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ABSTRACT

In this contribution, an acoustic event detection system based on

spectro-temporal features and a two-layer hidden Markov model as

back-end is proposed within the framework of the IEEE AASP chal-

lenge ‘Detection and Classification of Acoustic Scenes and Events’

(D-CASE). Noise reduction based on the log-spectral amplitude

estimator by [1] and noise power density estimation by [2] is used

for signal enhancement. Performance based on three different kinds

of features is compared, i.e. for amplitude modulation spectrogram,

Gabor filterbank-features and conventional Mel-frequency cepstral

coefficients (MFCCs), all of them known from automatic speech

recognition (ASR).

The evaluation is based on the office live recordings provided

within the D-CASE challenge. The influence of the signal enhance-

ment is investigated and the increase in recognition rate by the pro-

posed features in comparison to MFCC-features is shown. It is

demonstrated that the proposed spectro-temporal features achieve

a better recognition accuracy than MFCCs.

Index Terms— acoustic event detection, Gabor filterbank, am-

plitude modulation spectrogram, IEEE AASP D-CASE challenge

1. INTRODUCTION

Acoustic event detection (AED) is increasingly used in various ap-

plication fields, e.g. for surveillance and security. Examples include

detection and classification of emergency situations in public envi-

ronments such as siren detection [3] and recognition of screams [4]

as well as health monitoring, e.g. respiratory sound monitoring [5].

Another application for AED is the improvement of speech recog-

nition systems, e.g. for meeting-room and seminar situations. In

this context, the well known CLEAR’07 (classification of events,

activities and relationships) challenge [6] that was initiated by the

CHIL (computers in the human interaction loop) project [7] was

organized, addressing detection of acoustic events in a meeting

room scenario. The AED approaches proposed for this challenge

were mainly based on Mel-frequency cepstral coefficient (MFCC)-

features and hidden Markov model (HMM) classifiers [8]. Only

one approach utilized a support vector machine (SVM) instead.

The AED system that could demonstrate best recognition perfor-

mance in the CLEAR’07 challenge used different feature streams

in conjunction with a feature selection algorithm and a HMM back-

end. This approach was further improved leading to a tandem
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Figure 1: Schematic of the proposed AED system.

connectionist-HMM classifier, which combined the benefit of dis-

criminative artificial neural networks (ANNs) with the segmentation

capabilities of HMMs [9]. The output was re-scored by a SVM-

GMM-supervector [10] approach.

A recent approach described in [11] also utilized a tandem

connectionist-HMM but focuses on the front-end. Spectro-temporal

harmonic percussive sound separation (HPSS)-features known from

music processing were adopted for AED. HPSS differentiates

sounds by the temporal and spectral smoothness.

In [12], spectro-temporal features were adopted by apply-

ing non-negative matrix factorization (NMF). This approach led

to a codebook of spectro-temporal patches that described events.

The segmentation was done by an HMM. In this contribution,

two psycho-physiological motivated spectro-temporal features, that

have been recently used in automatic speech recognition (ASR),

are investigated. The classifying system proposed can be sepa-

rated into three main processing blocks (cf. Figure 1). Firstly, the

acoustic input signal is preprocessed by a log-amplitude spectral

attenuation for noise reduction (NR) [1] with a minimum statis-

tics (MS) noise estimator [2]. Secondly, acoustic features are ex-

tracted. One approach utilizes Gabor filterbank (GBFB)-features

that exploit spectro-temporal information by applying 2D Gabor fil-

ters on a Mel-warped time-frequency representation [13]. The sec-

ond approach exploits amplitude modulations from a Mel-warped

time-frequency representation to calculate the amplitude modula-

tion spectrogram (AMS). Both features that are newly proposed

for the task of AED in this contribution are compared to standard

MFCCs with additional time derivatives of first (∆) and second

(∆∆) order. Finally, the feature stream is fed to an HMM back-

end. The performance of the proposed AED system is evaluated

with the office live recordings provided by the IEEE AASP chal-

lenge ‘Detection and Classification of Acoustic Scenes and Events’

(D-CASE). The influence of the preprocessing step is tracked.

2. PREPROCESSING

The time-domain input signal y(n) = x(n) + d(n) consists of the

signal x(n) containing only the events of interest and an additive
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Figure 2: Overview of the preprocessing.

noise disturbance d(n). In this contribution, the acoustic input sig-

nals y(n) from [14] are resampled to fs = 16 kHz and only one

channel is selected. By short-time Fourier transform (STFT) using

a Hann window of 32 ms and 50% overlap Yℓ,k = Xℓ,k +Dℓ,k in

the block frequency domain is obtained. Here, ℓ and k are the frame

and frequency bin indices of the complex spectra, respectively. The

noise reduction (NR) consists of two steps, a noise power spectral

density (PSD) estimator [2] and a spectral enhancement. As the of-

fice noise of this challenge’s corpus is only slowly time-varying, a

minimum statistics (MS) approach is used to estimate ̂|Dℓ,k|2. The

decision-directed approach (DDA) [1] is used for NR to obtain the

estimate X̂ℓ,k Finally, the time domain signal x̂(n) is calculated us-

ing the inverse short-time Fourier transform (ISTFT). An overview

over the NR procedure is depicted in Figure 2.

3. FEATURE EXTRACTION

To extract relevant information from a signal, it is transformed to a

feature domain. In the following, three different kinds of features

are tested that all work on the same spectro-temporal representation.

Hence, the sampled signal y(n) is framewise processed by a Ham-

ming window of size N = 400 samples, i.e. each frame ℓ comprises

25 ms. The frames are shifted by ns = 160 samples, i.e. 10 ms. The

frames are transformed to frequency domain by a discrete Fourier

transformation (DFT). The absolute value |Yℓ,k| of the resulting

spectrogram is Mel-warped by triangular shaped Mel-filters Fk,m

in a frequency region between 64 Hz and 8 kHz and logaritmized

leading to a log-scaled Mel-spectrogram with Mel-bands m

Ỹℓ,m = log

(
N−1∑

k=0

|Yℓ,k| · Fk,m

)
0 ≤ m ≤ M − 1, (1)

with M = 31 representing the number of Mel-filters.

For comparison, standard MFCCs are adopted. A discrete co-

sine transform (DCT) transforms the log Mel-spectrogram Ỹl,m to

the cepstral domain, i.e.

Y̌ℓ,c =

M−1∑

m=0

Ỹℓ,m cos

(
π

M

(
m+

1

2

)
c

)
0 ≤ c ≤ C − 1, (2)

with the number of cepstral coefficients C ≤ M . For MFCC eval-

uation, only the first C = 12 coefficients including the 0th DC-

coefficient, that represents the signal energy, are further employed.

The first derivatives ∆ are calculated on a time scale of 65 ms, i.e. 5

frames, the second derivatives ∆∆ are calculated on a time scale of

105 ms.

3.1. Amplitude modulation spectrogram (AMS)

The AMS is constructed using a filter set that extracts temporal am-

plitude modulation frequency components in subbands of a spectro-

temporal representation [15]. In this study, it is computed based on

Ỹℓ,m. A DCT along the acoustic frequency axis is employed in

Figure 3: Shapes of the different 2D GBFB filters.

addition to filtering of temporal trajectories by the AMS filter set.

Thus, the AMS processing is effectively conducted on the cepstro-

gram Y̌ℓ,c of the signal. The AMS filter set employed here consists

of five constant-Q amplitude modulation (AM) filters. The filters

are a product of a Hann window

hb (ℓ) =

{
0.5− 0.5 cos

(
2πℓ
b

)
− b

2
< ℓ < − b

2
,

0 else,
(3)

where b denotes the width of the envelope, mutiplied by an sinu-

soidal carrier function with frequency ω

sω(ℓ) = exp (jωℓ) . (4)

They can be described by frame index ℓ; the central time frame ℓ0,

the temporal modulation frequency ω and the number of semi cycles

under the envelope ν, hence

q (ℓ0, ω, ℓ, ν) = sω (ℓ− ℓ0) · h ν

2ω
(ℓ− ℓ0) . (5)

The applied modulation frequencies ω that have been optimized for

ASR are 0 Hz, 3.125 Hz, 6.25 Hz, 12.5 Hz and 25 Hz [15]. The AM

filters have zero mean except for the DC filter ω = 0. The AMS-

features are calculated by convolution of the cepstrogram Y̌ℓ,c with

the real parts of the filters, i.e.

Qℓ,c (ℓ0, ω, ν) =
∑

λ

Y̌λ,cℜ{q (ℓ0, ω, λ+ ℓ, ν)} . (6)

3.2. Gabor filterbank (GBFB)-features

The signal y(n) can also be represented by spectro-temporal mod-

ulation patterns called GBFB-features as proposed in [13]. The use

of Gabor filters is motivated by their similarity to spectro-temporal

patterns of neurons in the auditory cortex of mammals [16] and it

has been shown that GBFB-features can improve the robustness of

automatic speech recognition systems [17]. A Gabor filter is a prod-

uct of a 2D Hann-shaped envelope function with an 2D sinusoidal

carrier. Thus, a Gabor filter can be expressed by the frequency and

frame indicies m and ℓ, the central frequency channel m0 and the
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central time frame ℓ0, the spectral and temporal modulation fre-

quencies ωm and ωℓ and the number of semi cycles under the enve-

lope νm and νℓ, i.e.

g (m0, ℓ0, ωm, ωℓ,m, ℓ, νm, νℓ)

= sωm
(m−m0) · sωℓ

(ℓ− ℓ0)

· h νm

2ωm

(m−m0) · h νℓ

2ωℓ

(ℓ− ℓ0) . (7)

In Figure 3, the shapes of the filterbank are plotted. To construct the

features, the log-scaled Mel-spectrogram Ỹℓ,m is filtered with the

real parts of the filters that are sensitive to frequency changes over

time,

Gℓ,m (m0, ℓ0, ωm, ωℓ, νm, νℓ)

=
∑

µ

∑

λ

Ỹλ,µℜ{g (m0, ℓ0, ωm, ωℓ, µ+m,λ+ ℓ, νm, νℓ)} .

(8)

The maximum filter size is limited to 69 filter channels and 40 time

frames corresponding to 415 ms. The used filterbanks are shown

in Figure 3. While purely spectral filters (ωℓ = 0) are sensitive

to spectral patterns like tonal components, purely temporal filters

(ωm = 0) are sensitive to broad-band onsets.

4. BACK-END

For the back-end, the Hidden Markov Toolkit (HTK) [18] is ap-

plied to build up an HMM recognition network with a task grammar.

HTK provides a speech recognition network of three levels: word

level, model level and HMM level. In this contribution, events are

treated like words. The model level, that is used in speech recog-

nition to represent sub-words like phonemes, is not employed here.

Thus, the whole recognizer can be interpreted as a two-layer HMM.

The first layer is a fully connected HMM where each state is an

event, i.e. each event can be accessed at every time. The observa-

tions of these event states are themselves HMMs that are trained

independently on the extracted features. These events are modeled

by left-to-right HMMs with 3 emitting states. To estimate time re-

gions in a signal where no active event is present, an extra silence

class is modeled. For this class, 1 emitting state is implemented re-

sulting in a simple Gaussian mixture model (GMM). The number

of Gaussian mixtures for the event classes Mev and for silence Msil

are adjusted on the development set. Diagonal covariance matrices

are applied since the training set is small (curse of dimensionality).

To estimate the time regions of events in a signal, Viterbi de-

coding [18] is used. Since the output can be highly fragmented,

i.e. several insertion and deletion errors may occur, a fixed logarith-

mic probability insertion penalty p can be added to every event state

transition [18]. Thus, the probability to remain in an event/silence

state can be increased and a less scattered output is achieved.

5. EXPERIMENTS AND EVALUATION

A training and a development set with office live recordings (OL)

were published within the D-CASE challenge [14]. The final testing

set was kept secret and evaluated by the organizers. The published

datasets consist of stereo recordings made in an office environment

at 44.1 kHz sampling frequency. Although recordings from a 4-

channel audio recording device are available, only one channel is

used for this contribution. The recordings comprise 16 classes: door
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Figure 4: F-Score of the the general classification AED and the

EAD with noise reduction (NR) and without (raw).

knock, door slam, speech, human laughter, clearing throat, cough-

ing, drawer, printer, keyboard clicking, mouse click, pen dropping,

switch, keys, phone ringing, alert, page turning. The given train-

ing set contains 20 to 24 single trimmed recordings per class with

small silent margins at the beginning and ending. The development

set covers three recordings with altogether 110 events in continuous

streams, i.e. single events alternated with short pauses.

As evaluation measures the F-Score and the acoustic event er-

ror rate (AEER) are used. The F-Score F represents the relation

between the precision P and the recall R

P =
Ncorr

Nest

; R =
Ncorr

Nref

; F =
2 · P ·R

P +R
, (9)

where Ncorr denotes the number of correct hits, Nest the number

of estimated events and Nref the number of reference events. The

AEER is the sum of insertions I , deletions D and substitutions S

relative to the number of reference events N , i.e.

AEER =
I +D + S

N
. (10)

These measures are used on frame level for frames of 10 ms dura-

tion. The parameters for the proposed algorithm, i.e. the number

of Gaussian mixture components Mev and Msil and the insertion

penalty p for the back-end HMM have been optimized on the de-

velopment set. The number of mixtures is kept equal for all events

except for silence where a different number is possible. Numbers

between 1 and 8 were tested. The relevant optimization score is the

F-Score F .

Two tasks have been evaluated. The first task is the general

AED task, i.e. to segment and classify each event individually by its

unique HMM. The second task, called EAD according to the more

common term voice activity detection (VAD) in speech recognition,

is to segment any event in a stream. Therefore, all events, except for

silence that is treated separately, are trained into one HMM.

The best F-Score and AEER on the development set for both

tasks and for different features are shown in Figures 4 and 5, re-

spectively. Not surprisingly, the EAD-task results in higher F-Score

and lower AEERs than the more complex AED task since the first

one is only detecting events whereas the latter is a combination of

segmentation and classification. All tested features perform more or

less equal in detecting events. The applied preprocessing only has
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Figure 5: AEER of the the general classification AED and the EAD

with noise reduction (NR) and without (raw).

minor influence on this task. However, for AED, the preprocessing

leads to higher F-Score and lower AEER for every tested feature in

comparison to the unpreprocessed data.

MFCCs without any derivatives, hence just working on the

short-time spectrum, yield a poor performance. The more tempo-

ral context is exploited by adopting derivatives of first (65 ms) and

second order (105 ms), the more robust the recognition becomes.

GBFB and AMS that operate on a time span of up to ≈ 415 ms

achieve the highest performance.

Though AMS-features work on a similar time scale as GBFB-

features they result in a slightly lower recognition performance. A

reason for this might be that AMS-features only operate on the time

and frequency domain independently, i.e. they are comparable to

Gabor filters with either ωℓ = 0 or ωm = 0. GBFB-features on the

other hand exploit the spectro-temporal information jointly.

The classifier using NR and GBFB-features was evaluated by

the challenge organizers applying the hidden testing set. The per-

formance decreased from 76% to 62% in F-Score. This might be

due to slight overfitting. However, since for creating the event mod-

els the training set, that is conjunct to the development set, was

used, it is not likely that the features themselves cause overfitting,

though they comprise 80 dimensions for AMS and 455 for GBFB

what is often experienced to lead to such effects. Only the num-

ber of Gaussian mixtures Mev and Msil and the insertion penalty p

were adjusted on the development set and could hence lead to over-

fitting effects. Testing on the development set, the F-Score is indeed

decreased from 76% to 67% if Mev is increased from 3 to 4 which

could be a hint for overfitting. But this also applies even more for

MFCCs (incl. ∆ and ∆∆) for which the F-Score decreases from

54% to 27% by increasing Mev by one. Since the testing set is not

available yet, it could not be evaluated if the other features suffered

similar degradation in performance like GBFB-features on that set.

6. CONCLUSION

In this contribution, an AED system is proposed that firstly applies

signal enhancement to an acoustic signal. Secondly, MFCC and

spectro-temporal features known from ASR, i.e. GBFB and AMS,

are extracted and fed to a two-layer-HMM. It was shown that all

features perform similarly for the event segmentation task and the

proposed preprocessing is not beneficial there. However, for seg-

mentation and classification, noise reduction results in better per-

formance for all features. Both newly adopted features for the task

of AED performed better than standard MFCCs, where GBFB per-

formed best. In future work, the parameterization for the features,

which is adopted from ASR, may need to be adjusted more properly

to the new application area.
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