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Introduction

In many speech communication applications it is of great
interest to achieve a high intelligibility to ensure good
communication. However, in these applications speech is
often disturbed by additive noise and/or reverberation.
Therefore, it is desirable to develop algorithms that are
able to maintain a high intelligibility in such disturbed
scenarios. While amplifying the speech to achieve good
signal-to-noise ratios (SNR) is an easy approach, it is
often not applicable due to technical limitations of the
amplification system or unpleasantly high sound levels.
Consequently, algorithms that increase speech intelligi-
bility while maintaining equal powers are preferable.
Several algorithms have been proposed in the past that
use either frequency-dependent amplification, dynamic
range compression, transient amplification, or modula-
tions filtering techniques.
The first attempt to investigate the effect of different
signal processing strategies on speech intelligibility was
made by Licklider and Pollack [1]. While they did not
consider any additive noise or reverberation they could
demonstrate that speech intelligibility in quiet is not
necessarily affected by strategies such as high-pass or low-
pass filtering and clipping.
Niederjohn and Grotelueschen [2] proposed a preprocess-
ing algorithm that uses high-pass filtering followed by
static rapid amplitude compression. They observed an
increase in speech intelligibility for preprocessed speech
in white noise over the unprocessed speech at the same
SNR. Zorila et al. [4] adopted the idea of dynamic
range compression as a mean to increase the speech
intelligibility. They used a static input-output charac-
teristic for their dynamic range compression and used
several frequency-dependent amplification steps prior to
compression.
Recently, Sauert and Vary proposed an algorithm that
uses time- and frequency-dependent amplification of the
speech signal aiming to maximize the SII [3]. However,
this approach suffers from spectral adaption to the
background noise. Therefore in a recent approach they
considered an SNR-dependent transition between SII-
weighted and unity-weighting of the speech signal [6].
In this contribution we describe an algorithm and its
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evaluation using objective measures and formal listening
tests that combines time- and frequency dependent am-
plification and time- and frequency-dependent dynamic
range compression. In the following we will first describe
the considered scenario and our proposed algorithm.
Then the evaluation using objective measures and a lis-
tening test is described. A correlation analyses between
objective and subjective data is carried out and the last
section concludes this contribution.

Scenario

Consider the acoustic scenario depicted in Fig. 1. The
unprocessed clean speech signal s[k] at discrete time k is
modified using the weighting function W{·} and played
back via a loudspeaker. A microphone picks up the
disturbed signal y[k] which consists of the convolutive
mixture of the modified speech signal s̃[k] and the room
impulse response h[k] and the additive noise disturbance
r [k], i.e.

y[k] = s̃[k] ∗ h[k] + r[k], (1)

where ∗ denotes convolution. An estimate r̂[k] of the
noise signal r[k] can be obtained by using e.g. adaptive
filtering techniques to model the room impulse response
h[k]. Using the estimated noise r̂[k], the estimated

impulse response ĥ[k], and the known clean speech signal
the processed speech signal s̃[k] is then computed as:

s̃[k] = W{s[k],r̂[k],ĥ[k]}s[k] (2)

In the following we assume that a perfect noise estimate
is available, i.e. r̂[k] = r[k], and no reverberation is
presented, i.e. h[k] = δ[k]. Furthermore, we aim at
finding a weighting function W{·} that enhances the
intelligibility of s̃[k]+ r[k] over s[k]+ r[k] under an equal
power constraint.

Algorithm

In this section the proposed algorithm as schematically
depicted in Figure 2 will be described. A more detailed
description can be found in [5]. The proposed DynComp

algorithm combines two time- and frequency-dependent
stages. Namely, a time- and frequency-dependent ampli-
fication and a time- and frequency-dependent dynamic
range compression. Both stages are controlled by an
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Figure 1: Considered acoustical scenario.
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Figure 2: Schematic flow-graph of the proposed algorithm

SII-estimation and can therefore be considered as noise-
adaptive. The time- and frequency-dependent amplifi-
cation stage aims at improving the speech intelligibility
by enhancing high-frequency content of the speech signal
assuming that typical noises encountered in application
scenarios have spectral content mainly in low- and mid-
frequency regions. The dynamic range compression stage
aims at boosting low-level contents of the speech signal
to audibility and compressing frequency-bands with high
SNRs that are assumed to be well audible.
In the remainder our algorithm is compared to the
algorithm of Sauert and Vary [6] which only considers
a time- and frequency-dependent amplification. Their
goal is to achieve an SII-weighting shape of the speech
spectrum in conditions of low SNRs and no change of
the speech spectrum when the SNR is sufficiently high.
Since we used a different filterbank than proposed in [6]
and therefore a different set of parameters, we will denote
this algorithm by ModSau.

Objective Measures

The proposed algorithm has been evaluated using objec-
tive measurements that had shown high correlations to
speech intelligibility measured in formal listening tests
in previous studies. Ten randomly selected German
sentences from the Oldenburg Sentence test (OLSA) were
used that were degraded by additive stationary speech-
shaped noise (SSN) at SNRs ranging from -30 dB to
+30dB. SSN was created by randomly superimposing
sentences from the sentence test, therefore yielding a
longterm spectrum that is equivalent to the average
spectrum of the speech material. The following mea-
sures were used to quantify the effect of the proposed
DynComp algorithm:

• STI: [7] The Speech Transmission Index is based
on the observation that a fully modulated signal
experiences a reduction in modulation depth due
to additive noise and/or reverberation present in a
given transmission channel. This reduction in mod-
ulation highly correlates with measures of speech
intelligibility.
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Figure 3: Results for the evaluation using different objective
measures and speech shaped noise.

• SII: [8] The Speech Intelligibility Index can be con-
sidered, in a first approximation, as an intelligibility
weighted SNR. In addition, several more effects are
accounted for, such as the upward spread of masking
and spectral smearing at high intensities.

• ESII: [9] The Extended SII is an extension of
the original SII, that allows for time-dependent
prediction of speech intelligibility. Therefore within
the ESII, SII scores are calculated in short time
windows. The overall score is calculated as the mean
of all short-term predictions.

• STOI: [10] The Short Time Objective Intelligibility
Measure employs the correlation between the clean
speech signal and the disturbed speech signal as
predictive measure of speech intelligibility.

The SNR-dependent results are shown in Figure 3. In
all objective measures both algorithms yield an improve-
ment compared to the unprocessed Reference. Although
differences are small, there is a tendency that the
proposed DynComp algorithm outperforms ModSau in
most conditions. Note that the SII and ESII yield
different values although there output values should be
equivalent in case of stationary noises [9]. This is due to
the use of the real speech signals instead of stationary
noises derived from the speech signals as speech signal
inputs to the objective measures.

Subjective Measures

Speech intelligibility testing was carried out with eight
normal-hearing subjects, i.e. pure-tone thresholds of
not larger than 20dBHL. The mean age of the subjects
was 25,9 years. Two different noises were used, a
stationary car noise and a more instationary cafeteria
noise. Speech material was taken from the Oldenburg
sentence test [12]. During presentation the level of the
speech signal was kept at 60 dBSPL and the noise signal
was scaled to yield the desired SNR. In a preliminary
study with four of the eight subjects for each noise type
three different SNRs were determined using an adaptive
procedure that yielded thresholds of approximately 20%,
50% and 80% word intelligibility in the unprocessed
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Figure 4: Results for listening test for the cafeteria noise
(left) and car noise (right). Symbols indicate individual
results and lines show psychometric functions obtained by
parametric averaging of individual psychometric functions.

Reference condition. The following SNRs were obtained
for the different noises:

• Car noise: −18 dB, −16 dB, −14 dB

• Cafeteria noise: −14 dB, −10 dB, −6 dB.

When speech intelligibility values over a wide range
of SNRs are obtained, psychometric functions can be
used to describe the intelligibility of SNRs not measured
explicitly. A psychometric function can be fitted by
varying the parameters SNR50 and s50, that correspond
to the SNR of 50% speech intelligibility and the slope of
the function at that point, respectively., in e.g. [11]

P (SNR) =
1

1 + e4·s50·(SNR50−SNR)
. (3)

From informal listening tests we expected the algorithms
to increase speech intelligibility, especially for the sta-
tionary car noise. Thus, a good fit of the psychometric
function is not guaranteed. Therefore, we used an
semi-adaptive procedure to chose the SNRs based on
listeners individual responses. This resulted in SNRs
ranging from −24dB to −14dB and −22dB to −6 dB
for the car noise and cafeteria noise, respectively. A
detailed description of this procedure can be found in
[5]. Figure 4 shows the results for individual subjects
as well as the psychometric functions computed by
parametric averaging of the individual SNR50 and s50
values. For the car noise (right figure) both algorithm
increase the speech intelligibility by up to 70% for the
DynComp algorithm at an SNR of -24 dB. For this noise
both algorithms achieve comparable results for the whole
range of considered SNRs. For the instationary cafeteria
noise at the highest SNR of -6 dB both algorithms
show comparable results, while for the lower SNRs
only the proposed DynComp algorithm improves speech
intelligibility over the unprocessed Reference.
To test for significant effects an analysis of variance

(ANOVA) was carried out for each noise condition. Since
the SNRs measured differed across subjects and algo-
rithms we chose those three SNRs that most measured
values were available for. To estimate missing values at
these SNRs the individual psychometric function were
evaluated at these points. The resulting SNRs in the
statistical analysis were −24dB, −20 dB and −16 dB for
car noise and−14 dB, −10dB and −6 dB for the cafeteria
noise.

Influence of Noise

To investigate the influence of the different noises a two-
way ANOVA was carried out with factors of algorithm
and noise. For both noises only the data corresponding
to the SNR of 50% in the unprocessed Reference was
used. According to Shapiro-Wilk test normality could
be assumed for all data involved in this analysis. Results
showed a significant influence of both factors and their in-
teraction on speech intelligibility (Algorithm: F (2; 14) =
108.61, p < 0.001, Noise: F (1;7) = 23.25, p < 0.001,
Algorithm×Noise: F (2;14) = 55.65, p < 0.001). Post-
Hoc tests were carried out using t-tests for dependent
variables and Bonferroni correction for 9 comparisons,
indicating a significant difference across noises for both
algorithms, a significant improvement of both algorithms
over the Reference condition for the car noise and a
significant improvement of DynComp over the Reference

and ModSau for the cafeteria noise.

Influence of Algorithms

To test the influence of processing in different SNRs, both
noises were considered separately. A Shapiro-Wilk test
showed that not all condition followed a normal distri-
bution, thus an aligned rank transformation according
to [13] was carried out prior to ANOVA. The resulting
three data sets for the main factors SNR, algorithm and
their interaction were then analysed separately. Results
for the car noise showed a significant influence of both
factors and their interaction (SNR: F (2; 14) = 149.34,
p < 0.001, Algorithm: F (2;14) = 98.15, p < 0.001,
SNR×Algorithm: F (4;28) = 37.21, p < 0.001). Post-
hoc analysis for the factor of algorithm showed that both
ModSau and DynComp increase the speech intelligibility
significantly over the over unprocessed Reference. For
the cafeteria noise also both main effects as well as their
interaction was significant (SNR: F (2; 14) = 108.64,
p < 0.001, Algorithms: F (2;14) = 65.08, p < 0.001,
SNR×Algorithms: F (4;28) = 6.75, p < 0.001). A post-
hoc analysis for the main effect of algorithm was carried
out showing that DynComp significantly increased speech
intelligibility over the Reference (p < 0.001) and ModSau

(p < 0.001).

Prediction of Subjective Measures

The predictive ability of the objective measures used in
the objective testing was investigated using correlation
analyses of the objective and subjective data. Therefore,
all sentences used in the subjective testing were also
evaluated using the four different objective measures of
speech intelligibility. To account for possible non-linear
relationships between model predictions and listening
test scores logistic function can be used to transform
model values into speech intelligibility values. We used
(4) as proposed by [14] and optimized the parameters m
and b using the unprocessed Reference, while parameters
a and c were given due to the boundary conditions of
P (0) = 0 and P (1) = 1.

P (SII) =
m

a+ e−b·SII
+ c (4)
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Figure 5: Results for the correlation analyses of the objective
and subjective data. Gray bars indicate results for the car
noise and black bars indicate results for the cafeteria noise.
White inner bars show the correlation results based on the
individual results while outer bars show results based on
averaged values.

Figure 5 shows the results of the correlations analyses,
i.e. Spearman’s rank correlation (left), Pearson’s linear
correlation coefficient (middle) and the bias (right), i.e.
the linear deviation from a perfect match. Note that
in contrast to the objective evaluation, for the ESII a
speech-shaped noise as a speech signal was generated as
proposed in [9]. From the results it can be concluded
that all models perform nearly equivalently in predicting
the order of the results from the listening test. Also,
in nearly all conditions a linear correlation r > 0.75 is
achieved. Only STOI yields a lower predictive ability for
the car noise and also exhibits the largest bias.

Conclusion

In this contribution a new algorithm for the processing
of speech signals prior to their presentation was pro-
posed. Objective and subjective evaluation was carried
out showing that the proposed DynComp algorithm
outperforms our implementation of the state-of-the-art
algorithm by [6]. Gains in intelligibility of up to 70% for
the entire range of considered SNRs could be observed.
Furthermore, the predictive ability of several objective
measures was investigated showing that all models are in
general capable of predicting speech intelligibility when
their respective bias is taken into account.
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