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First, it could be observed that for all three noises in the

unprocessed Reference condition an intelligibility of about

50% was measured on average at the SNR50 determined in the

preliminary study, although interindividual variability was

present. Furthermore, for the SSN and the car noise, both the

AdaptDRC algorithm and the ModSau algorithm increased

speech intelligibility at the SNR50 reaching almost perfect

intelligibility. For the cafeteria noise at the SNR50, the

AdaptDRC algorithm showed the largest improvement, while

the ModSau algorithm only showed a slight increase. To test

for statistical significance of these findings, a two-factor

ANOVA was performed after an ART of the data at the SNR50

with the factors of noise and algorithm. The statistical analysis

showed a significant influence of both main factors as well

as their interaction [noise: Fð2; 14Þ ¼ 26:82; p < 0:05;

algorithm: Fð2; 14Þ ¼ 284:44; p < 0:05; noise� algorithm:

Fð2; 14Þ ¼ 27:98; p < 0:05]. Paired comparisons were per-

formed on a Bonferroni-corrected significance level for the

factor of algorithm, indicating that, at the SNR50, the

AdaptDRC algorithm improved speech intelligibility signifi-

cantly over the Reference (p < 0:0167) and over the ModSau
algorithm (p < 0:0167), and the ModSau algorithm signifi-

cantly improved speech intelligibility over the Reference
(p < 0:0167).

Considering each noise independently, it could be

observed that for the car noise both the AdaptDRC algorithm

and the ModSau algorithm showed a large improvement

over the Reference. Furthermore, it was observed that due to

the semi-adaptive procedure speech intelligibility was meas-

ured at different SNRs for different subjects. In order to

allow for a statistical analysis, those SNRs that were meas-

ured for most subjects were chosen and data were interpo-

lated using individual psychometric function when these

SNRs were not explicitly measured. For the car noise SNRs

of �16, �20, and �24 dB were chosen. A two-factor

ANOVA after an ART of the data showed significant influ-

ence of both main factors SNR and algorithm as well as their

interaction [SNR: Fð2; 14Þ ¼ 186:25; p < 0:05; algorithm:

Fð2; 14Þ ¼ 87:92; p < 0:05; SNR� algorithm: Fð4; 28Þ
¼ 23:36; p < 0:05]. Paired comparisons at the Bonferroni-

corrected significance level for the factor algorithm showed

a significant improvement in speech intelligibility for both

algorithms over the Reference (AdaptDRC: p < 0:0167;

ModSau: p < 0:0167) and no significant difference between

both algorithms (p ¼ 0:072).

For the SSN similar observations were made, i.e., both

algorithms showed a large improvement over the Reference.

Furthermore, for the SNRs under investigation no major dif-

ferences could be observed between both algorithms. For the

statistical analysis SNRs of �9, �13, and �17 dB were cho-

sen and missing data points were interpolated using individ-

ual psychometric functions. A two-factor ANOVA after an

ART confirmed the observations, revealing a significant

influence of both main factors SNR and algorithm and their

interaction [SNR: Fð2; 14Þ ¼ 221:86; p < 0:05; algorithm:

Fð2; 14Þ ¼ 65:21; p < 0:05; SNR� algorithm: Fð4; 28Þ
¼ 44:70; p < 0:05]. Paired comparisons at the Bonferroni-

corrected significance level for the factor algorithm showed

a significant increase in speech intelligibility for both

algorithms over the Reference (AdaptDRC: p < 0:0167;

ModSau: p < 0:0167) and no significant differences between

the algorithms (p ¼ 0:65).

For the cafeteria noise both algorithms showed improve-

ments in speech intelligibility over the Reference for higher

SNRs, while for lower SNRs the results indicated that only

the AdaptDRC algorithm increased speech intelligibility

over the Reference. An improvement of as large as 25% for

an SNR of �14 dB could be observed. For the statistical

analysis SNRs of �6, �10, and �14 dB were chosen and

missing data points were interpolated using individual psy-

chometric functions. A two-factor ANOVA after an ART

showed a significant influence of both main factors and their

interaction [SNR: Fð2; 14Þ ¼ 108:64; p < 0:05; algorithm:

Fð2; 14Þ ¼ 65:08; p < 0:05; SNR� algorithm: Fð2; 14Þ ¼
6:75; p < 0:05]. Paired comparison at the Bonferroni-

corrected significance level for the factor algorithm showed

a significant improvement in speech intelligibility for the

proposed AdaptDRC algorithm over both the Reference

FIG. 5. Results of the formal listening test for the cafeteria noise (top

panel), the SSN (mid panel), and the car noise (bottom panel) as a function

of the SNR for the Reference, and both algorithms (ModSau and the pro-

posed AdaptDRC). Individual points show results measured with subjects

using the semi-adaptive procedure while straight lines indicate average

psychometric function obtained by parametric averaging of individual psy-

chometric functions. For each noise the corresponding SNR50 is indicated.

Note that a slight offset is added to the individual data to increase

visibility.
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(p < 0:0167) and the ModSau algorithm (p < 0:0167), and

no significant improvement for the ModSau algorithm over

the Reference (p ¼ 0:066).

3. Discussion

A semi-adaptive procedure was used to measure speech

intelligibility in three different noises for the AdaptDRC
algorithm, the ModSau algorithm, and the unprocessed

Reference. The SNRs corresponding to an (average) speech

intelligibility of 20%, 50%, and 80% as determined by a pre-

liminary study yielded approximately the desired (average)

speech intelligibility in this study for the unprocessed

Reference.

To the best of our knowledge, a similar procedure has

not been applied before to evaluate the performance of dif-

ferent speech pre-processing algorithms. By applying this

procedure the subjects were first presented SNRs expected to

results in 50% speech intelligibility for a specific combina-

tion of noise and algorithm. In the subsequently presented

SNRs the SNR was typically decreased for the stationary

noises and thus might have influenced the overall results in

that subjects adapted to these severe conditions. Note that

this may also have been the case if the SNRs had been typi-

cally increased. Since the order of the processing conditions

was randomized, it is assumed that this procedure influenced

all combination similarly and no combinations was particu-

larly biased.

For the stationary SSN and car noise both the AdaptDRC
algorithm and the ModSau algorithm were capable of increas-

ing speech intelligibility by approximately the same amount.

For the SSN at lower SNRs estimations based on parametri-

cally averaged psychometric functions indicated that a larger

speech intelligibility improvement may be achieved for the

proposed AdaptDRC algorithm than for the ModSau algo-

rithm. However, this is likely to be an artifact of the fitted

psychometric function due to the limited spread of speech

intelligibility data for this noise. This has to be verified using

additional measurements in future studies.

For the non-stationary cafeteria noise only the proposed

AdaptDRC algorithm significantly increased speech intelligi-

bility compared to the ModSau algorithm and the unpro-

cessed Reference. Furthermore, it could be observed that the

interindividual variability for the processed combinations

was increased compared to both stationary noises. Hence,

the relative increase in speech intelligibility was larger for

some subjects than for others, i.e., some subjects were able

to benefit more from processing with the AdaptDRC algo-

rithm than others for the non-stationary cafeteria noise.

Comparing the cafeteria noise and the SSN results may

also provide some insight into the influence of the different

stages of the proposed AdaptDRC algorithm. Both noises can

be considered to be comparable with respect to their long-

term average spectrum, but are different in their temporal

structure. While for the SSN the ModSau algorithm and the

AdaptDRC algorithm yielded approximately the same speech

intelligibility, for the cafeteria noise only the AdaptDRC
algorithm achieved significant improvements. On the one

hand spectral changes introduced by both algorithms appa-

rently did not lead to a different performance for the station-

ary SSN, while, on the other hand, for the non-stationary

cafeteria noise the performance did differ. Hence, one may

conclude that one factor causing this performance difference

is the DRC stage of the AdaptDRC algorithm. To further

investigate this, Fig. 6 depicts exemplary spectrograms for

the Reference, the ModSau algorithm, the AdaptDRC algo-

rithm, and the cafeteria noise. The used SNR was �18 dB.

As can be seen, both algorithms increase the speech power in

the frequency range from about 2 to about 10 kHz compared

to the unprocessed Reference. Comparing the AdaptDRC
algorithm and the ModSau algorithm, the AdaptDRC algo-

rithm leads to a larger increase in speech power in the high

frequencies as expected by the different amplification func-

tions in Eqs. (13) and (16). Additionally, transients, e.g., at

approximately 0.6 and 1.5 s, are amplified much stronger by

the AdaptDRC algorithm, which may be attributed to the

DRC stage.

Similar observations were made by Cooke et al.
(2013b), where several algorithms were compared in the

framework of the 2013 Hurricane Challenge. It was observed

that two out of three algorithms that led to a significant

improvement in a fluctuating speech masker contained a

DRC stage, including the proposed AdaptDRC algorithm.

V. GENERAL DISCUSSION

In Sec. IV, the proposed AdaptDRC algorithm and the

ModSau algorithm were compared by means of objective

measures and a subjective listening test. Results from the lis-

tening test showed improvements of up to 70% in speech

intelligibility as measured by correctly understood

words. These improvements were considerably larger than

FIG. 6. (Color online) Exemplary spectrograms of a speech signal for the unprocessed Reference (left panel), the ModSau algorithm (mid left panel), and the

AdaptDRC algorithm (mid right panel) for the cafeteria noise (right panel) mixed at an SNR of �18 dB.
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improvements for similar noises (e.g., SSN) reported previ-

ously (e.g., Cooke et al., 2013a; Cooke et al., 2013b). One

factor explaining this difference may be found in the

employed sentence material. Cooke et al. (2013a) and Cooke

et al. (2013b) used everyday sentences of the Harvard corpus

(Rothauser et al., 1969) which are unpredictable in their

semantics and in their syntactical structure. In contrast, the

sentences of the OLSA speech material have a clear syntacti-

cal structure but are semantically unpredictable. The average

psychometric function for these two types of speech material

can be considered different. The OLSA speech material was

optimized in order to obtain a steep psychometric function,

i.e., around 50% speech intelligibility small changes in SNR

lead to a large change in speech intelligibility. For everyday

sentences such as those of the Harvard corpus, the psycho-

metric function is, in general, less steep, such that the same

change in SNR leads to a smaller change in speech intelligi-

bility for the HST speech material than for the OLSA speech

material. The AdaptDRC algorithm was also evaluated as

part of the study presented by Cooke et al. (2013b) and led

to significant improvements, which supports the conclusion

that differences in absolute speech intelligibility improve-

ments may be mainly due to the different speech material.

When evaluating the performance using objective meas-

ures (see Sec. IV A), a large improvement in speech intelligibil-

ity was predicted for both algorithms for all noises while their

overall performance was predicted to be rather similar. Only

for medium to high SNRs the ESII predicted an improvement

of the proposed AdaptDRC algorithm compared to the ModSau
algorithm. However, the results from the formal listening test

(see Sec. IV B) showed a large improvement for both algo-

rithms in stationary noise, while only the AdaptDRC algorithm

led to significant improvements for the non-stationary cafeteria

noise. This raises the question of how to reliably interpret the

results from the objective measures, which are commonly

employed during the development stage of algorithms. Hence,

in the following the predictive ability of both objective meas-

ures will be investigated using correlation analysis techniques

between the objective and the subjective data.

The data are analyzed in terms of the rank correlation

and linear correlation as well as the prediction bias. To cal-

culate the linear correlation and the prediction bias values

the results from the objective measures were transformed to

account for a possible non-linear relationship between objec-

tive measures and subjective intelligibility scores. Based on

the results for the unprocessed Reference a logistic function

was fitted for each noise (Beutelmann and Brand, 2006), i.e.,

P oð Þ ¼ m

aþ e�b�o þ c; (29)

where o indicates the results obtained from either objective

measure. The parameters m and b where fitted from the data

and the parameter a and c were calculated from the boundary

conditions of Pð0Þ ¼ 0% and Pð1Þ ¼ 100%. Note that this

procedure does not change the rank correlation since Eq.

(29) is a monotonous function.

Figure 7 depicts an exemplary scatter plot for the meas-

ured speech intelligibility and the predicted speech

intelligibility by the ESII after transformation using Eq. (29)

for the cafeteria noise. Different symbols indicate different

SNRs, while different gray scales indicate different algo-

rithms, i.e., Reference (gray), AdaptDRC (black), and

ModSau (light gray). Open symbols indicate individual

results for each subject and filled symbols indicate average

data across subjects (small symbols) or average data across

subjects and processing condition (large symbols). Note that

due to the semi-adaptive procedure for each subject the

speech intelligibility was generally measured at different

SNRs and, hence, average data for each SNR were not com-

puted on the same number of individual data points. A corre-

lation analysis was carried out for individual data (i.e., open

symbols), as well as averaged data across subjects (i.e., small

filled symbols) and averaged data across subjects and algo-

rithm (i.e., large filled symbols).

Table IV provides an overview of the rank and linear cor-

relations and the prediction bias between measured speech

intelligibility and the predicted speech intelligibility by the

ESII and STOI. Footnotes indicate statistically significant cor-

relations. Values provided in parentheses are based on aver-

aged data across subjects. In general, rank correlations for

both objective measures were very similar, with values larger

than 0.8 based on the averaged data. This indicates that both

objective measures had a similar performance in terms of pre-

dicting the ranking of the subjective data, where in most

conditions STOI achieved a slightly better predictive perform-

ance than the ESII. The best performance to predict the rank-

ing of all algorithms was achieved for the SSN. Similar

results were obtained for the linear correlation. For most

FIG. 7. Exemplary scatter plot of the predicted speech intelligibility by the

ESII after transformation using Eq. (29) and the speech intelligibility meas-

ured in the formal listening test for the cafeteria noise at different SNRs.

Gray symbols indicate data for the Reference condition, black symbols indi-

cate data for the proposed AdaptDRC algorithm, and light grey symbols

indicate data for the ModSau algorithm. Open symbols indicate individual

data, filled symbols indicate average data across subjects, and large filled

symbols indicate average data across subjects and algorithms (including the

Reference condition).
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conditions STOI achieved a higher linear correlation than the

ESII, especially when considering all noises together.

The prediction bias represents a measure for the offset of

the predicted speech intelligibility relative to the measured

speech intelligibility. A positive value indicates that the sub-

jective data are underestimated, while a negative value indi-

cates that the subjective data are overestimated. The results

for the prediction bias showed that both objective measures

tended to underestimate speech intelligibility. Note that the

prediction bias for the Reference condition was 0% since the

parameters of the transformation in Eq. (29) were fitted based

on these data. Both the ESII and STOI measures tended to

underestimate the measured speech intelligibility by up to

15%, which has to be considered when interpreting the data.

Tang and Cooke (2011) also reported correlation val-

ues between objective measures and measured speech intel-

ligibility for several pre-processing algorithms. Similar to

the present study they observed a large bias for the STOI

measure, although it has to be mentioned that they did not

consider a non-linear transformation as in Eq. (29).

Furthermore, they only calculated one correlation value

that included their complete set of conditions, i.e., all

noises, SNRs and processing algorithms.

In this study an ideal scenario was considered where

both the influence of reverberation and the influence of noise

estimation errors were neglected. However, as argued in

Sec. II, this provides information about the optimal perform-

ance and the general applicability of such algorithms.

Nevertheless, reverberation and estimation errors are inevita-

ble in real world scenarios, such that these influences have to

be addressed in future studies.

VI. CONCLUSION

In this paper we have presented a novel speech pre-

processing algorithm aiming to enhance speech intelligibility

in noisy scenarios. The proposed AdaptDRC algorithm com-

bines a time- and frequency-dependent amplification and

dynamic range compression stage, where both stages depend

on the SNR mapping function used in the SII. The main nov-

elty is the fact that the input-output-characteristic of the

DRC stage depends on the short-term characteristic of the

speech and the disturbing noise. A comparison using objec-

tive measures showed only minor differences in performance

compared to a state-of-the-art algorithm (Sauert and Vary,

2012) that only employs time- and frequency-dependent

amplification. The results of a formal listening test, however,

showed that the proposed AdaptDRC algorithm is capable of

significantly increasing speech intelligibility and outper-

forms the state-of-art algorithm in non-stationary

environments.
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