
Improving speech intelligibility in noise by SII-dependent preprocessing using
frequency-dependent amplification and dynamic range compression

Henning Schepker1, Jan Rennies2, Simon Doclo1,2

1University of Oldenburg, Department of Medical Physics and Acoustics,
Signal Processing Group, Oldenburg, Germany

2Fraunhofer IDMT, Project Group Hearing-, Speech-, and Audio Technology,
Oldenburg, Germany

{henning.schepker,simon.doclo}@uni-oldenburg.de, jan.rennies@idmt.fraunhofer.de

Abstract

In this contribution, a new preprocessing algorithm to improve
speech intelligibility in noise is proposed, which maintains the
signal power before and after processing. The proposed Adapt-
DRC algorithm consists of two time- and frequency-dependent
stages, which are both functions of the estimated SII. The first
stage applies a time- and frequency-dependent amplification,
while the second stage applies a time- and frequency-dependent
dynamic range compression (DRC). Experiments with a com-
peting speaker (CS) and a speech-shaped noise (SSN) show an
increase in speech intelligibility for a wide range of SNRs for
four different objective measures that are correlated with speech
intelligibility. Listening tests conducted within the framework
of the Hurricane Challenge with 175 subjects confirm these
findings and show improvements of up to 20.5% in intelligi-
bility for SSN and 12.3% for CS.
Index Terms: speech-in-noise enhancement, dynamic range
compression, speech intelligibility

1. Introduction
Speech communication is gaining more and more importance
in today’s society. To ensure a high communication quality, a
high speech intelligibility must be provided in speech commu-
nication applications. However, in many situations speech is
degraded by additive noise and/or reverberation, leading to re-
duced intelligibility and increased listening effort [1, 2, 3]. Ob-
viously, intelligibility can be maintained by raising the speech
level to increase the signal-to-noise-ratio (SNR). This phe-
nomenon can be observed in human speech production in noisy
environments, which is called the Lombard effect [4]. For Lom-
bard speech it has been found that not only the overall speech
level is raised but also the spectral tilt is reduced [4], thereby
increasing the energy at higher frequencies.
Although a simple amplification scheme can easily be imple-
mented, it can lead to an overload of the amplification system
or unpleasantly high sound levels. Consequently, it is desirable
to increase speech intelligibility while maintaining equal pow-
ers of both the unprocessed and the processed speech signal.
One of the first attempts to investigate the influence of differ-
ent signal preprocessing strategies on speech intelligibility was
done by Licklider and Pollack [5]. Although they only inves-
tigated speech in quiet, they reported no degradation of speech
intelligibility for various types of filtering and clipping strate-
gies as well as their combinations.
A more recent approach based only on spectral shaping was

proposed by Sauert and Vary, where a time- and frequency-
dependent amplification of the speech signal was carried out
aiming to maximize the Speech Intelligibility Index (SII) [6, 7].
This approach however suffers from spectral adaptation to the
noise characteristics [8], leading them to use a transition be-
tween an SII-weighting and unity-weighting.
As another approach Niederjohn and Grotelueschen [9] pro-
posed to use high-pass filtering followed by a static rapid am-
plitude compression. They reported an enhanced speech intelli-
gibility in white noise over the unprocessed signal at the same
SNR. Zorila et al. [10] recently adopted part of this approach
in their SSDRC algorithm, in which they combined a speech-
signal-dependent spectral shaping and a static broadband dy-
namic range compression (DRC) scheme. They reported im-
provements in SSN and CS for three different SNRs.
The abovementioned approaches use either only frequency
shaping or additional static compression characteristics. By ap-
plying static compression characteristics, the speech signal is
also changed in case of good intelligibility. On the contrary, the
AdaptDRC algorithm proposed in this paper combines these two
stages, where both the amplification stage as well as the com-
pression characteristics are based on the estimated SII, leading
to no changes in case of good intelligibility.
This paper is organized as follows. In Section 2 the considered
scenario and some definitions will be given. Section 3 provides
a detailed overview of the proposed AdaptDRC algorithm. Re-
sults from evaluations using objective measures as well as from
a formal listening test are given in Section 4.

2. Scenario and definitions
Consider the acoustic scenario depicted in Figure 1. The unpro-
cessed speech signal s[k] at discrete time k is modified using the
weighting functionW {·} and played back via a loudspeaker. A
microphone picks up the disturbed speech signal y[k], which is
the mixture of the modified speech signal s̃[k] convolved with
the room impulse response h[k] and the additive noise distur-
bance r[k], i.e.

y[k] = s̃[k] ∗ h[k] + r[k], (1)

where ∗ denotes convolution. An estimate r̂[k] of the noise sig-
nal r[k] can be obtained by using e.g. adaptive filtering tech-
niques to model the room impulse response h[k] [11]. Using
the estimated noise signal r̂[k], the estimated room impulse re-
sponse ĥ[k], and the clean speech signal s[k], the processed
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Figure 1: Considered acoustical scenario.

speech signal s̃[k] is then computed as

s̃[k] = W {s[k],r̂[k],ĥ[k]}s[k]. (2)

In the following we assume that a perfect noise estimate is avail-
able, i.e. r̂[k] = r[k], and no reverberation is present, i.e.
h[k] = δ[k]. We aim at finding a weighting functionW {·} that
enhances the intelligibility of s̃[k]+r[k] compared to s[k]+r[k]
under an equal power constraint.
The signal s[k] is first split into N subband signals sn[k],
n = 1, . . . ,N , using a real-valued filterbank. In our imple-
mentation, we have used an all-pass filterbank based on doubly-
complementary IIR filters [12], splitting the signals into oc-
tave bands with center frequencies ranging from 125 Hz to
16 kHz (N = 8). Additionally, each subband signal sn[k] is
framed into non-overlapping blocks of lengthM , i.e. sln[m] =
sn[lM +m],m = 0, . . . ,M −1 with block index l. The power
of the lth block in the nth subband is equal to

φn[l] =
1

M

M−1∑
m=0

(sln[m])2. (3)

The broadband power φ[l] in the lth block is defined as the sum
over all subbands n. Furthermore, the equivalent speech spec-
trum level is defined as [13]

en[l] = 10 log10

(
φn[l]

Δfn

)
, (4)

with Δfn the bandwidth of the nth subband. Similarly, the
equivalent disturbance spectrum level is defined as

dn[l] = 10 log10

(
1

MΔfn

M−1∑
m=0

(r̂ln[m])2
)
, (5)

where r̂ln[m] is defined similarly as sln[m].

3. Algorithm
The proposed AdaptDRC algorithm is schematically depicted
in Figure 2. It combines a time- and frequency-dependent am-
plification stage with a time- and frequency-dependent DRC
stage, where both the amplification and the DRC are functions
of the estimated SII. The SII estimation is adopted from [7] but
slightly changed here. The SII in the lth block is estimated from
the clean speech signal s[k] and the noise signal r̂[k] as

ˆSII[l] =
N∑

n=1

inâ (en[l],dn[l]) , (6)

where in denotes the weighting of the nth octave subband ac-
cording to [13] and â (en[l],dn[l]) approximates the audibility

SII Estimation

Amplification Dyn. Comp.

r̂[k]

s[k] s̃[k]

Figure 2: Schematic flow-graph of the AdaptDRC algorithm

function a (en[l],dn[l]) defined in [13], which estimates the au-
dibility of the speech signal relative to the noise signal as

â (en[l],dn[l]) = q (en[l],dn[l]) ĝ (dn[l]) . (7)

The function q (en[l],dn[l]) is a mapping function of the SNR
according to

q (en[l],dn[l]) = max

{
min

{
en[l]− dn[l] + 15 dB

30 dB
,1

}
,0

}
(8)

and the function ĝ (dn[l]) describes the distortion of speech
with louder levels assuming the special case of en[l] = dn[l] +
15 dB as

ĝ (dn[l]) = min

{
1−

dn[l] + 15 dB − un − 10 dB

160 dB
,1

}
,

(9)
which depends on the so-called standardized equivalent speech
spectrum level un defined in [13]. Note that â (en[l],dn[l]) dif-
fers from the approximation of the audibility function proposed
in [7] in that it takes into account the flooring and ceiling effect
of the function q (en[l],dn[l]), which was neglected in [7]. Ad-
ditionally, by using the approximation ĝ (dn[l]) it is assumed
that en[l] = dn[l] + 15 dB < un + 170 dB, which is however
valid in nearly all conditions.

3.1. Amplification

The amplification stage of the AdaptDRC algorithm aims at in-
creasing the power in the high-frequency regions of the speech
signal. This is achieved by adopting the approach proposed in
[8]. In [8] an amplification of the subband speech signal accord-
ing to their contribution to speech intelligibility as described
within the SII is used. In contrast, we assume that most noise
signals r[k] have a spectral slope that is steeper than or equal to
the spectral slope commonly observed in speech signals s[k].
Therefore, in the amplification stage of the AdaptDRC algo-
rithm we focus on amplifying high-frequency regions by uni-
formly distributing the speech signal power in all subbands in
case of low speech intelligibility as predicted by (6), leading to
a reduced spectral slope of s̃[k] compared to s[k]. The amplifi-
cation gain of the lth block is computed as

wn[l] =

√√√√√√
φ

ˆSII[l]
n [l]

N∑
λ=1

φ
ˆSII[l]

λ [l]

·
φ[l]

φn[l]
. (10)

If the estimated SII is equal to one, equation (10) results in unity
gain, while for ˆSII[l] = 0 a uniform distribution for the output
powers of all subbands in the lth block is achieved.

3.2. Dynamic range compression

The DRC stage of the AdaptDRC algorithm aims at amplifying
low-levels signals that are assumed to be not well audible and
attenuating high-level signal that are assumed to be well audi-
ble. Usually, in DRC fixed compression ratios are applied to the
broadband or the subband signals. However, in case sn[k] is al-
ready well audible, DRC can lead to signal degradation that may
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influence the perceived quality or speech intelligibility. There-
fore, for the AdaptDRC algorithm we propose to change the
compression characteristic over time, depending on the speech
and noise levels.
To compute the time-varying compressive gain, first an estimate
of the envelope of each subband signal is computed, i.e.

s̄n[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αas̄n[k − 1] + (1− αa) |sn[k]|

if |sn[k]| ≥ s̄n[k − 1]

αr s̄n[k − 1] + (1− αr) |sn[k]|

if |sn[k]| < s̄n[k − 1]

, (11)

where αa and αr are attack and release smoothing constants.
In DRC algorithms the processed speech signal in the lth block
is computed as

s̃
l
n[m] = s

l
n[m]p

(
λn[l],(s̄

l
n[m])2

)
,m = 0, . . . ,M − 1,

(12)
where p

(
λn[l],(s̄

l
n[m])2

)
in the dB-domain linearly inter- and

extrapolates the input-output-characteristic (IOC), which is de-
fined by the parameter vector λn[l] containing a set of input and
output powers γn,i[l] and ξn,i[l]. In our algorithm we have used
three input and output powers to define the IOC, i.e.

λn[l] =
[
γn,1[l] γn,2[l] γn,3[l] ξn,1[l] ξn,2[l] ξn,3[l]

]
. (13)

The novelty of the proposed AdaptDRC algorithm in compar-
ison to previously proposed algorithms [9, 10] is the fact that
the IOC changes for each block l, depending on the speech and
noise characteristics. The proposed IOC of the AdaptDRC al-
gorithm is defined as

γn,1[l] = 1

γn,2[l] = φn[l]

γn,3[l] = ν

(14)

and
ξn,1[l] = φ

1−crn[l]
n [l]

ξn,2[l] = φn[l]

ξn,3[l] = φ
1−crn[l]
n [l]ν

(15)

where ν is a conversion constant from dB FS to dB SPL and
crn[l] is the time-varying compression ratio, defined as

crn[l] = max
{
cr(max) · (1− q (en[l],dn[l])) ,1

}
, (16)

where cr(max) defines the maximum compression ratio. For
subband SNRs lower than or equal to -15 dB q(en[l],dn[l]) =
0, such that cr(max) will be applied, while for subband SNRs
larger than or equal to +15 dB q(en[l],dn[l]) = 1, such that no
compression will be applied. In Figure 3 exemplary IOCs for
the proposed AdaptDRC algorithm are shown, assuming that
φn[l] = 1050/10 . For case 1 we assume a sufficiently high SNR
resulting in crn[l] = 1 and hence no compression is applied.
For case 2 crn[l] = cr(max) = 8 is assumed, i.e. a sufficiently
low SNR is present, which leads to large amplifications for low
input levels and strong attenuations of high input levels.
Furthermore, the amplification stage discussed in Section 3.1
can be directly incorporated into the IOC by redefining ξn,i[l]
in (15) as

ξn,1[l] = φ
1−crn[l]
n [l]wn[l]

ξn,2[l] = φn[l]wn[l]

ξn,3[l] = φ
1−crn[l]
n [l]wn[l]ν.

(17)

This is depicted in Figure 3 as case 3, assuming that wn =
1015/20 and crn[l] = 8. The additional amplification results in
a shift of the IOC towards higher output levels.

case 3
case 2
case 1

2
0
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g
1
0
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[k
]/
dB
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L
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Figure 3: Exemplary IOC for three different cases. Symbols in-
dicate the points defined by the input and output powers γn,i[l]
and ξn,i[l] and lines indicate p(λn[l],s̄

l
n[m]). The following

cases are shown: case 1: crn[l] = 1; case 2: crn[l] = 8; case
3: wn = 1015/20 and crn[l] = 8.

3.3. Smoothing of gain functions

Directly using the gain derived from the IOC defined in equa-
tions (14) and (17) may lead to noticeable processing artifacts.
To counteract these artifacts a two-stage smoothing procedure
is applied. First, the IOC is smoothed, i.e.

λ̄n,j [l] = αbλ̄n,j [l − 1] + (1− αb)λn,j [l], (18)

where λn,j [l] is the jth element of the IOC parameter vector
λn[l] and αb is a smoothing constant. Second, the resulting
gain is recursively smoothed with smoothing factor αp, i.e.

p̄
(
λ̄n[l],(s̄

l
n[m])2

)
= αpp̄

(
λ̄n[l],(s̄

l
n[m− 1])2

)
+(1− αp) p

(
λ̄n[l],(s̄

l
n[m])2

)
.

(19)

The processed subband signals s̃ln[m] are then obtained by ap-
plying (19) instead of p

(
λn[l],(s̄

l
n[m])2

)
in (12). The applica-

tion of (19) however typically leads to changes in the broadband
signal power and therefore does not satisfy the equal power con-
straint. While in an offline procedure the signal could be eas-
ily rescaled after processing to satisfy the constraint, this is not
possible in an online application. Therefore, after applying the
inverse filterbank, an additional broadband gain is applied that
yields approximately equal powers. This gain is calculated by
dividing the smoothed versions of the broadband input and out-
put powers with smoothing constant αL.

4. Results
The proposed AdaptDRC algorithm has been evaluated using
several objective measures and using a formal subjective listen-
ing test as part of the Hurricane Challenge [14]. Speech mate-
rial was taken from the Harvard speech corpus recorded by one
male native British English speaker [15]. Two different noise
types were used in the evaluation at three different SNRs each,
namely:

• Competing Speaker (CS) at SNRs: −21, −14, −7 dB
• Speech Shaped Noise (SSN) at SNRs: −9, −4, +1 dB.

These SNRs were selected to yield keyword correct scores of
approximately 25%, 50% and 75% in the unprocessed Refer-
ence condition . The speech and noise signals were sampled at
fs = 16 kHz. In the results presented hereafter, the param-
eters according to Table 1 were used, which yielded a good
compromise in terms of intelligibility improvement for both
noises based on informal listening tests. Note that for clarity
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Table 1: Integration constants of the different smoothing param-
eters and the block length used in the evaluation.

Parameter Value Parameter Value

τa 0.025 s τw 0.250 s
τr 0.500 s τb 0.250 s
τL 0.250 s M 0.020 s
cr(max) 8

the corresponding integration time constants are given, while in
the description of the algorithm the smoothing constants were
used. Sound examples can be found at http://www.sigproc.uni-
oldenburg.de/audio/adaptdrc/is2013.html.

4.1. Objective measures

To quantify the effect of the proposed AdaptDRC algorithm on
speech intelligibility, we have used four objective measures that
have shown high correlation with speech intelligibility in previ-
ous experiments, namely the Speech Transmission Index (STI)
[16], the SII [13], the Extended SII (ESII) [17] and the Short
Time Objective Intelligibility Measure (STOI) [18]. For all 240
sentences of the Harvard speech corpus the objective measures
have been calculated in all SNR and noise conditions. Note that
although in [17] it is originally proposed to use SSN as speech
input to the ESII, we have used the speech utterances as speech
input, thus differences in ESII and SII can be expected also for
the SSN. Figure 4 shows the results of the objective evaluation.
For all considered objective measures, an improvement of the
processed speech over the unprocessed speech can be observed,
thereby indicating the effectivity of the AdaptDRC algorithm.
Comparing both noises, STI, SII and STOI predict a larger intel-
ligibility improvement for the SSN than for CS, while ESII pre-
dicts a smaller intelligibility improvement, which appears coun-
terintuitive. Furthermore, the predicted absolute intelligibility
improvement is largest for the STI and SII, which consider only
long-term spectral information of the speech and noise signals.
For ESII and STOI, which both consider short-term spectral in-
formation of the speech and noise signals, smaller absolute im-
provements are predicted.

4.2. Listening test

A subjective listening test was conducted as part of the 2013
Hurricane Challenge [14] with 175 native and audiologically
normal-hearing subjects. In contrast to the objective evaluation,
a subset containing only the first 180 sentences of the Harvard
corpus was used. Figure 5 shows the results for the AdaptDRC
algorithm and the unprocessed Reference in terms of percent-
age correctly understood keywords as a function of SNR. The
results show that the proposed AdaptDRC algorithm increases
the speech intelligibility for both noise conditions and all SNRs.
Increases of up to approximately 12% and 20% can be achieved
for CS and SSN, respectively (see Table 2). As expected, a
larger increase can be achieved for the stationary SSN com-
pared to the instationary CS. A statistical analysis of the data
was carried out to confirm these findings. Since Shapiro-Wilk
tests revealed non-normality of the data, an aligned rank trans-
form procedure [19] was carried out to replace a conventional
3-factor (processing, SNR, noise) repeated-measures ANOVA.
Note that, although the SNRs in both noises were not physically
the same, they were regarded as high, mid and low in the analy-
sis. The 3-factor analysis revealed significant effects (p < 0.01)
of all factors and significant interaction (p < 0.05) between all
factor combinations except processing×noise, confirming the
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Figure 4: Objective measures for both noise types (CS and
SSN).
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Figure 5: Results from listening test for both noise types (CS
and SSN). Error-bars indicate standard errors of the mean val-
ues.

Table 2: Results from formal listening test.
Noise SNR Processed Reference Gain

CS -7 dB 88.7± 1.3% 85.1 ± 1.5% 3.6%
-14 dB 69.3± 2.0% 57.0 ± 2.4% 12.3%
-21 dB 34.7± 2.1% 24.8 ± 1.9% 9.2%

SSN +1 dB 91.1± 1.3% 88.3 ± 1.3% 2.8%
-4dB 78.1± 1.8% 63.0 ± 2.2% 15.1%
-9dB 37.7± 2.2% 17.3 ± 1.8% 20.5%

previous findings.

5. Conclusions
In this paper, a novel SII-dependent preprocessing strategy was
proposed that combines a time- and frequency-dependent am-
plification stage and a time- and frequency-dependent DRC
stage to improve speech intelligibility in noise. Evaluations
using four different objective measures showed improvements
over the unprocessed Reference for both CS and SSN. Results
from subjective listening tests confirm these findings and show
significant improvements of up to 20% in speech intelligibility
in the entire range of SNRs. The results show that the Adapt-
DRC algorithm is capable of enhancing speech intelligibility
both for stationary as well as for time-varying maskers with
speech-like spectra.
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