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ABSTRACT

The theoretical performance of the multi-channel Wiener filter
(MWF), which is often used for noise reduction in speech en-
hancement applications, depends on the noise field and on the
acoustic transfer functions (ATFs) between the desired source and
the microphones. To compute this theoretical performance, either
time-consuming measurements of the ATFs and the noise field or
simulation of the ATFs, e.g. using the image model, need to be
performed. Recently, an analytical expression for the spatially aver-
aged output SNR of the MWF has been proposed, requiring only the
room properties and the source-microphone distances to be known.
In this paper, we derive similar analytical expressions for other per-
formance measures, namely for the spatially averaged mean square
error (MSE), and speech distortion at the reference microphone.

Index Terms— Multi-channel Wiener filter, statistical room
acoustics

1. INTRODUCTION

For every speech enhancement algorithm it is of significant interest
to be able to compute its theoretical performance, e.g. output SNR,
for different acoustical scenarios (microphone configuration, source
position, noise field). This e.g. enables to compare the performance
of different microphone configurations, such that the microphone
configuration yielding the best performance can be selected.

In [1] a theoretical performance analysis of the multi-channel
Wiener filter (MWF) has been presented. It has been shown that the
output SNR, the mean square error (MSE), the noise reduction and
the speech distortion of the MWF can be computed when the noise
correlation matrix and the ATFs between the desired source and the
microphones are known. Hence, for every source-microphones con-
figuration, the theoretical performance of the MWF can be computed
using measured or simulated noise correlation matrices and ATFs.
However, if we want to compare the performance for a large num-
ber of source-microphones configurations (and assuming that an es-
timated or simulated noise correlation matrix is available), then ei-
ther a large number of ATFs need to be measured, which could be
very time-consuming, or the performance of the MWF can be nu-
merically simulated, by simulating the ATFs e.g. using the image
model [2] or room acoustics software.

On the other hand, the statistical properties of the ATFs can be
described using statistical room acoustics (SRA), which has also
been used to derive analytical expressions for performance mea-
sures. In [4] the robustness of an equalization technique has been
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Fig. 1. Configuration of an array with M microphones.

analyzed using SRA, and in [5] a method to predict the SNR im-
provement of a delay-and-sum beamformer with two microphones
using the statistical properties of ATFs has been presented.

Recently, an analytical expression for the spatially averaged out-
put SNR of the MWF has been derived by incorporating statisti-
cal properties of the ATFs in the theoretical formula of the output
SNR [6]. Simulation results have shown that the spatially averaged
output SNR computed analytically using the statistical properties of
ATFs is similar to the results obtained using simulated ATFs, pro-
viding an easy and fast way to compute the spatially averaged out-
put SNR of the MWF. In this paper, we extend the computation of
the theoretical performance of the MWF using SRA to the MSE,
the noise reduction and the speech distortion at the reference mi-
crophone. Simulation results show the good estimation accuracy of
all performance measures computed using SRA except for the noise
reduction.

2. SIGNAL MODEL AND CONFIGURATION

Figure 1 depicts the configuration ofM microphones located at posi-
tions pm = [xm ym zm]T ,m = 0 . . .M − 1, and a single speech
source S(ω) located at position ps = [xs ys zs]

T . The complete
microphone array configuration can be described by the 3 × M -
matrix Pmic = [p0 · · ·pM−1]. We define the relative distance D
between the speech source and the microphones as

d =

 d0
...

dM−1

 =

 ‖ps − p0‖
...

‖ps − pM−1‖

 . (1)

The mth microphone signal Ym(ω) can be described in the fre-
quency domain as

Ym(ω) = Hm(ω)S(ω) + Vm(ω),m = 0 . . .M − 1

= Xm(ω) + Vm(ω), (2)
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where Hm(ω) represents the ATF between the speech source S(ω)
and the mth microphone, and Xm(ω) and Vm(ω) represent the
speech and the noise component in the mth microphone signal. We
define the M -dimensional stacked signal vector Y(ω) as

Y(ω) =

 Y0(ω)
...

YM−1(ω)

 , (3)

which can be written as Y(ω) = X(ω) + V(ω), where the vectors
X(ω) and V(ω) are defined similarly as Y(ω). The output signal
Z(ω) is obtained by filtering and summing the microphone signals,
i.e.,
Z(ω) = WH(ω)X(ω) + WH(ω)V(ω) = Zx(ω) + Zv(ω), (4)

where W(ω) = [W0(ω) · · ·WM−1(ω)]T represents the stacked
vector of the filter coefficients, and Zx(ω) and Zv(ω) correspond
to the estimated speech and residual noise component respectively.

3. MULTI-CHANNEL WIENER FILTERING

The concept of multi-channel Wiener filtering (MWF) is based on
estimating the speech component Xm0 of the m0th microphone, ar-
bitrarily selected as the reference microphone. The MWF produces
a minimum-mean-square error (MMSE) estimate by minimizing the
MSE cost function [7]

ξ(W(ω)) = E{
∣∣∣Xm0(ω)−WH(ω)Y(ω)

∣∣∣2}, (5)

where E{.} denotes the expected value operator. The solution of this
minimization problem is given by

Wm0(ω) = Φ−1
y (ω)Φx(ω)em0 , (6)

with Φy(ω) = E{Y(ω)YH(ω)}, Φx(ω) = E{X(ω)XH(ω)}
the noisy and clean speech correlation matrix, and em0 an M -
dimensional vector with the m0th element equal to 1 and all other
elements equal to 0, selecting the column that corresponds to the
reference microphone.

Assuming that the speech and the noise components are uncor-
related, the correlation matrix Φy(ω) can be expressed as

Φy(ω) = Φx(ω) + Φv(ω), (7)

where Φv(ω) represents the noise correlation matrix, i.e., Φv(ω) =
E{V(ω)VH(ω)}. Using a robust VAD, the correlation matrix
Φy(ω) can be estimated during speech + noise periods, while the
correlation matrix Φv(ω) can be estimated during speech pauses.

For conciseness the frequency-domain variable ω will be omit-
ted where possible in the remainder of this paper.

4. THEORETICAL PERFORMANCE OF MWF

If we make the following two assumptions:

1. a single desired speech source is assumed, for which the
speech correlation matrix Φx = φsHHH is a rank-one ma-
trix, where φs represents the power spectral density (PSD) of
the source S, i.e. φs = E{|S|2} and H = [H0 · · ·HM−1]T

is the stacked vector of the ATFs,

2. a homogeneous1 noise field is considered, i.e. Φv = φvΓv ,
where φv = Φv(m,m), ∀m denotes the noise PSD and Γv
the noise coherence matrix,

1The assumption of a homogeneous noise field always holds for a diffuse
noise field or when the microphones are closely spaced.

then the filter Wm0 in (6) can be written as [7]

Wm0 =
Γ−1
v H

φv
φs

+ ρ
H∗m0

, (8)

where
ρ = HHΓ−1

v H, (9)

and φs
φv

corresponds to the a-priori input SNR. Note that the output
SNR of the MWF is computed as [6]

SNRout =
φs
φv
ρ. (10)

The minimum MSE achieved by using the MWF is obtained by re-
placing (8) into (5), i.e.,

ξ(Wm0) =
φv |Hm0 |

2(
φv
φs

+ ρ
) . (11)

The MWF adds distortion to the estimated speech component. In or-
der to evaluate the amount of speech distortion, we define the speech
distortion at the reference microphone as

SDm0 =
E{|Zx|2}
E{|Xm0 |2}

= 1

/(
1 +

1
φs
φv
ρ

)2

. (12)

Similarly to the speech distortion, we define the noise reduction fac-
tor at the reference microphone as

NRm0 =
E{|Vm0 |2}
E{|Zv|2}

= ρ

(
1 +

1
φs
φv
ρ

)2/
|Hm0 |

2. (13)

As one can see, if the a-priori input SNR φs
φv

, and the spatial
characteristics ρ, i.e. the ATFs H between the source and the micro-
phones, and the spatial characteristics of the noise field described by
the noise coherence matrix Γv are known, the noise reduction, the
speech distortion and the MSE of the MWF can be calculated.

5. PERFORMANCE OF MWF USING STATISTICAL
PROPERTIES OF ATFS

The theory of statistical room acoustics is based on the assumption
that the phase and the amplitude of reverberant plane waves arriving
at a point in a room are close to random. The resulting reverberant
sound field can then be considered as uniformly distributed in the
entire room [3]. This model of the reverberant sound field is valid
only if a set of conditions are satisfied (for more details, we refer to
[3]).

5.1. Statistical properties of ATFs

Without loss of generality, the vector H containing the ATFs be-
tween the source located at position ps and the M microphones lo-
cated at the positions Pmic can be decomposed as

H(θ) = Hd(θ) + Hr(θ), (14)

where θ = [ps, Pmic] and Hd(θ) and Hr(θ) are the vectors cor-
responding to the direct and the reverberant component of the ATFs.

We define the spatial expectation operator Eθ{·} as the ensem-
ble average over all realizations of θ. Using SRA, the following
statistical properties for the ATFs are then given [3]:



A1 For a fixed relative distance d between source and micro-
phones, the direct path components are independent of the
realization of θ, i.e.,

Eθ{Hm,d(θ)H∗n,d(θ)|dm, dn} =
ej

ω
c
(dn−dm)

(4π)2dmdn
∀m,n. (15)

A2 The spatially expected correlation between the reverberant
components of the ATF of themth and the nth microphone is
independent of d and is given by

Eθ{Hm,r(θ)H∗n,r(θ)} =
1− ᾱ
πᾱA

sin
(
ω
c
‖pm − pn‖

)
ω
c
‖pm − pn‖

∀m,n, (16)

where A is the total surface of the walls and ᾱ is the average
absorption coefficient. If the reverberation time T60 is known,
the average absorption coefficient can be approximated using
Sabine’s formula , i.e. ᾱ = 0.161V

AT60
.

A3 The direct and the reverberant components of the ATFs are
uncorrelated, i.e.,

Eθ{Hm,d(θ)H∗n,r(θ)|dm, dn} = 0, ∀m,n. (17)

5.2. Spatially averaged performance measures of MWF

The objective of this subsection is to derive analytical expressions
for the MSE, the noise reduction and the speech distortion of the
MWF using the statistical properties of the ATFs.

Using (9) and (14), the spatial characteristics ρ for each realiza-
tion θ can be written as

ρ(θ) =

M∑
m=1

M∑
n=1

γ̆mn
(
H∗d,m(θ)Hd,n(θ) +H∗d,m(θ)Hr,n(θ)

+H∗r,m(θ)Hd,n(θ) +H∗r,m(θ)Hr,n(θ)
)
, (18)

where γ̆mn is the (m,n)-element of the matrix Γ−1
v . Using (15),

(16) and (17), the spatially averaged value of ρ given d (relative
distance between source and microphones) is then equal to [6]

Eθ{ρ(θ)|d} =

M∑
m=1

M∑
n=1

γ̆mn
(ej ω

c
(dn−dm)

(4π)2dmdn

+
1− ᾱ
πᾱA

sin
(
ω
c
‖pm − pn‖

)
ω
c
‖pm − pn‖

)
.

(19)

This value depends only on the relative distance between the
source and the microphones and on the room properties (A, ᾱ).
While in [6], an analytical expression for the spatially averaged
output SNR has been derived using (19) and without any approx-
imation, an approximation is required in order to derive similar
expressions for the spatially averaged MSE, noise reduction and
speech distortion at the reference microphone.

Using (11), the spatially averaged MSE given d can be ex-
pressed as

Eθ{ξ(Wm0(θ))|d} = Eθ

φv |Hm0 |
2(

φv
φs

+ ρ
)
∣∣∣∣∣∣∣d
. (20)

To compute this expectation of a function of two random variables
ρ and |Hm0 |2, we will use an approximation based on the Taylor
expansion. In general, let us consider the random variables X and
Y with µx = E{X} and µy = E{Y }. The Taylor expansion of a
differentiable function f(x, y) around (µx, µy) is given by

f(x, y) = f(µ)+f
′
x(µ)(x−µx)+f

′
y(µ)(y−µy)+ f̂(x, y), (21)

where f̂(x, y) represents a function of the higher-order partial
derivatives of f(x, y). Assuming that all partial derivatives, except
the first-order partial derivatives, can be neglected at (µx, µy)2, then
f(x, y) can be approximated by the first-order Taylor expansion,
i.e., f(x, y) ≈ f(µ) + f

′
x(µ)(x − µx) + f

′
y(µ)(y − µy). Taking

the expectation of both sides of the approximated Taylor expan-
sion yields E{f(x, y)} ≈ f(µx, µy). However, it should be noted
that this approximation does not hold for all functions, i.e. if the
higher-order derivatives can not be neglected at the expansion point.

Although the first-order Taylor expansion might not be a good
approximation for all functions, we still propose to use it for com-
puting the spatially averaged MSE, i.e.,

Eθ{ξ(Wm0(θ))|d} ≈ φvEθ{|Hm0(θ)|2 |d}
φv
φs

+ Eθ{ρ(θ)|d}
, (22)

where Eθ{|Hm0(θ)|2|d} and Eθ{ρ(θ)|d} are given by (15) and
(19) respectively. Similarly using (12) and its first-order Taylor ex-
pansion, the spatially averaged speech distortion can be approxi-
mated by

Eθ{SDm0(θ)|d} ≈ 1

/(
1 +

1
φs
φv
Eθ{ρ(θ)|d}

)2

. (23)

Finally, using (13) and its first-order Taylor expansion, the noise re-
duction can be approximated by

Eθ{NRm0(θ)|d} ≈
φ2
v
φ2
s

1
Eθ{ρ(θ)|d}

+ Eθ{ρ(θ)|d}+ 2φv
φs

Eθ{|Hm0(θ)|2|d} . (24)

Although an analytical expression has been derived for the spatially
averaged noise reduction, simulation results (cf. section6) show that
this expression does not yield a good approximation.

6. SIMULATION RESULTS

6.1. Experimental setup

In order to validate the theoretical results derived in the previous
section, we consider the acoustical scenario depicted in Figure 1,
which consists of a linear microphone array with M = 3 micro-
phones. The distance between the microphones is set to 4 cm. The
desired source is located at endfire of the microphone array such that
d=[1.36 1.40 1.44]T . In a room with dimensions 7 m×5 m×3.5
m and reverberation time T60 = 0.25 s (resulting in an average
absorption coefficient ᾱ = 0.51), different realizations of θ given
the constant relative distance d have been generated by rotating and
translating the source-microphones configuration, and considering
only the realizations of θ that are located in the interior of the room
and half a wavelength away from the walls, satisfying the conditions
in [3]. For each realization, impulse responses have been simulated
using the image model [2], and the corresponding ATFs have been
calculated. The length of the simulated impulse responses is 4096
samples and the sampling frequency fs = 16000 Hz. Diffuse noise
has been used and the noise coherence matrix was theoretically com-
puted using

γmn(ω) =
sin
(
ω
c
‖pm − pn‖

)
ω
c
‖pm − pn‖

. (25)

2Although this can not be proven, since no analytical expressions for the
higher order Taylor terms are available, simulation results for multiple acous-
tical scenarios have shown that this assumption can be made.
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Fig. 2. Average performance measures of MWF calculated using a
Monte Carlo simulation with 10000 realizations and spatially aver-
aged performance measures computed using SRA.

For a total number of realizations N , the average performance mea-
sures are numerically computed as

PM(N) =
1

N

N∑
i=1

PM(θ̃i), (26)

where θ̃i corresponds to a single realization of θ and PM represents
either NRm0 , SDm0 or ξ(Wm0). Without loss of generality, the
a-priori input SNR is assumed to be frequency flat.

6.2. Results

Figure 2 shows NR
m0 , SD

m0 and ξ(Wm0) computed numeri-
cally using simulated ATFs by means of a Monte Carlo simulation
with N = 10000 realizations, together with the spatially averaged
performance measures Eθ{ξ(Wm0(θ))|d}, Eθ{NRm0(θ)|d} and
Eθ{SDm0(θ)|d} calculated analytically using (24), (23) and (22).
As one can see, the spatially averaged speech distortion and mini-
mum MSE of the MWF computed using SRA are very close to the
average measures obtained using simulated ATFs. Therefore, if the
source and microphone positions and the room characteristics (A,ᾱ)
are known and if the noise coherence matrix can be estimated, the
statistical properties of ATFs can be used to express the average
speech distortion and minimum MSE of the MWF. Unfortunately,
the spatially averaged noise reduction computed using SRA does
not correspond well to the averaged noise reduction computed us-
ing simulated ATFs. The difference between both values can be
explained by the fact that the higher-order partial derivatives in (21)
can not be neglected at the expansion point, leading to a poor ap-
proximation. In order to improve the approximation of the spatially
averaged noise reduction using SRA, the second-order Taylor ex-
pansion could be used, however, requiring the statistical properties
of the variance of ρ(θ) and |Hm0(θ)|2.

Figure 3 depicts the root mean square error (RMSE) between the
spatially averaged performance measures computed using SRA and
the average performance measures computed using simulated ATFs
as a function of the number of realizations N . The RMSE for each
performance measure is calculated as

RMSE PM(N) =

√∑
ω

∣∣Eθ{PM(θ)|d} − PM(N)
∣∣2. (27)
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Fig. 3. Root mean square error between simulated and analytical
results obtained using statistical room acoustics.

As expected, the larger the number of realizations, the smaller the
RMSE for all performance measures except for the noise reduction
which does not converge. For a very large number of realizations, the
RMSE of the speech distortion and the minimum MSE converge to
nearly zero, showing the good estimation accuracy of both spatially
averaged measures using SRA.

7. CONCLUSION

In this paper we have derived analytical expressions for the spa-
tially averaged MSE, noise reduction and speech distortion of the
MWF using statistical room acoustics. The proposed analytical ex-
pressions depend on the room dimensions, source-microphones dis-
tances and reverberation time. Simulation results have shown that
the speech distortion and the minimum MSE computed using the
statistical properties of ATFs are similar to the results obtained us-
ing simulated ATFs, providing an easy and fast way to compute both
spatially averaged performance measures of the MWF. For the noise
performance measure, a further analysis is required.
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