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Abstract

Due to the demographic changes, support by
means of assistive systems will become in-
evitable for home care and in nursing homes.
Robot systems are promising solutions if the
value is obvious to the care personnel and pa-
tients. Natural and intuitive human-machine
interfaces are an essential feature to achieve
acceptance of the users. Therefore, auto-
matic speech recognition (ASR) is a promis-
ing modality for such assistive devices. How-
ever, noises produced during movement of
robots can degrade the ASR performances.
This work focuses on noise reduction by a
non-negative matrix factorization (NMF) ap-
proach to efficiently suppress non stationary
noise produced by the sensors of an assisting
robot system.

1 Introduction

The amount of older people in today’s societies con-
stantly grows due to demographic changes (Com-
mission, 2007). Technical systems become more
and more common to support for routine tasks of
care givers or to assist older persons living alone
in their home environments (Van Den Broek et al.,
2010). Various technical assistive systems have
been developed recently (Lisetti et al., 2003),
ranging from reminder systems (Boll et al., 2010;
Goetze et al., 2010) to assisting robots (Chew et
al., 2010). If robot systems are supposed to navi-
gate autonomously they usually rely on vision sen-
sors (Aragon-Camarasa et al., 2010) or acoustic sen-
sors (Yamakawa et al., 2011; Youssef et al., 2010).

Acoustic signals are usually picked up by micro-
phones mounted on the robot. In real-world scenar-
ios not only the desired signal part is picked up by
these microphones as presented in Figure 1.
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Figure 1: General denoising scheme

The desired signal part is usually superposed with
disturbing noise originating from the environment or
the robot system itself. This disturbance has to be
removed from the microphone signal before it can
be further processed, e.g. for navigation, position
estimation, acoustic event detection, speaker detec-
tion or automatic speech recognition. This contri-
bution focuses on acoustic input for a robot system
and more specifically on the noise reduction pre-
processing which is needed to clean up noisy sound
signals.

Automatic speech recognition (Rabiner and
Juang, 1993; Wölfel et al., 2009) is a convenient way
to interact with robot assistants since speech is the
most natural form of communication. However, to
ensure acceptance of speech recognition systems a



sufficiently high recognition rate has to be archieved
(Pfister and Kaufmann, 2008). Todays speech recog-
nition systems succeed in achieving this recognition
rate for environments with low amount of noise and
reverberation. Unfortunately, while moving, robots
can produce noise degrading the reliability of the
ASR.

This work focuses on a specific application, sup-
pressing the non stationary noise produced by the
ultra-sonic sensors of a robotic assistant while mov-
ing. Please note that although in theory ultrasonic
sensors do not produce sound disturbances in the au-
dible range, artefacts due to the fast activation and
deactivation of the sensors are present in the audible
range and are clearly perceivable as a disturbance in
the picked up microphone signal as shown later in
Figure 6.

Ultrasonic
Sensors

Figure 2: Lower part of the robot with ultrasonic sensors.

Non-negative Matrix Factorization (NMF) is an
approach introduced by Lee & Seung (Lee and Se-
ung, 2001) in which the data is described as the
product of a set of basis and of a set of activation co-
efficients both being non-negative. We will apply the
NMF approach to remove the disturbances caused
by the ultrasonic sensors from the microphone input
signal in the following. NMF and its various exten-
sions have been proven efficient in sources separa-
tion (Cichocki et al., 2004; Virtanen, 2007), super-
vised detection of acoustic events (Cotton and El-
lis, 2011) or to wind noise reduction (Schmidt et
al., 2007). As the NMF algorithm can be fed with
prior information about the content to identify, it is
an handy way to suppress the non stationary noise
produced by the sensors of the considered robotic

assistant.
The remainder of this paper is organized as fol-

lows: The general NMF algorithm is presented in
Section 2 and the proposed denoising method is
described in Section 3. An experiment using the
TIMIT (Zue et al., 1990) speech corpus is presented
in Section 4 and finally the performances are eval-
uated in terms of achieved signal enhancement in
Section 5 before Section 6 concludes the paper.

2 Sparse Non-negative Matrix
Factorization

2.1 NMF algorithm

NMF is a low-rank approximation technique for
multivariate data decomposition. Given a real val-
ued non-negative matrix V of size n×m and a pos-
itive integer r < min(n,m), it aims to find a fac-
torization of V into an n × r real matrix W and an
r ×m real matrix H such that:

V ≈W ·H (1)

The multivariate data to decompose is stacked into
V, whose columns represent the different observa-
tions, and whose rows represent the different vari-
ables. In the case of information extraction from au-
dio files, V could be the amplitude of the spectro-
gram and therefore, W would be a basis of spectral
features when H would represent the levels of acti-
vation of each of those features along time. The rank
r of the factorization corresponds to the number of
elements present in the dictionary W, and thereof, to
the number of rows within H.

NMF is an iterative process that can be fed with
information about the contents to extract. As an il-
lustration of this ability, an artificial spectrogram of
a mixture of two chords, C and D, has been created.
Figure 3 shows the initialization of the NMF algo-
rithm. V is the spectrogram of the mixture in which
the two chords contain only notes’fundamentals and
overlap each other. The Algorithm is fed with the
spectral content of the C chord.

Figure 4 shows that during the iterative process,
the elements of W corresponding to the C chord re-
mained unchanged while the other elements of W
have been updated to fit the spectral content of the
D chord. The output time activations within H cor-



respond to the presence of both chords within the
matrix V.

Figure 3: Illustration of the initialization of the NMF al-
gorithm. The spectral content of the C chord is input into
W while the other element of dictionary and activation
coefficients in H are randomly initialized.

Figure 4: Illustration of the output of the NMF algorithm.
The spectral content of the D chord has been learned
while the updated H corresponds to the activations of the
chords C and D along time.

2.2 Sparseness Constraint

The very definition of sparseness (or sparsity) is that
a vector is sparse when most of its elements are zero.
In its application to NMF, the addition of a sparse-
ness constraint λ permits to trade off between the
fitness of the factorization and the sparseness of H.

At each iteration, the process aims at reducing a
cost function C. In this paper, a generalized version
of the Kullback Leibler divergence is used as cost

function:

D(V,WH) =

∥∥∥∥V⊗ log
V

W ·H
− V + W ·H

∥∥∥∥ (2)

In 2 the multiplication ⊗ and the division are
element-wise. The sparseness constraint results in
the new cost function:

C(V,WH) = D(V,WH) + λ
∑
ij

Hij (3)

The norm of each of the objects within W is fixed to
unity.

3 Supervised NMF denoising

3.1 Method overview

The method is supervised in the sense that it uses
a noise dictionary Wn built from a recording of the
known noise to be reduced. The noise spectrogram
Φn, i.e. the short-term fourier transform (STFT), is
computed using a hamming window of 32ms and a
50% overlap. The magnitude Vn of Φn is input to
the NMF algorithm with a sparseness constraint λ
and an order rn, providing the noise dictionary of rn
spectral vectors. The spectrogram Vs of the noisy
speech is then input to the NMF algorithm along
with Wn in order to obtain the denoised speech spec-
trogram.

3.2 Separation of the speech signal

Hs

Hn

Spectrogram

Wn

Ws

Noisy Denoised

Synthesis
NMF

Figure 5: Overview of the NMF based denoising.

The denoising is summarized in Figure 5. The
spectrum Φs of the noisy speech and its amplitude
Vs are computed as in Section 3.1. Vs is input to
the NMF algorithm along with Wn. The order of
factorization r is equal to rn + rs, rs being the num-
ber of spectral vector used in the speech dictionary
Ws. Different sparseness constraint λn and λs can



be applied to the activation matrices Hn and Hs.

Given V ∈ Rn×m
+ , r ∈ N∗ s.t. r < min(n,m)

minimize C(V,WH) w.r.t. W,H (4)

subject to W ∈ Rn×r
+ , H ∈ Rr×m

+

The update rules on W and H can be expressed as
multiplicative updates:

Ws ←Ws ⊗
V

WsHs
·HT

s

1·HT
s

H← H⊗ WT · V
WH

WT ·1
(5)

The NMF algorithm provides thereof Ws and Hs to
be used to approximate the spectrogram of the de-
noised speech. Therefore, × being the matrix prod-
uct:

Ṽs = Ws ×Hs Ṽn = Wn ×Hn

S̃s = Φs ⊗ Ṽs

Ṽs+Ṽn

(6)

The denoised speech signal is finally obtained by
applying ISTFT on the spectrogram S̃s. The inter-
ested reader is referred to (O’Grady and Pearlmutter,
2006) for a more detailed discussion of the needed
derivations for Eqs. (5)-(6).

4 Experiment

4.1 Context
The robot platform Scitos A51 can be used as a
robotic assistant for elderly care. Its built-in mi-
crophones allow to interact with the robot using if
their signal is analysed by an ASR system. However,
while in motion, the robot uses ultrasonic sensors
(c.f. Figure 2) to detect potential obstacles. Their
constant activation and deactivation produces arti-
facts that can sever the ASR reliability. The follow-
ing experiment aims to evaluate the efficiency of the
denoising method proposed in Section 3 on speech
signals corrupted by this specific sensors noise. The
Figure 6 examplarily presents the spectrogram of a
corrupted speech signal.

4.2 Protocol
The noise produced by the sensors and the room
impulse response (RIR) have been recorded in a

1http://metralabs.com/
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Figure 6: Spectrogram of a speech sentence from the
TIMIT corpora: «She had your dark suit in greasy wash
water all year.», clean (top) and with added sensors noise
at SNR=10dB.

quiet office room using the robot’s microphone. The
test data has been built from the test portion of the
TIMIT corpus (Zue et al., 1990). The clean speech
files have been built conctenating a silent period of
0.5 seconds in their beginning, to allow for com-
parison with VAD based methods, and convolving it
with the measured RIR. From those prepared clean
files, noisy corpora have been built by adding the
recorded sensors noise with a SNR set to 10, 5, 0
and -5 dB.

When applying the NMF algorithm the cost func-
tion (3) has been used but no stop criterion has been
set and a fixed number of 25 iterations has been
run. Wn has been built by applying the NMF al-
gorithm with rn = 64 and λ = 0 to a 10 seconds
noise recording. When applying the algorithm to the
speech samples denoising, r has been set to 128. A



different sparseness constraint has been applied to
Hn and Hs with λn = 0 and λs = 0.2.

As a reference, the noisy sound samples have as
well been processed using a state-of-the-art single-
channel noise reduction scheme, i.e. the decision-
directed approach according to (Ephraim and Malah,
1985) based on two different noise estimation
schemes, i.e. the minimum statistics approach (MS)
as described in (Martin, 2001) and the minimum
mean square error (MMSE) approach according
to (Gerkmann and Hendriks, 2011).

5 Results

The achieved denoising is evaluated with the SNR
of the denoised samples and with the noise reduc-
tion (NR) as described in (Loizou, 2007). For both
scores, the presented values are the mean of the
achieved scores on all tested speech samples and
the standard deviation along the corpus. The results
are presented in Figure 7 for varying input SNR and
spectrograms of a denoised speech sample using the
three methods is shown in Figure 8. It appears that
the NMF based method provides better results, both
in term of signal enhancement and of reliability.

6 Conclusion

A NMF based method to enhance speech signal
when provided with spectral knowledge of the noise
has been presented. This method has been applied to
the reduction of the non stationary noise produced
by the sensors of a robotic assistant. When tested
on a corpus of speech signals, the proposed method
achieved better performances than well known VAD
based denoising.

Further works would include fine tuning of the
method, such as determining the optimal number of
iterations to obtain the best trade off between en-
hancement and computing cost, as well as the use of
spectro temporal patches as elements of dictionary.
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Figure 7: Mean and standard deviation of the achieved
SNR and NR for the three tested methods and for differ-
ent noise levels (SNR).
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